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We survey the field of magnetoencephalography (MEG) and electro-

encephalography (EEG) source estimation. These modalities offer the

potential for functional brain mapping with temporal resolution in the

millisecond range. However, the limited number of spatial measure-

ments and the ill-posedness of the inverse problem present significant

limits to our ability to produce accurate spatial maps from these data

without imposing major restrictions on the form of the inverse solution.

Here we describe approaches to solving the forward problem of

computing the mapping from putative inverse solutions into the data

space. We then describe the inverse problem in terms of low dimen-

sional solutions, based on the equivalent current dipole (ECD), and

high dimensional solutions, in which images of neural activation are

constrained to the cerebral cortex. We also address the issue of

objective assessment of the relative performance of inverse procedures

by the free-response receiver operating characteristic (FROC) curve.

We conclude with a discussion of methods for assessing statistical

significance of experimental results through use of the bootstrap for

determining confidence regions in dipole-fitting methods, and random

field (RF) and permutation methods for detecting significant activation

in cortically constrained imaging studies.
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Introduction

Magnetoencephalography (MEG) and electroencephalography

(EEG) provide a unique window on the human brain. Both

modalities measure the electromagnetic signals produced by

electrical activity in the brain. It is widely believed that the

primary source of these signals is current flow in the apical

dendrites of pyramidal cells in the cerebral cortex. Coherent

activation of a large number of pyramidal cells small area of cortex
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can be modeled as an equivalent current dipole (ECD), which,

because of the columnar organization of cortex, is oriented

normally to its surface (Okada et al., 1997). The current dipole is

therefore the basic element used to represent neural activation in

EEG- and MEG-based inverse methods, and these dipoles are often

constrained to lie within cortical gray matter.

EEG data are measurements of potential differences on the

scalp resulting from ohmic currents induced by electrical brain

activity. Instrumentation for EEG consists of a set of scalp

electrodes coupled to high-impedance amplifiers and a digital data

acquisition system. Because EEG signals are produced by ohmic

current flow in the head, they are highly sensitive to the

conductivity of the brain, skull, and extracranial tissue. Conse-

quently, solving an inverse problem to localize regions of neural

activation requires accurate knowledge of these properties. In

contrast, MEG measures the magnetic field outside the head

induced by current flow within the brain. In this case, while the

signals are affected by ohmic currents, the major contributor to the

signal is the field induced directly by neural current generators,

sometimes called the primary currents. It is these current

generators, rather than the secondary or ohmic currents, that are

of interest in solving the inverse problem because they are

localized to regions in which the brain is activated during a

particular evoked response study. Thus, the underlying electro-

magnetic principles of MEG and EEG make the latter less sensitive

to the conductivity of the head and hence better able to provide

accurate localization of neural activation from noninvasive

measurements (Hamalainen et al., 1993). MEG instrumentation

typically requires the use of superconducting SQUID-based

magnetometers housed in a magnetically shielded room. Recently,

MEG and EEG have come to be viewed as complementary rather

than competing modalities, and most MEG protocols routinely

include simultaneous acquisition of multichannel EEG data.

MEG and EEG differ fundamentally from fMRI and PET, the

other major functional brain imaging modalities, both in the

physiological processes that are measured and in the properties of

the inverse problem that are solved to produce functional images.

Neuronal activation can be detected indirectly with both fMRI and

PET through imaging of localized contrast changes that result from

the hemodynamic effects of this activation. Aside from the potential

problem that the neuronal activation and hemodynamic changes
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may not always be co-located, these methods are limited in temporal

resolution by hemodynamic time constants on the order of 1 s. In

contrast, MEG and EEG signals are the direct extracranial

manifestations of neuronal activation and can record changes at

the millisecond scale at which they occur. Consequently, it may be

possible with MEG or EEG not only to detect networks of neuronal

assemblies, but also to determine causality within these networks.

The other major difference between MEG or EEG and fMRI or PET

is in the form of the inverse problems. While the latter are mildly ill-

posed, both fMRI and PET involve reconstruction of images from a

large number of independent samples so that stable images can

always be computed at the expense of some mild loss in resolution.

In contrast, theMEG or EEG inverse problem involves estimation of

brain activation from at most a few hundred spatial samples so that

highly restrictive assumptions are required to compute a stable

inverse. This presents significant challenges both in the selection of a

model that reflects these assumptions and also in the interpretation of

the resulting inverse solutions.

