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Highlights
To survive, the brain must perform fast,
efficient distributed computation.

The challenge is to discover the orches-
tration of the brain hierarchy over space
and time.

Thermodynamics is a natural framework
to quantify hierarchy in any system.

The key concepts of irreversibility and the
‘arrow of time’ can reveal the asymmetry
To not only survive, but also thrive, the brainmust efficiently orchestrate distributed
computation across space and time. This requires hierarchical organisation facili-
tating fast information transfer and processing at the lowest possible metabolic
cost. Quantifying brain hierarchy is difficult but can be estimated from the asymme-
try of information flow. Thermodynamics has successfully characterised hierarchy
in many other complex systems. Here, we propose the ‘Thermodynamics of Mind’
framework as a natural way to quantify hierarchical brain orchestration and its un-
derlying mechanisms. This has already provided novel insights into the orchestra-
tion of hierarchy in brain states including movie watching, where the hierarchy of
the brain is flatter than during rest. Overall, this framework holds great promise
for revealing the orchestration of cognition.
of brain information flow.

The ‘Thermodynamics of Mind’ frame-
work has provided novel insights into
the changing hierarchy of brain states.

Combined with whole-brain modelling,
thermodynamics shows great promise
for revealing causal insights into the
orchestration of cognition.
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Understanding the orchestration of brain dynamics

[Thermodynamics] is the only physical theory of universal content, which I am convinced will
never be overthrown –

[Albert Einstein]

There is a conundrum at the heart of neuroscience, namely how billions of relatively slow
neurons can carry out the computations needed for the flexible, time-critical behaviour needed
for survival. This slowness arises from the electrical signals of a neuron being converted to a
chemical signal at the synaptic junction before being converted back to an electrical signal
[1]. The speed of information transfer between neurons is typically on the order of ~10–20 ms
[2,3], which is several orders of magnitude slower than that found in computers. Yet, the brain is
often better at solving difficult problems comparedwith a computer. The answer to this conundrum
lies in the hierarchical architecture of the mammalian brain, which allows for the computation of
sensory input followed by higher-level computation in nested recursive circuits at various spatio-
temporal levels [4–6]. Although information flow is primarily shaped by brain anatomy, not unlike
dynamic traffic flow on an existing road network, the sculpting effects of neurotransmission [7–9]
provide additional flexibility. Ultimately, hierarchical brain processing allows information to be seg-
regated and integrated as needed and facilitates the execution of the time-critical computations
needed for survival [10–12].

Nevertheless, what is needed is a much deeper understanding of how this hierarchical
processing is driven, or orchestrated, in different brain states, such as wakefulness, sleep,
and anaesthesia [11,13,14]. However, even defining brain states is difficult and not commonly
agreed upon [15]. Brain states clearly differ from each other in terms of their continuously evolv-
ing dynamics of whole-brain networks characterised by condition-dependent self-organisation
in stable, semistable, and transient arrangements. There are influential theories trying to explain
brain function, such as hierarchical models of predictive coding [16], hierarchical core-
periphery principles [17–20], and the free-energy principles of the Bayesian brain [21,22]. How-
ever, these theories have not agreed on a common definition of a brain state and, while they
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Glossary
Fluctuation–dissipation theorem
(FDT): a central theorem in statistical
thermodynamics for predicting the
nonequilibrium fluctuations of a system,
such as the irreversible dissipation of
energy into heat from its reversible
fluctuations in thermal equilibrium.
Generative mechanisms: generative
mechanisms underlying the temporal
evolution of a system can be determined
by building a model of the system and
investigating the causal influence of
manipulating the model elements (also
see ‘whole-brain model’).
Granger causality:method developed
by econometrician Clive Granger for
testing how useful one time series is for
forecasting another time series.
Importantly, despite its name, this
method does not directly measure
causality but merely the degree of
temporal correlation.
Partially ordered set (poset): the
mathematical definition of hierarchy
relies on a partially ordered set (poset)
coming from the order theory branch of
mathematics. This formalises the
ordering, sequencing, or arrangement of
the elements of the entire poset.
Power law: special mathematical
relationship between two quantities in
which one quantity varies as a power of
the other. The power law distribution
arises when extreme events occur with
low probability, such as how most
people in a social network only have a
couple of hundred contacts, while some
influencers may have millions. The
power law often indicates that a system
such as the brain could be scale free and
operate in a critical state of self-
organised criticality, which makes the
system highly robust to random failures,
but vulnerable to attacks.
Whole-brain model: powerful tool for
modelling brain dynamics from whole-
brain neuroimaging techniques, such as
fMRI or magnetoencephalography. In its
simplest form, the whole-brain model is
constructed using the anatomical
connectivity of a reduced set of typically
hundreds of anatomically defined brain
regions. Each anatomically linked region
contains a model of the local dynamics,
and the model is fitted to the
neuroimaging time series by simply
scaling the global connectivity. The
elements of such an in silico model of
brain dynamics can then be exhaustively
probed, and the underlying causal
mechanisms revealed.
acknowledge the hierarchical nature of brain processing, these theories have not been suc-
cessful in characterising the causal mechanisms of whole-brain dynamics, in large part due
to the complexity of the brain.

Moving beyond existing theories, a general theory of the brain needs to directly quantify brain
states in terms of hierarchy at the level of whole-brain dynamics and to offer novel insights into
the underlying mechanisms of brain states. The ‘Thermodynamics of Mind’ framework is a step
toward a general theory quantifying hierarchy in brain states by using thermodynamics principles
to quantify the underlying asymmetry of hierarchy. As an example, think of how egalitarian orga-
nisations have a flat, symmetrical structure, while many enterprises have a pyramidal structure
with one or more leaders at the top, who delegate to many lower levels of management. Estab-
lishing the hierarchy in these organisations relies on establishing the asymmetry of information
flow in the organisation.

These hierarchical principles also hold for the brain, where the asymmetry of the information flow
determines the functional hierarchy. Thermodynamics provides a general framework for studying
hierarchy in physical systems, including systems biology [23]. Specifically, this is provided by the
specific branch of nonequilibrium thermodynamics that quantifies the asymmetry of information
flow by estimating the reversibility and non-reversibility (irreversibility) over time of the underlying
processes. To understand this key concept of irreversibility (‘arrow of time’; Box 1), think of
watching a film of a glass being shattered by a bullet. This is a clear example of an irreversible
process, where the glass goes from order to disorder. By contrast, when watching the same
film sequence in reverse, we immediately recognise that, in the real physical world, it is not pos-
sible for the glass to come back together since this violates the second law of thermodynamics
by going from disorder to order. The impossibility and, therefore, irreversibility of the events
are abundantly clear. Applying the thermodynamical principle of irreversibility to the complexity
of the brain allows for robust estimation of functional brain hierarchy. This is achieved by using
irreversibility to quantify the asymmetry of information flow between all brain regions. More funda-
mentally, this can also provide insight into the mechanisms generating this asymmetry.

Here, we describe recent progress in using thermodynamics to describe the fundamental
mechanisms underlying the orchestration of hierarchical brain dynamics. First, we briefly de-
scribe how scientists have tried to establish the functional hierarchy in the brain. We demon-
strate how thermodynamics can directly provide both quantification and underlying
mechanisms of hierarchy through asymmetry. The Thermodynamics of Mind framework can
explain how brain orchestration of hierarchy ensures survival. We provide three examples of
how this causal framework has led to promising new insights in neuroscience and psychology,
in terms of (i) the orchestration of information flow in brain states and cognition; (ii) what
happens during movie watching; and (iii) how, despite its relative slowness, the brain can pro-
cess information fast enough to survive. Finally, we explore some of the many fertile avenues of
research arising from the framework.

Understanding brain hierarchy
Hierarchy can be precisely described mathematically using order theory and, in particular,
partially ordered set (poset; see Glossary), which formalises the ordering, sequencing, or
arrangement of the elements of a set [24]. Hierarchy is an organising principle in all living systems
[25]. This can be appreciated by taking a thermodynamic approach to modelling biological sys-
tems as physical systems, where, in the most general abstraction, they are thermodynamic
open systems showing self-organised behaviour. The set-subset relations between dissipative
structures can be characterised by a hierarchy across spatiotemporal scales.
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Box 1. The arrow of time in thermodynamics

The nonequilibrium thermodynamic principle of the arrow of time can be illustrated with sequences from two films. The first se-
quence of images is a classic example of an equilibrium system and is taken froma film of colliding billiard balls (Figure IA).When
watching this film both forward and backward, the sequences are almost identical, and it is almost impossible to distinguish the
direction of the arrow of time for each of the films. In thermodynamical terms, this is because the process does not produce
entropy and creates a reversible process. By contrast, the sequence of images of a movie of glass being shattered
(Figure IB) is a strong example of a nonequilibrium system and of how irreversible changes lead to an increase in production
entropy. Equally, when watching the reversed film sequence of the glass being shattered, it is intuitively clear that the second
law of thermodynamicsmeans that a glass cannot spontaneously comeback together, that is, the transition fromdisorder to order
is impossible. This establishes a clear arrow of time, where the forward and backward unfolding of events are distinguishable.

More generally, irreversibility is closely linked with production entropy [71] as illustrated in Figure IC, which shows a nonequi-
librium system with two states A and B, and the associated trajectories evolving during forward (A → B, black arrow) and
backward (B→ A, red arrow) processes [72]. Both the forward and backward trajectories can be thought of as correspond-
ing to the movies shown in the previous panels, but each with a different arrow of time. By contrast, the time reversal of the
backward trajectory (red stippled arrow) can be imagined as the movie of the backward trajectory played forward in time. If
the forward and time reversals of the backward trajectories are different, this corresponds to non-reversibility of the process.