In this article, we survey the issues underlying the problem

of model selection in EEG and MEG inverse problems and

describe the major classes of inverse procedures. We also

describe how the associated forward mapping is solved and

the impact of the assumed head model on the accuracy of these

methods. We then describe objective methods for assessing and

comparing the relative performance of different inverse proce-

dures. Finally, we discuss the issue of assessing the statistical

significance of different inverse solutions computed from

experimental data.
Fig. 1. (a) Sample FEM tetrahedral mesh with tissue classification: green =

skin, blue = bone, red = CSF or brain. Tessellated surfaces extracted

automatically from a T1-weighted MR volume using BrainSuite: (b) scalp,

(c) skull, (d) gray matter, and (e) white matter.
Forward models

To estimate the neural sources of scalp potentials and

neuromagnetic fields, we must first be able to solve the associated

forward problem, that is, we need a forward model that maps a

source of known location, strength, and orientation to an array of

EEG or MEG sensors. The frequencies of interest are relatively

low (typically b100 Hz) so the forward model is governed by the

quasi-static versions of Maxwell’s equations (Hamalainen et al.,

1993). Because the permeability of biological tissue is approx-

imately that of free space, the electrical conductivity and

geometry of the head are the factors that determine the forward

model.

The current density in the head associated with neural

activation is the sum of the primary current jp, which is assumed

to be the physical correlate of neuronal activity, and the volume or

return currents

jv ¼ � r rð ÞjU rð Þ ð1Þ

that result from passive ohmic conductance; here r(r) represents
the electrical conductivity of the head and U(r) the electric

potential. It is the primary currents that are of interest when solving

EEG and MEG inverse problems because they represent neuronal

activation; however, the effects of volume currents must still be

considered when solving the forward problem because they

contribute to scalp potentials and neuromagnetic fields.

The elemental source model in MEG or EEG is the equivalent

current dipole (ECD), which represents an idealized point source.

Due to the linearity of Maxwell’s equations, the forward model for

arbitrary source configurations can be written as a linear super-
position of forward models for these point sources. The measure-

ment m for either an EEG or MEG sensor at location rd, due to an

ECD with orientation and strength q at location rs, can be written

as:

m rdð Þ ¼ G rd ; rs; r rð Þð Þq ð2Þ

and the measurement for an arbitrary distribution of sources jp(rs)

inside a volume V as:

m rdð Þ ¼
Z
V

G rd; rs; r rð Þð Þjp rsð Þd3rs ð3Þ

Note that here the effects of the return currents jv have been

factored into G because they are an implicit function of the primary

currents. The specific form of the forward model G(rd, rs, r(r))
depends on the assumed shape and conductivity of the head.

Head conductivity

The conductivity profile of the head, r(r), is typically

determined by segmenting an anatomical MR image into its

various components, e.g., skin, skull, CSF, and brain tissue. Recent

studies use up to 10 different tissue types, adding soft bone, fat,

eye, cerebellum, muscle, and a separation of white and gray matter

in their models (Haueisen et al., 2002). A good estimate of skull

conductivity and shape (Huiskamp et al., 1999) is of particular

importance because the large difference in conductivity of skull

and soft tissue has a large impact on scalp potentials. Segmentation

of the anatomical image is typically performed either manually or

using automated software such as BrainSuite (Shattuck and Leahy,

2002), as illustrated in Fig. 1, or BrainVoyager (Goebel, 1997). A

conductivity value is then assigned to each tissue type. These are

typically standard values that have been measured in vitro using

excised tissue (Geddes and Baker, 1967). Alternatively, electrical

impedance tomography (EIT) can be used to compute in vivo

estimates of conductivities. EIT can make use of an existing EEG

measurement setup, injecting current through one electrode and

measuring potential differences with the remaining electrodes.

Determination of the conductivity r(r) from the known current

source and measured surface potentials poses an ill-posed non-

linear inverse problem (Goncalves et al., 2000; Saulnier et al.,

2001) so that it is difficult to obtain accurate estimates, and
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consequently these methods are rarely used in practice. In most

forward models, conductivities are assumed isotropic, but recently

anisotropic conductivity, caused by fiber bundles in white matter

for example, has been estimated using diffusion tensor MR

imaging (Tuch et al., 1999). This information can be directly

incorporated into the forward computation using the FEM methods

discussed below.

With a segmentation of the head volume and a set of

conductivities for each tissue type, a solution of Laplace’s

equation,

j r rð ÞjU rð Þð Þ ¼ jjp rð Þ ð4Þ

can be computed. Eq. (4) with the boundary condition that no

currents leave the head volume and that the potential U is fixed at

some reference point gives a full mathematical description of the

EEG forward problem. Once the potential U(r) is known, one can

also compute the forward model for MEG. Closed form analytic

solutions exist for MEG and EEG if we assume the head consists

of a set of nested concentric spheres, each with homogeneous and

isotropic conductivity. For realistic human head geometries

numerical solutions using Boundary Element Methods (BEM),

Finite Element Methods (FEM), and Finite Difference Methods

(FDM) are required (Fuchs et al., 2001; Johnson, 1997).

Spherical head models

The MEG forward solution for the spherical case is independent

of the specific conductivities of the layers of the sphere. All that is

required to compute the solution is the center of the sphere and the

location and orientation of the sensors (Sarvas, 1987). The sphere

center is typically computed from anatomical landmarks: nasion,

left and right preauricular points. If scalp surface data are also

available, the single sphere model in MEG can be expanded by

locally fitting a sphere to each sensor (Huang et al., 1999).