Finally, Figure ID shows the second law of thermodynamics stated in terms of the concept of production entropy [23,36]. If
the production entropy, Hp, is larger than zero, this corresponds to irreversibility of a nonequilibrium system. By contrast, if
there is no production entropy, Hp = 0, then this is a reversible, equilibrium system.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Physics and the arrow of time.
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Unfortunately, as shown in a review by Hilgetag and Goulas [26], this rigour of analysis has not yet
been applied to the brain. According to the authors, the term ‘hierarchy’ is currently not well de-
fined in neuroscience. Bringing some order to the field, their careful analysis identifies four main
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 3
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patterns used to characterise hierarchy: (i) topological projection sequences; (ii) spatially ordered
changes (gradients) of features; (iii) progression of scales; and (iv) sorting of laminar projection
patterns, of which they propose that the progression of scales appears the most fruitful way for-
ward. This approach usesmeasures designed to capture the hierarchical, multiscale organisation
of the brain by combining connectional sparsity at the global network level with network integra-
tion through connectivity that scales naturally from the local to the global level. In particular, the
authors point out the usefulness of measures that capture the spacetime hierarchical scaling of
the brain, that is, over space, with spatial encapsulation from ion channels and dendritic spines
to neurons over local cortical column circuits of neurons to large-scale networks, and over time
as temporal encapsulation of time scales and rhythms [27]. They also show that a useful measure
of hierarchy is measuring segregation versus integration, which maximises the richness, for ex-
ample, measured by the entropy, of potential functional interactions of local versus global access
and control of networks [11,12].

Network theories are not very good at capturing the complexity of brain hierarchy since they all
too often ignore the importance of time. However, they do support the general notion of a ‘global
workspace’ orchestrating brain function, where information is integrated in a small group of brain
regions before being broadcast to many other regions across the whole brain [28,29]. Global
workspace can be thought of as a prototypical example of the orchestration of a hierarchical sys-
tem, akin to how a conductor must control an orchestra, because, otherwise, the music almost
always fails, as shown beautifully in Roberto Fellini’s film Prova d’orchestra. Scientific studies
have shown that this type of brain hierarchical organisation is efficient, robust, and largely fault
tolerant [30–32].

Recently, transfer entropy, which is a generalised version of Granger causality, was used as a
direct measure of hierarchy by estimating the information flow between brain signals. Transfer en-
tropy was used on a large data set of over 1000 participants to identify a specific group of human
brain regions constituting the global workspace used for the orchestration of the functional hier-
archical organisation of the brain [33]. However, this transfer entropy framework is computation-
ally expensive and requires long time series of fMRI data in large cohorts of participants, typically
on the order of hundreds. Most data sets, including those from neuropsychiatric patients, tend to
be much smaller. Therefore, a research focus has been to develop and use the more natural ther-
modynamics framework, which can not only provide a robust quantification of hierarchical orga-
nisation in smaller data sets in health and disease, but also allow for the discovery of the
underlying generative mechanisms.

Hierarchy and thermodynamics
As shown in the preceding text, the hierarchy of a system can be determined by quantifying the
asymmetry in the directionality of information flow. Conveniently, thermodynamics directly defines
a measure of asymmetry for any physical system by the so-called ‘breaking the detailed balance’,
which is a hallmark of nonequilibrium. This insight comes from the core idea of the second law of
thermodynamics, namely, that a systemwill go from order to disorder over time [34,35]. Formally,
thermodynamics relies on the concept of entropy, which is the level of disorder produced by irre-
versible (nonreversible) processes. However, the long history of thermodynamics has led to many
different but related forms of entropy (Box 2).

Importantly, of these different forms of entropy, in terms of hierarchy, the concept of production
entropy can directly quantify the level of irreversibility of a system and, therefore, the level of
hierarchy. Yet, from a practical point of view, production entropy turns out to be hard to quantify
in a high-dimensional system, such as the brain (although some progress has beenmade [23,36]).
4 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Box 2. Entropy

Entropy is a rich concept with a long history, which has been immensely useful for quantifying physical systems in terms of
the underlying disorder, uncertainty, transmission of information, and non-reversibility (arrow of time). All these concepts are
different but related on a deep level. Briefly, entropy was first introduced in the 1850s by Rudolf Clausius as a measure of
the disorder or randomness of a system [34]. Building on the seminal work of Sadi Carnot [35], he used the term to
describe the amount of energy in a system that is unavailable to do work. As such, the second law of thermodynamics
can elegantly be stated as an increase over time of the total entropy of a closed system.

This work gave birth to statistical physics during the 1870s, where Ludwig Boltzmann defined entropy as a measure of the
number of possible microscopic configurations of a system that are consistent with a given macroscopic state:
S kB ln Ω, where kB denotes Boltzmann’s constant and Ω is the number of microstates consistent with a given macro-
scopic equilibrium. This simple definition allowed him to show that the entropy of a system is related to the number of ways
in which the particles in the system can be arranged and that the entropy of a system will increase as the number of
possible configurations increases.

On a deep level, the measure of entropy as disorder is related to the randomness or uncertainty of information in a
message, as shown in 1948 by Claude Shannon with his concept of information entropy [73] (Equation I):

H − K∑k
i 1p i ln p i I

where K is a constant, determining the unit of measurement, stating that the information content of a message is related to
the probability of each symbol in the message, p i , where the more uncertain or random the symbols are, the more
information the message contains. This information-based definition of entropy directly leads to a definition of the mutual
information (Equation II):

I X Y H X H Y − H X, Y II

As can be seen, this definition uses the information entropy to quantify the statistical dependence between two random
variables, X and Y. This can then be used to define the transfer entropy from a variable X to Y as the conditional mutual
information (Equation III):

TX Y I Yi 1 Xi Yi H Yi 1 Yi − H Yi 1 Xi, Yi III

where Yi 1 is the value of Y at time point i 1, and Xi indicates the past of X in a time window of length L up to, and
including, the time point i, i.e., Xi Xi Xi − 1 Xi − L − 1 .

Adding to these definitions of entropy, central to thermodynamics is the production entropy, which is a measure of the
reversibility and defined in Equation IV:

HP ∑i,jPij log
Pij

Pji
IV

where Pij is the probability of transition between states i at time t to j at time t 1.

Overall, quantifying the production entropy in the brain is essentially detecting the arrow of time in brain signals, which is
used in the Thermodynamics of Mind framework to quantify the hierarchical organisation of the underlying brain dynamics.

Trends in Cognitive Sciences
OPEN ACCESS
Instead, it is possible to estimate the irreversibility through another route, namely to compute the
‘arrow of time’ [37] to quantify the asymmetry of information flow in a complex system (Box 1).

Thus, quantifying hierarchy using thermodynamics is a matter of determining the ‘arrow of time’ or
irreversibility in a system. The hierarchical organisation of a system is simply determined by the
level of irreversibility. When a system is hierarchical, it is in nonequilibrium and, consequently,
irreversible in time. Specifically, more hierarchical systems are more irreversible. At the other
extreme, a system is flat and nonhierarchical when in equilibrium and reversible in time.

Overall, these insights gave rise to our novel Thermodynamics of Mind framework for advancing
the understanding of brain dynamics. This framework has made it possible to reveal the underly-
ing mechanisms of the hierarchical organisation of brain states, including wakefulness, sleep,
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 5
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cognitive tasks (e.g., decision-making and working memory), drugs (anaesthesia and psychedelics),
and disease (coma and neuropsychiatric disorders).

The Thermodynamics of Mind framework
Unlike other methods, the Thermodynamics of Mind framework can directly quantify the hierarchy
of any brain state and provides insights into themechanisms that generate this hierarchy. This has
already shown important differences in cognition and brain states that other methods have failed
to reveal.

Given the complexity of best characterising hierarchy through different measures of irreversibility,
this means that there are multiple ways to implement the Thermodynamics of Mind framework.
The most straightforward implementations directly quantify hierarchical changes from spatiotem-
poral whole-brain data in a ‘model-free’ way. Figure 1A–E shows how the thermodynamic ap-
proach can quantify hierarchy through the level of irreversibility for a given brain state. Crucially,
this process relies on distinguishing the differences in the arrow of time for forward and backward
time series of brain signals [38–40].
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Thermodynamics of Mind framework. The figure describes how the principles of thermodynamics can reveal
the hierarchy of brain states by quantifying the asymmetry in the information flow. (A) Hierarchical organisation can be found
from the asymmetry in the directionality of information flow, called ‘breaking of the detailed balance’ in thermodynamics.
(B) Discovering the directionality, or the ‘arrow of time’, requires forward time series of brain signals, as well as the
backward time series (by artificially reverting the time ordering). (C) The detection of irreversibility requires distinguishing
between these forward and backward time series. (D) The irreversibility of a system is spread between two extreme cases:
fully reversible and symmetric between all nodes (top) or irreversible, with asymmetric flow between nodes breaking the
detailed balance (bottom). (E) In terms of hierarchy, these two extremes translate into different hierarchies: uniform
symmetric flow leads to a flat hierarchy (top), while asymmetric flow leads to a hierarchical system (top), with the two
orange regions (in the inner circle) at the top of the hierarchy. Thus, the arrow of time provides a convenient measure of
both the flow and hierarchy of any dynamical system. (F) Beyond this, whole-brain modelling can be used to identify the
causal, mechanistic generators of the functional hierarchy. The model integrates the anatomical structural connectivity and
functional dynamics quantified using the model-free irreversibility estimates. (G) The whole-brain model uses local
dynamics, for example, Stuart–Landau oscillators, to fit the empirical irreversibility. (H) The optimisation leads to the best
possible generative effective connectivity (GEC). (I) In turn, the GEC provides an estimate of the generators giving rise to
the generative hierarchy of a given brain state, which can be characterised using trophic coherence capturing cycle
structure, stability, and percolation [70].