Phantom studies have shown that this local spherical approxima-

tion of the head can perform with similar accuracy to a BEM

solution using the realistic surface geometry of the phantom (Leahy

et al., 1998). Further refinement of the analytic spherical forward

models to approximate realistic geometries can be achieved by

using spherical harmonic expansions to more closely match the

head shape and extending the analytical solutions to these

nonspherical surfaces (Nolte, 2003).

Closed form solutions also exist for EEG for the spherical head

geometry, although in this case the conductivities of each layer

must be known (Geselowitz, 1967). Computation cost for this

model is higher than for MEG because multilayer EEG models

require summation of an infinite series. Computationally efficient

approximations have been developed to overcome this problem

(Zhang, 1995). While spherical models provide good approxima-

tions for MEG forward solutions, this is typically not the case for

EEG. Spherical models can give a reasonable good approximation

in superior regions of the brain, where the head is roughly spherical

in shape, but in general, realistically shaped models are necessary

to achieve good localization accuracy throughout the brain

(Buchner et al., 1996).

Numerical solution of the forward problem: BEM and FEM

A BEM can be used to compute a numerical solution for Eq. (4)

under the assumption that r(r) is piecewise homogeneous. In this
case, the differential equation for the potentials on the surfaces can

be transformed to an integral equation over the interfaces of the

different conductivity compartments plus the analytical infinite

homogeneous space solution for the primary current (Mosher et

al., 1999). By discretizing these boundaries, the integrals are

turned into sums, and the solution of the problem is found by

solving a set of linear equations. The surfaces are discretized by

triangle meshes and the complexity of the linear system is defined

by the total number of nodes in all meshes. One disadvantage of

the BEM is that the system of linear equations is dense so that a

model with a set of surfaces with a total of 10,000 nodes would

require about 1 GB of memory and take on the order of several

minutes to solve on a modern PC. Repeated recomputation of the

forward solution is prohibitive if BEM is used directly as part of

an iterative inverse method. However, precomputation and the use

of interpolation methods can reduce the cost of using BEM to that

of spherical models (Ermer et al., 2001). An important consid-

eration in the use of BEM methods is that numerical accuracy

depends on the size of the tessellation elements relative to the

distance of the source to the nearest boundary, so that finer

tessellation’s are required when sources are close to boundaries

(Fuchs et al., 2001).

The finite element model can overcome many of the problems

of the boundary element method by discretizing Eq. (4) over the

entire head volume (Awada et al., 1997; van den Broek et al.,

1996). The nodes of the grid are typically connected by

tetrahedrons for an irregular grid, as illustrated in Fig. 1, or by

cubes in the case of a regular grid, and the unknown potential U(r)

is interpolated over these nodes. The conductivity can therefore be

defined locally for each element and the model allows the

incorporation of an anisotropic conductivity tensor instead of

scalar values for r(r). The discretization for FEM also leads to a

linear system of equations. Because the system only involves

interactions between neighboring nodes, the matrix for the FEM is

sparse and it can be efficiently stored and inverted. Unlike the

BEM, the FEM in its standard formulation does not contain the

analytical infinite homogeneous space solution for the current

dipole. However, the FEM can be modified to include the

analytical potential, thus allowing point like sources (Awada et

al., 1997; Schimpf et al., 2002). If cubic elements are used, the

FEM becomes similar to the finite difference method. The

disadvantage of FDM, and of using cubic elements in FEM, is

that all cubes must be of the same size and therefore local mesh

refinement is not possible. An advantage of the regular elements is

a well-conditioned system matrix, which leads to faster con-

vergence. The use of tetrahedral elements allows for elements that

can vary in size and can therefore be used to model the geometry

very accurately. Tetrahedral meshes can also be locally refined to

increase the accuracy of the model.

Choice of head model

In principal, an FEM model incorporating spatially varying

anisotropic conductivity will provide the most accurate forward

model. For an isotropic model with piecewise constant conductiv-

ity, the BEM offers similar accuracy. However, it is important to

note that accuracy of these methods is dependent both on

knowledge of the true conductivities and on the numerical details

of the FEM and BEM implementation, in particular the resolution

of the mesh on which the solution is computed. No method

currently exists to produce accurate in vivo high resolution images
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of conductivity, and in practice piecewise constant approximate

conductivities are typically used. Furthermore, because of compu-

tational costs, BEM and FEM meshes are often of relatively low

resolution. Under these circumstances, and particularly for MEG,

the spherical model may often be an adequate alternative that

avoids the potential for numerical instability associated with BEM

and FEM. For example, in a phantom study based on dipoles in a

human skull (Leahy et al., 1998), we found that there was little

difference in localization error (b1 mm averaged over 32 dipoles)

between a locally fitted sphere model and BEM for both MEG and

EEG data. When BEM and FEM methods are used, it is important

that their accuracy be assessed for the specific application in which

they are employed.
Fig. 2. Example of a cortical surface and its smooth representation for easy

visualization of cortically constrained activation maps.
Inverse methods

With a forward model G(rd, rs, r(r)) and a set of measurements

m(t) at time t, the inverse problem is to find the current density

distribution jp(rs, t) that generated the measurements according to

Eq. (3). With a discrete set of c detector locations (rd
1, rd

2,. . .,rd
c)

and m(t) = (m(rd
1, t), m(rd

2, t),. . .,m(rd
c, t)), Eq. (3) can be written

as

m tð Þ ¼
Z
V

G rsð Þjp rs; tð Þd3rs ð5Þ

where G(rs) a Rc � 3 maps an ECD at rs onto the set of c sensors.