6 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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It is also possible to move beyond the model-free approach to reveal the underlying gener-
ative mechanisms of hierarchy (Figure 1F–I). This is achieved by constructing a generative
whole-brain model integrating anatomical structural connectivity and functional dynamics
[41]. Fitting the model to the irreversibility creates the so-called ‘generative effective connec-
tivity’, which is a matrix revealing the causal, mechanistic generators of the specific functional
hierarchy.

Orchestration of information flow in brain states and cognition
Traditional neuroimaging methods have revealed some of the brain dynamics involved in human
cognition. Yet, what has been missing is a deeper understanding of how complex cognition is or-
chestrated through different patterns of information flow between brain networks. Quantifying
these subtle differences has proven a challenge for traditional analysis methods. However, the
Thermodynamics of Mind framework has revealed significant differences in orchestration for
even quite similar cognitive tasks.

For example, one recent study used a machine learning (Temporal Evolution NETwork, TENET)
implementation of the quantification of irreversibility for fMRI data and found that resting state
has significantly lower irreversibility and flatter hierarchy than when performing seven cognitive
tasks (Figure 2A–C) [38]. The higher level of irreversibility observed during tasks reflects the in-
crease in the hierarchical organisation needed for the specific computations, reflecting the in-
crease in asymmetrical information flow in tasks compared with resting state. TENET was also
applied to large-scale fMRI data from neuropsychiatric patients with attention deficit-hyperactivity
disorder (ADHD), bipolar disorder, and schizophrenia, which revealed overall lower irreversibility
during resting compared with in control participants [38], suggestive of significant problems
with orchestration. This was further elucidated through the significant local heterogenous node-
level changes in the different disorders.

Still, while the TENET implementation is powerful and robust in terms of the underlying machine
learning framework [42], it is also computationally expensive and requires large data sets. To
mitigate these problems, the INSIDEOUT implementation was developed, which is a robust
way of capturing the ‘inside out’ balance of intrinsic (INSIDE) and extrinsic (OUT) brain dynam-
ics. This is achieved by directly estimating the arrow of time in brain signals (Figure 2D) [39].
Briefly, the main idea of INSIDEOUT is to use the simplicity of time-shifted correlation matrices
to provide a quantification of irreversibility and, consequently, the degree of nonequilibrium in
the brain dynamics of different brain states.

When applied to the same fMRI data, INSIDEOUT gives very similar results to TENET when
measuring the irreversibility of cognitive states compared with resting state (Figure 2E) [39].
Crucially, however, unlike TENET, INSIDEOUT allows for the estimation of precise signatures
in much smaller data sets, such as electrocorticography brain data from, for example, individual
non-human primates [43,44]. When comparing three radically different brain states of awake,
deep sleep, and anaesthesia in non-human primates, this revealed a significantly different hier-
archical organisation in each brain state in terms of non-reversibility and hierarchy. Potentially,
this may be a signature of conscious awareness, demonstrating a flattening of the hierarchical
organisation as the level of consciousness decreases [39].

Watching movies: perched between rest and cognition
Still, truly understanding hierarchical brain organisation requires moving beyond simply quantify-
ing irreversibility in brain states to building whole-brain models that can explain the underlying
data. Such mechanistic models are both informative of the information flow and hierarchical
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 7
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Figure 2. Hierarchy in brain dynamics. The figure shows two implementations of the Thermodynamics of Mind
framework, which can establish the arrow of time in the brain and reveal the brain hierarchy. (A) Brain signals are extracted
in a brain parcellation, providing forward and backward time series (by artificially reverting the time ordering), which are
then used to establish irreversibility. (B) Temporal Evolution deep learning NETwork (TENET) uses deep learning on these
time series for training and, when subsequently testing new data, the level of classification performance provides the level
of irreversibility [38] (top panel). Using TENET on large-scale neuroimaging data from over 1000 participants in the Human
Connectome Project (HCP) showed that the resting state had a lower non-reversibility and flatter hierarchy than when
participants performed seven cognitive tasks (bottom panel). (C) Similarly, the INSIDEOUT framework also uses forward
and backward time series to establish the arrow of time information flow. The framework generates the irreversibility by
comparing shifted pairwise correlations between forward and backward time series [39,40]. These pairwise measures are
then combined into a full matrix from which the hierarchy can be established. Applying INSIDEOUT implementation to the
large HCP data set revealed similar results to TENET, namely that resting state has a lower non-reversibility and flatter
hierarchy compared with when seven tasks were performed. Abbreviation: WM, working memory.

Trends in Cognitive Sciences
OPEN ACCESS
organisation in brain states and can capture the mechanisms generating a given brain hierarchy,
which is needed to resolve the causal attribution [15].

In fact, a whole-brain model implementation of the Thermodynamics of Mind framework was
able to shed light on a fundamental question in neuroscience, namely why our subjective
8 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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experience of watching the naturalistic, multimodal dynamics of film is different and much more
pleasant than our everyday resting experiences of both mind wandering and solving difficult
tasks [41]. This is important because naturalistic films have been proposed as a better alterna-
tive to resting state for investigating younger and clinical populations, especially given that
using film results in higher test–retest reliability [45].
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 3. Thermodynamic insights into movie watching. Whole-brain modelling implementation of the
Thermodynamics of Mind theory has provided insights into why our subjective experience of watching the naturalistic,
multimodal dynamics of film is so highly motivating, soothing, and entirely different from our usual everyday resting
experience of mind wandering [41]. (A) The implementation built a generative whole-brain model fitting the model-free
estimates of irreversibility in a large group of participants watching naturalistic movies and resting of performing seven
tasks in a 7 Tesla MRI scanner [41]. (B) Again, the results showed highest irreversibility in tasks and significantly lower
irreversibility in rest. However, interestingly naturalistic movies resulted in significantly lower irreversibility than either
tasks or at rest and, thus, a flatter brain hierarchy (significant differences indicated by ***). The whole-brain model was
able to capture the main mechanistic drivers of these changes in hierarchy through generative effective connectivity
(GEC), which provides the underlying causal mechanisms for a given state. (C) The causal brain generators of movie
watching are shown in renderings of the differences of the sum of the incoming receivers and outgoing drivers of the
GEC matrices for (1) naturalistic film versus rest and (2) rest versus tasks. (D) Most importantly, rendering the
intersection of the top 50% regions of these two contrasts shows that the prefrontal cortex is the primary driver for
orchestrating computation in the brain (but with some parietal, visual, and temporal regions). Overall, this provides
important quantifications of the causal mechanisms underlying complex changes in brain hierarchy.

Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 9
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Figure 3B shows the result of watching naturalistic movies, which is associated with significantly
lower levels of irreversibility compared with both resting and tasks measured with fMRI [41]. The
flatter hierarchy during movie watching could perhaps be linked to why watching films is such a
favourite relaxing pastime worldwide. Specifically, naturalistic films appear to offer a moment’s re-
spite from the thermodynamic rat race of survival. Movie watching provides a desirable audio-vi-
sual narrative where the necessary computation is minimal, which is very different from both
solving demanding tasks and simply resting. Interestingly, resting is not particularly restful for
most people, with authors such as Killingsworth and Gilbert showing that the introspection and
mind-wandering state rarely lead to a happy mind [46].

Fast brain processing despite slowness
Beyond providing a deeper understanding of information flow in the human brain, the Thermo-
dynamics of Mind framework also helps solve another key problem in neuroscience, namely
how the brain can survive given the relative slowness of the underlying signals [47]. Indeed,
how the brain overcomes the limitations of speed for information transfer across spacetime
has long been a conundrum in neuroscience.

Thermodynamics can also provide an answer to this unsolved problem. Recent research
showed that the answer lies in turbulence (Figure 4), the irreversible dynamical regime taking
place far from equilibrium while showing strong time asymmetry. Originally coined as
‘turbolenza’ by Leonardo da Vinci over half a millennium ago [48] and subsequently devel-
oped by many mathematicians, turbulence is ubiquitous in nature as an essential dynamical
regime facilitating efficient energy and information transfer across spatiotemporal scales
[49]. Importantly, Andrey Kolmogorov demonstrated the efficiency of turbulence by finding
a spatial power scaling law in fluid dynamics [50,51] (Figure 4A). Beyond the limited domain
of fluid dynamics, turbulence is also found in other physical systems, including coupled
oscillators [52] and brains [53,54] (Figure 4B,C). Modelling the brain as coupled oscillators,
the level of turbulence has been shown to vary between different brain states, including dif-
ferent forms of coma, sleep [55] (Figure 4D), and psychedelics [56]. Remarkably, brain dy-
namics has also been found to exhibit a similar turbulent power law, strongly suggesting
the presence of a cascade of efficient information processing across scales [53] and, more
recently, evidence has been found of higher-order structure functions demonstrating turbu-
lence [57]. Interestingly, turbulence is spatiotemporal chaos and can produce stochastic
features similar to what some may classify as ‘noise’ but what are in fact bound inextricably
to the brain signals [58].