There are two key approaches to finding jp and thus solving the

inverse problem. One can assume that jp consists of a small set of q

ECDs, which can be written as a sum of delta functions:

jp rs; tð Þ ¼
Xq
i ¼ 1

d rs � r iq

� �
qi tð Þ

The integral in Eq. (5) becomes a sum

m tð Þ ¼
Xq
i ¼ 1

G r iq

� �
qi tð Þ:

If one stacks the qi(t) into a vector q(t) = ( q1(t), q2(t),. . .,qq(t))
T a

R3q and the forward models G(rq
i) in a matrix G = (G(rq

1),

G(rq
2),. . .,G(rq

q)) a Rc�3q, we can write,

m tð Þ ¼ G r1q; r
2
q; N ; r

q
q

� �
q tð Þ ð6Þ

If the orientations of each of the ECDs in qi(t) are constrained to

be invariant over time, qi(t) can be written as qisi(t), where si(t)

encodes the strength and time course of the source and qi the

normalized orientation. The data and source time series are sampled

at discrete intervals, that is, si(t) Y si
T = (si(t1), si(t2),. . .,si(tT))

T

and M = (m(t1),m(t2),. . .,m(tT)), with T the number of samples.

The constrained orientation can be combined with the forward

matrix to form the matrix A = [G(rq
1)q1, G(rq

2)q2,. . .,G(rq
q)qq]

a Rc�q and the time series si can be stacked as ST = (s1,

s2,. . .,sq)
T, leading to the discrete, constrained version of Eq. (5)

M ¼ A r1; q1; r2; q2; N ; rq; qq
� �

ST ¼ AST ð7Þ

for dipolar sources (Baillet et al., 2001; Mosher and Leahy, 1998).

If the orientations are unconstrained, we can generalize Eq. (6) in

the obvious way to M = GQT. The inverse problem is then to

estimate the number, location, and time series of each of the ECDs.
The second approach to the inverse problem is to allow a large

number of sources that represent a continuous distribution of

neural current generators. Because these generators are believed to

lie in the cerebral cortex, the sources are usually constrained to lie

on the cortical surface, with orientation normal to the surface. The

inverse problem then reduces to the solution of a linear inverse

problem in the set of unknown time series for each elemental

source on a tessellated representation of the cortical surface (Fig.

2). In this case, the forward problem can also be formulated as in

Eq. (7), but because the source locations are fixed (one per surface

element), the inverse problem involves estimation of ST only.

Dipole fitting and scanning methods

Dipole fitting methods use the formulation in Eq. (7) and solve

for the parameters ({r, q}, ST) (Mosher and Leahy, 1998; Scherg,

1990). The problem is often solved using least squares, to find ({r,

q}, ST) such that

jjM � A r; qf gð ÞST jj22 Y min ð8Þ

The number of sources is unknown and the cost function is

nonconvex in the source locations, which results in the existence of

multiple local minima. Consequently, minimization of Eq. (8) is a

challenging problem to which a large number of search strategies

have been applied. The model depends nonlinearly on the source

locations and linearly on the orientation and time series. The

problem can therefore be solved in two steps: the linear parameters

can be expressed as an implicit function of the nonlinear

parameters, so that we can solve first for the nonlinear parameters

(Mosher et al., 1992). Direct approaches to solving for location

parameters include use of gradient descent or the Nelder–Meade

simplex algorithm (Huang et al., 1998). These methods do not deal

directly with the problem of multiple local minima. Methods to

cope with this issue include the use of multistart, genetic

algorithms and simulated annealing (Huang et al., 1998; Khosla

et al., 1997; Uutela et al., 1998).

Another approach to dealing with the existence of local minima

is to use a scanning method. These methods use a discrete grid to

search for optimal dipole positions throughout the source volume.

Source locations are then determined as those for which a metric

computed at that location exceeds a given threshold. While these

approaches do not lead to true least squares solutions, they can be

used to initialize a local least squares search. It is important to note

that these scanning methods are explicitly based on essentially the

same model as least squares dipole fitting, that is, that the data can

be explained by a few equivalent low-rank or dipolar sources. This

fact is sometimes overlooked because the outputs of the scanning

methods are often viewed as an bimageQ as illustrated in Fig. 3.



F. Darvas et al. / NeuroImage 23 (2004) S289–S299 S293
The most common scanning methods are the linearly

constrained minimum variance (LCMV) beamformer and multi-

ple signal classification (MUSIC) and their variants. The LCMV

beamformer was developed in the array signal processing

community as a means for combining the outputs of multiple

antennae to produce a single output with the characteristics of a

single larger antenna. By analogy, some researchers view the

LCMV beamformer in MEG and EEG as a bvirtual depth

electrodeQ, because at each time sample it forms a linear

combination of the external field measurements to monitor a

single point in the brain while minimizing contributions to the

beamformer output from all other sources. By scanning the

location of the depth electrode throughout the brain, we can

monitor all possible source locations in the brain. The limitation

of this approach is that the process of minimization of

sensitivity to other sources is data adaptive: sources that are

correlated with the true signal from the scanning location can

cause cancellation of the signal of interest. Thus, the beam-

formers will work best when there are a limited number of

independent components in the data that are not strongly

correlated with each other.

The LCMV beaformer is formulated mathematically as

minimizing the output power of a linear filter under the constraint

that its gain is unity at rs, the location of interest, i.e., minW tr

(WTCmW) subject to WTG(rs) = I and Cm = E(m(t)m(t)T); where

tr denotes the trace of a matrix. The solution for the matrix W of

filter weights is given by (van Veen and Buckley, 1988)

W T rsð Þ ¼ G rsð ÞTC�1
m G rsð Þ

h i�1

G rsð ÞTC�1
m ð9Þ

By recomputing this solution for each point rs on the brain surface

or volume and computing the output as S = WTM, we obtain a

time series at each scan location. To obtain a scalar output, we

compute the average signal power over time. For low noise data,

Cm
�1 may be ill conditioned and needs to be regularized, that is,

Cm
�1 is replaced by (Cm + kI )�1 (Robinson and Vrba, 1999).

The concept of MUSIC and recursively applied (RAP) MUSIC

(Mosher and Leahy, 1998, 1999; Mosher et al., 1992) is based on

finding those dipolar topographies, (columns of G corresponding

to a particular dipole) that project into an estimated signal

subspace. The p-dimensional signal subspace is defined as

corresponding to that part of the column space of M whose

corresponding singular values k1,k2,. . .,kp lie above a noise floor.

Writing the singular value decomposition (SVD) of the data matrix

as M = UKVT, the first p left singular vectors of M define the

signal subspace Up, i.e., Up is formed from the first p columns of

U. The cosine of the smallest principal angle:

subcorr Up;G rsð Þ
� �

1
¼ maxq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qTG rsð ÞTUT

pUpG rsð Þq
qTG rsð ÞTG rsð Þq

vuut ð10Þ

is used as the scanning metric. Source locations are found as

those for which subcorr(Up, G (rs))1 is sufficiently close to unity

given the SNR in the data. In RAP-MUSIC, the dipolar

topographies with maximum subspace correlation are determined

recursively. In each recursion, the signal subspace is projected

away from the topographies already found, thus avoiding the

search for local maxima of the correlation metric. The algorithm

terminates if no source with a correlation above the user-specified

threshold can be found. As with the LCMV beamformer, the
method assumes discrete sources. Provided the sources are not

perfectly synchronous, MUSIC does not suffer from the signal

cancellation problems of LMCV, but the dependence of the

method on correlation measures can make it less robust to

modeling errors.

Imaging methods

Imaging methods solve the linear inverse problem in Eq. (7) for

the current density ST, usually constrained to a tessellated

representation of the cerebral cortex. Typically, the number p

(c104) of sources in the discrete grid is much larger than the

number of detectors c (c102), so that the problem is highly

underdetermined. Also, the singular value spectrum of A decays

approximately exponentially, making the problem ill-posed. This

ill-posedness is a principal property of the bioelectromagnetic

inverse problem: the current distribution inside a conductor cannot

be uniquely determined by knowledge of the fields and potentials

outside (von Helmholtz, 1853).

To compute a unique solution we must introduce some form of

regularization or prior on the solution. While not all inverse

methods are explicitly formulated in this way, it is useful to view

imaging methods in a common Bayesian perspective.

Given the conditional distribution p(M0jS) of the noiseless

measurements M0 with respect to the sources S, p(MjM0) the

probability of observing the measured data M given the noiseless

data M0, and p(S) the prior source distribution, the posterior

probability for the sources is given by

p SjMð Þ ¼ c0p Sð Þ
Z

p M jM0ð Þp M0jSð ÞdM0 ð11Þ

where c0 is a normalization constant (Tarantola, 1987). The forward

model is specified in p(M0jS) and will be simply d(M0 � AST) in

the case where there is no uncertainty in the forward calculation.

Uncertainty can be incorporated in this model if the conductivities

are unknown by treating them as random variables with a known

statistical distribution. The measurement noise model is described

by p(MjM0) and all prior information about S is encoded in p(S).