Important to the question of how the brain overcomes the slowness of the local signals,
turbulence has been demonstrated not only in whole-brain networks derived from slow
haemodynamic signals measured with fMRI, but also in fast local hippocampal circuits [59].
Recently, a fast whole-brain study using magnetoencephalography provided insight into how
turbulence could provide the skeleton underlying efficient spatiotemporal information transfer
required for survival [47]. This study showed that, similar to the insights of Kolmogorov
[50,51], the cascading whirls of turbulence are at the root of fast, efficient information transfer.
Indeed, the presence of a spatial power-scaling law is a hallmark of turbulence and provides a
mathematical description of the concept of cascaded eddies [60]. This conforms remarkably
with Leonardo’s observation that the constriction of circumference toward the centre of
the vortex is more rapid than the diminution of the impetus of the water, which is why the
water revolves faster near the centre. As such, turbulence promises to be a highly sensitive
thermodynamic principle by which the brain is able to compute the time-critical behaviour
needed for survival.
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Figure 4. Turbulence provides efficient, fast information transfer in the brain. The Thermodynamics ofMind framework
can also describe turbulence, which is a dynamical regime taking place far from equilibrium. (A) Leonardo da Vinci coined the
term ‘turbolenza’ for the seemingly chaotic dynamics of fluids. The physical principles giving rise to turbulence are given by
high-dimensional spacetime nonlinear coupled systems [48]. The excellent mixing capabilities of fluid turbulence come from
the energy cascade turning large whirls into smaller whirls and eventually energy dissipation. Furthermore, the turbulent
energy cascade has been shown to be highly efficient across scales, as evidenced by a power law. (B) Moving beyond fluid
dynamics, empirical brain dynamics in resting state data from 1000 healthy participants were recently shown to exhibit
turbulence [53]. This shows highly variable, local synchronisation vortices across time and space. Equally, the turbulent brain
regime also gives rise to an efficient information cascade obeying a power law [53]. Furthermore, Hopf whole-brain models
can be used to gain a causal understanding of the underlying mechanisms by fitting both turbulence and the empirical
neuroimaging data at the same working point [54]. (C) Turbulence is found in resting state but not in carefully matched
surrogate data. which can be seen in consecutive snapshots over time of the phases of all brain regions for the empirical
data (red, top) and the surrogate data (black, bottom). The bottom panel visualises the turbulent spatiotemporal evolution of
neighbourhood-dependent synchronisation in a time-evolving plot of 26 neighbouring parcels. (D) Turbulence robustly
distinguishes radically different brain states, such as deep sleep and coma, which show significantly lower levels of
turbulence compared with resting state, reflecting the reduced level of information flow in these states [55].
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Future avenues for research
The Thermodynamics of Mind framework provides a key stepping stone toward a fundamental
theory for describing the orchestration of hierarchical brain function. It takes inspiration from the
long illustrious history of thermodynamics, which includes important contributions by Nobel
Prize-winning physicists Albert Einstein and Erwin Schrödinger, perhaps even as important as
their seminal work in quantum mechanics and relativity.

Schrödinger and Einstein were close friends but quarrelled over the interpretation of quantum
mechanics, especially in their 1935 discussions about Schrödinger’s cat, which, paradoxically,
may be considered simultaneously both alive and dead. Yet, both agreed on the pre-eminence of
thermodynamics as a fundamental and fruitful framework for understanding the flow and mecha-
nisms of any hierarchical physical system, including biological living organisms. In fact, Einstein’s
Nobel Prize-winning work in his annus mirabilis of 1905 was based firmly on thermodynamics. In
his later exile in Ireland, Schrödinger went even further and wrote his important book What Is Life?,
in which he proposed that thermodynamics, specifically the arrow of time, or non-reversibility, are
crucial elements for sustaining life. In particular, he wrote ‘How does the living organism avoid
decay? ... By eating, drinking, breathing and ... assimilating. The technical term is metabolism’ [61].
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 11
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Outstanding questions
What other thermodynamic concepts
may help quantify brain hierarchy?
One candidate is FDT, which de-
scribes balancing forces of dissipation
and spontaneous fluctuations. Using
FDT with a generative, perturbative
whole-brain model can estimate the vi-
olation of FDT in different brain states,
such as in wakefulness, cognitive
tasks, and deep sleep, and bring new
insights into the causal orchestration
of hierarchy in these states.

How can the Thermodynamics of Mind
framework best be refined and
expanded to provide better descriptions
of time-evolving temporal hierarchy?
This could provide a principled way to
describe the fundamental brain compu-
tations. In particular, this could provide a
quantification of the changing of hierar-
chy over time at the whole-brain level by
estimating the evolving low-dimensional
manifold of brain activity and provide a
novel perspective on computation and
learning.

What are the underlying principles of
hierarchy in shaping the nonequilibrium
of the human brain? Implementations
of the framework have already shed
new light on the changes in
orchestration and hierarchical
organisation in health and may in the
future help to better understand the
breakdown in neuropsychiatric disease.