With the known posterior distribution, many statistical properties of

S could be computed using Markov Chain Monte Carlo (MCMC)

methods. In practice, most inverse methods are restricted to finding

the S that maximizes the posterior density. For the case where there

is no forward model uncertainty, measurement noise is a white

Gaussian process, and the current density is assumed zero mean

Gaussian with covariance Cs, the maximum a posteriori (MAP)

estimate is the minimizer of

NM � ASTN2
2 þ tr SC�1

s ST
� �

ð12Þ

For the case Cs = k�1I, this is the Tikhonov regularized version

of the inverse problem (Tikhonov and Arsenin, 1977) with

solution:

ST ¼ ATAþ kI
� ��1

ATM ð13Þ

Different choices of the prior distribution yield other commonly

used linear methods such as column weighted minimum norm,

which is designed to reduce the preference for superficial cortical

sources. In this case, Cs = k�1W with (W)ii = tait
2, where ai is

the ith column of A. In low-resolution electromagnetic tomography

(LORETA) (Pascual-Marqui et al., 1994), which uses Laplacian
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weighting to regularize the solution, Cs is defined by Cs
�1 = kKKT

and

Kð Þij ¼
1 i ¼ j

� 1
n

j a N ið Þ
0 else

8<
:

with N ið Þ the set of nearest neighbors of the source location i on

the discrete grid and n the cardinal number of N ið Þ.
The minimum norm approach can be extended to include

nonlinear procedures by using the Lp norm, 1 V p V 2 (Scales and

Gersztenkorn, 1988). Among the Lp norm solutions, the L1 norm

has particularly interesting properties as it produces sparse

solutions and can be formulated as a linear programming problem.

The properties of linear programs guarantee that there exists an

optimal solution for which the number of nonzero values does not

exceed the number of measurements. This sparseness is an

attractive property for studies where a relatively small fraction of

cortex is expected to be activated. The idea of sparse cortical

activation can also explicitly be built into the prior. Markov

random fields (RFs) provide a rich framework for building prior

distributions on spatial processes that can incorporate sparseness,

focal activation, and statistical characterization of the number and

size of activated regions (Baillet and Garnero, 1997; Phillips et al.,

1997). These high dimensional nonlinear methods are far more

computationally demanding than the linear minimum norm

approaches and often include multiple hyperparameters on the

prior distributions. However, they are better able to reflect the

expected characteristics of brain activation than linear minimum

norm images that typically exhibit very low resolution character-

istics as illustrated in Fig. 3.

Choice of inverse method

The choice of inverse method critically determines the manner

in which users interpret their data. Dipole methods can yield quite

precise and accurate results in the case of highly focal activation,

for example, in somatosensory stimulation (Buchner et al., 1995)

or in analysis of epileptic brain activity (Barkley and Baumgartner,
Fig. 3. Localization maps for two simulated sources in the left motor area and the

Tikhonov regularized density map is given at time t = 112, whereas MUSIC and

scalar output of principal angle and signal power at each scan location on the cort

maps to demonstrate localization ability of these methods.
2003). However, in application to cognitive experiments, where the

number of active regions in the brain cannot be predicted and large

areas of the brain may be involved in the response, dipole models

can perform poorly and imaging methods might be more suitable.

Linear imaging methods produce solutions that often show activity

over large portions of the brain surface. This is due to the low

resolution that results from mapping c c 102 detectors onto p c
104 nodes on the cortical surface. Consequently, the imaging

approach lacks the precision of a multiple dipole fit, but avoids the

potentially overrestrictive nature of the dipole model. Imaging

solutions can be made more precise by using a more restrictive

prior. However, increased precision reflects increased accuracy

only so far as the prior reflects the true complexity of brain

activation.

With this broad array of inverse procedures, selection of the

appropriate method is a difficult task. One suggestion we can offer

is that dipole methods be used in cases where a few stationary focal

sources are expected, and that imaging methods be used to study

more complex activation. However, further studies, both in

simulation and with experimental data, are required to better

understand the properties and relative merits of these approaches.

Such evaluation can use object task-based evaluation criteria,

estimation of confidence intervals, and detection of significant

activation, as described in the following section. It is also important

to note that the ability of MEG and EEG to resolve brain activity is

ultimately limited by the underlying physics, which tells us that we

cannot uniquely determine the current field within the brain from

external measurements. Therefore, all inverse methods will provide

different approximations of this unknown quantity, with the

approximations reflecting the underlying assumptions implicit or

explicit in each method.
Validation and statistical analysis

The MEG and EEG literature encompasses a wide variety of

reconstruction and localization methodologies. It is important to

evaluate the relative performance of these methods under

different experimental settings such as the number, location,
right occipital lobe; their time series are shown in the lower left panel. The

LCMV beamformer methods use all post-stimulus time points to obtain the

ex, respectively. The second row shows subjectively thresholded activation
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and time series of neural sources. Furthermore, several methods

require fine tuning of parameters, for example, the Tikhonov

regularization parameter in current density reconstruction, or the

subspace correlation threshold for the MUSIC algorithm.

Adjusting these parameters affects the sensitivity and specificity

of each method. Here we illustrate the use of the receiver

operating characteristic (ROC) curve to study the trade-off

between sensitivity and specificity and to compare different

inverse methods.

In addition to evaluating the relative performance of different

methods, it is also important to establish some degree of

confidence in the results of real data analysis. Dipole scanning

methods often produce unstable solutions and the reproducibility

of the reconstructed dipoles is not guaranteed. Consequently, it is

important to quantify the accuracy of the dipole locations and time

series. Conversely, imaging methods are hugely underdetermined,

resulting in low-resolution localization maps; interpretation is

further confounded by the presence of additive noise exhibiting a

highly nonuniform spatial correlation. In this case, we need a

mechanism to decide which features in the data are indicative of

true activation vs. those that are noise artifacts. While parametric

models can be assumed as the basis for developing statistical tests,

nonparametric resampling methods such as the bootstrap and

permutation methods are well suited to the analysis of MEG and

EEG data. Event-related studies typically involve multiple repeti-

tions that can be treated as a set of identically distributed and

independent realizations from which we can resample. Here we

describe the application of resampling methods and parametric

random field methods to the analysis of MEG and EEG inverse

solutions.

Task-based evaluation of inverse procedures

The ROC curve was developed during World War II for

quantifying performance in target detection using radar and sonar.

ROC analysis was first applied for the assessment of medical

imagery in the 1970s (Metz et al., 1973). Several variants of ROC

analysis have been proposed, but all produce a plot of the variation

in true positive fraction (TPF) vs. false positive fraction (FPF) as a

function of some decision threshold; they differ in their definitions

of these quantities. Because ROC methods require knowledge of

the ground truth, they are typically restricted to simulation studies

or cases where truth can be established using an independent

technique, such as invasive measurements in the case of MEG and

EEG; however, recently there have been attempts to apply ROC

methodologies in cases where the ground truth is not known

(Nandy and Cordes, 2003).

Standard ROC analysis (Metz et al., 1973) is used in diagnostic

studies where we are interested in discriminating between the

presence and absence of a lesion or target and the location of the

lesion is not of concern (Swets and Pickett, 1982). In location-

response ROC (LROC) studies the observer must also specify the

location of the target in each image (Starr et al., 1975). LROC is

closer than ROC to a realistic medical image interpretation task;

however, the observer is allowed to identify only one target per

image, even if many targets are present. Bunch et al. (1978)

proposed the more realistic free-response ROC (FROC) method,

which allows detection of multiple targets per image. Localization

within an acceptable distance of a lesion is accepted as a true event

and all other detections are classified as false. The FROC curves

generated from the detection data show the probability that a true
lesion is detected vs. the expected value of the number of false-

positive detections per image.

In neuroimaging studies, we often expect to see several

simultaneously activated brain areas. FROC is therefore an

appropriate framework for assessing the specificity and sensitivity

of MEG or EEG inverse methods. Here we use a computer

observer model, where cortical maps of neural activation are

reconstructed from simulated data and thresholded to determine

active and inactive cortical regions. By varying the threshold and

comparing results to the ground truth, we produce FROC curves

for each inverse method.

Before giving an example of this procedure, we first give some

definitions. A voxel is the basic element in the cortical map at

which we test for activation. An actual positive is a voxel in

which a signal is truly present, or is within a predefined acceptable

distance of an activated voxel. An actual blob is a contiguous set

of actual positives. An image may contain many actual blobs and

the number of actual voxels included in each blob changes

according to the size of the activated region. We apply a global

threshold to the cortical map and voxels exceeding this threshold

are defined as active; a group of adjacent active voxels forms an

active blob. Negatives are defined analogously. To apply FROC in

MEG or EEG studies, we assume a true positive occurs if there is

at least one active voxel that intersects with an actual blob, and the

true positive fraction is defined as the ratio of true positives to the

total number of actual blobs. Conversely, an active voxel that is an

actual negative is treated as a false positive and the points on the

abscissa of the curve for each threshold represent the ratio of false

positives to actual negatives per image. Because the number of

true positives is assured not to decrease as the average number of

false positives increases, the resulting FROC curve will be

nondecreasing.