What novel predictions can the
Thermodynamics of Mind framework
make? The framework predicts that the
treatment of a patient with depression
with different pharmacological
treatments will lead to different
hierarchical reconfigurations. This could
explain why some pharmacological
treatments are more effective and have
more severe side effects than do
others. The framework will be able to
distinguish treatment and response
interaction effects when comparing, for
example, the treatment of depression
with standard SSRIs and psychedelics.
Yet, neither Schrödinger nor Einstein thought to extend the framework of thermodynamics to the
brain. This is perhaps not surprising given that the scientific study of the brain was still in its infancy
at that time. However, neuroscience has now produced an abundance of empirical data calling
out for more fundamental theories of brain function. In some ways, this parallels the abundance
of empirical data from physical systems that inspired both Schrödinger and Einstein at the begin-
ning of the 20th century. The Thermodynamics of Mind framework shows how life sciences can
benefit from the important insights from physicists.

In our quest for a general theory, we continue to be inspired by the success of modern physics
and its ability to model the constitutive elements of a system and to exhaustively perturb these
to discover the emergence of the underlying dynamics [62]. Turbulence, whether in oscillators
or fluids, is an excellent example of how a detailed understanding has come about through careful
modelling of the statistical properties of the necessary and sufficient elements over multiple scales
[63]. Other future fertile avenues of research include using the thermodynamic concept of
balancing friction and thermal noise, that is, the balancing forces of dissipation and spontaneous
fluctuations, which are at the heart of Einstein’s theory of Brownian motion [64]. This is commonly
referred to as the fluctuation–dissipation theorem (FDT), which has been highly successful in
describing many different kinds of physical system in both equilibrium and nonequilibrium [65].

In terms of using similar perturbative principles to better understand the fundamental brain princi-
ples, one future avenue could be to implement a model of FDT to directly combine model-free and
model-based approaches (see Outstanding questions). This model could use a perturbation to re-
veal the state of nonequilibrium of the brain. As such, this would be another important instantiation
of the Thermodynamics of Mind framework unifying model-free and model-based approaches.
This could be more sensitive for describing the hierarchy in a brain state. More specifically, a gen-
erative perturbative whole-brain model should be able to estimate the violation of FDT in empirical
neuroimaging data from humans in different brain states (such as in wakefulness, cognitive tasks,
and deep sleep). This perturbative model-based approach would go beyond any model-free anal-
ysis of unperturbed brain states. In fact, this approach could use Onsager’s regression principle
leading to a simple derivation of FDT [66–68]. This derivation holds that, when a system in an initial
equilibrium state is driven by an external perturbation to a final equilibrium state, then the evolution
of the system from an initial to a final state can be treated as a spontaneous equilibrium fluctuation.
Crucially, beyond this equilibrium state, the FDT framework would allow for a characterisation of the
level of nonequilibrium by simply computing the violation of the FDT [69]. Future research should
systematically investigate this important question.

Looking further ahead in refining and expanding our Thermodynamics of Mind framework, one
avenue could be to make thermodynamics-based whole-brain models of non-human animals
under anaesthesia and predict how to intervene to awaken them. More generally, we are also
looking for better descriptions of the time-evolving temporal hierarchy, since this would provide
a way to get at the fundamental computations in the brain. Methods from thermodynamics prom-
ise to provide exactly such precise descriptions of the changing of hierarchy over time at the
whole-brain level by estimating the evolving low-dimensional manifold of brain activity; potentially
providing a novel perspective on computation and learning that could significantly add to the rich
literature on cognition.

Concluding remarks
Overall, the general Thermodynamics of Mind framework holds great promise for revealing the
underlying principles of hierarchy in shaping the nonequilibrium of the human brain. Specifically,
various implementations of the framework have already shed new light on the changes in
12 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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orchestration and hierarchical organisation in health and may help understand the breakdown in
neuropsychiatric disease. While the Thermodynamics of Mind is not a general theory of brain
function but merely a step toward this, it yields clear predictive power. For example, the frame-
work predicts that, when the brain state of a patient with depression is being changed by different
pharmacological treatments, this could lead to different paths of hierarchical reconfigurations. In
other words, the framework predicts that patients who get better from a treatment could have dif-
ferent hierarchical reorganisations. This could also explain why some pharmacological treatments
have more severe side effects than do others. A pertinent example would be to compare the
treatment of depression with psychedelics and selective serotonin-reuptake inhibitors (SSRIs)
and to distinguish treatment and response interaction effects. Still, beyond such practical predic-
tions, Thermodynamics of Mind may hold the key to eventually discovering the very nature of
complex distributed brain computations and, in a deep sense, provide an answer to
Schrödinger’s deceptively simple question, ‘what is life?’ [61].
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