To illustrate the FROC methodology, we simulated 300 MEG

data sets for a CTF Systems Inc. Omega 151 system, each

consisting of an array of data representing the measured magnetic

field at each sensor as a function of time. The first 100 of the data

sets consisted of measurements with no activation on the cortical

surface and white noise only at the sensors; the remaining 200 data

sets represented two temporally uncorrelated activated patches

randomly positioned on the cortical surface. We used three

methods to produce detection maps: Tikhonov regularized mini-

mum norm reconstruction (Eq. (13)), MUSIC (Eq. (10)), and

LCMV beamformer (Eq. (9)). Before thresholding these maps, we

first normalized the minimum norm and LCMV maps to produce a

statistic that gives uniform spatial specificity in the absence of

activation. This normalization involves division by the expected

output in the absence of activation. For the minimum norm images,

we compute the index d(rs) as

d rsð Þ ¼ Et s̃s2rs tð Þ
n o

; ST ¼ S ATAþ kI
� ��1

ATM ð14Þ

where s̃rs(t) represents the reconstructed time series computed at

location rs at time t, and S is a diagonal matrix equal to the

inverse of the noise sensitivity: S = (diag{HCnH
T})�1/2 with Cn

the estimated sensor noise covariance (Dale et al., 2000) and H =

(ATA + kI)�1AT. Similarly, for the LCMV beamformer, we

compute a bneural activity indexQ (van Veen et al., 1997) as:

d rsð Þ ¼
tr W T rsð ÞCmW rsð Þ
� �

tr W T rsð ÞCnW rsð Þ
� � ¼

tr GT rsð ÞC�1
m G rsð Þ

� ��1
n o

tr GT rsð ÞC�1
n G rsð Þ

� ��1
n o ð15Þ



Fig. 4. (a) Time series of the two temporally uncorrelated activated patches randomly positioned on the cortical surface, (b) FROC curves for different

regularization parameters (k) for noise-normalized Tikhonov-regularized minimum norm reconstruction; (c) FROC curves for MUSIC, LCMV Beamformer,

and the minimum norm approach (with k = 10�9). FROC curves in b and c are plotted for small values of false positives per image to illustrate differences

between the methods.

Fig. 5. Bootstrap results from an MEG somatosensory study involving

delivery of electrical pulses to the fingers of both hands of a healthy subject;

(a) locations from original data of the strongest dipole source for each of the

four digits demonstrating somatotopic mapping in the sensory cortex; (b)

scatter distribution of bootstrapped dipoles, color coded for each digit; (c)

confidence ellipsoids constructed with principal axes along the eigenvectors

of the cluster covariances; axes of length equal to two times the standard

deviation along each principal axis represent an 87% confidence region for

a Gaussian distribution. (From Darvas et al. (in press).)
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where Cn is the noise-only covariance. In the case of MUSIC, the

method precludes this form of normalization, and we use the index:

d rsð Þ ¼ subcorr Up;G rsð Þ
� �

1
ð16Þ

Fig. 4a shows the time courses used in our simulations. Using

the FROC procedure, we determined the optimal Tikhonov

regularization parameter k for minimum norm reconstruction, k =

10�9, as that which maximized the area under the FROC curve (Fig.

4b). Finally, Fig. 4c compares FROC curves for the three different

methods and shows that, for this task, the LCMV beamformer has a

larger area under the FROC curve than MUSIC or minimum norm.

At matched sensitivity, LCMV has higher specificity than MUSIC

and minimum norm. More generally, we have illustrated how the

ROC methodology can be used to objectively compare the

performance of different inverse methods.

The bootstrap and confidence regions for dipole localization

We turn now to the assessment of uncertainty in sources

estimated from experimental data in which the ground truth is not

known. A number of different approaches have been investigated

for assessing dipole localization accuracy, including Cramer Rao

lower bounds, perturbation analysis, and Monte Carlo simulation;

most make assumptions about the underlying distribution of the

data, as reviewed in Braun et al. (1997) and Darvas et al. (in press).

Here we restrict our attention to the nonparametric bootstrap (Efron

and Tibshirani, 1986), a method for assessing accuracy of an

estimator by sampling with replacement from a set of independent

trials. By repeating this process and estimating parameters from

each bootstrap resample, we can learn the approximate distribution

of the estimator. The principle underlying the bootstrap is that

although the distribution of the data is unknown, it can be

approximated by the empirical distribution of a set of independent

trials. To achieve an acceptable signal-to-noise ratio (SNR) in an

event-related MEG or EEG study, a large number (typically c
100) of repeated trials or epochs are recorded. The average

response is then computed from these trials through stimulus-

locked averaging. The raw trials can be viewed as independent

realizations of the brain’s response to a particular event, and hence
the bootstrap methodology can be directly applied by sampling

with replacement from the epochs, and averaging the resulting

samples (DiNocera and Ferlazzo, 2000). The advantage of this

bootstrap approach is that no specific assumptions are made

regarding the distribution of the noise, the dipole time series, or the

number of dipoles.

As an illustration, we have applied the bootstrap to MUSIC-

based source localization from MEG data from somatosensory

stimulation of left and right fingers. Clustering the resulting source

locations and computing the principal eigenvectors of the sample

covariance of each cluster, we can determine a confidence ellipsoid

around the locations of each estimated source. The clusters for four

digits of each hand show the standard somatotopic mapping in

primary somatosensory cortex (SI) and the degree of uncertainty

for each digit as illustrated in Fig. 5. The potential advantage of

this approach over methods based on analysis of residual error or

prestimulus data is that the bootstrap is able to include all sources

of variability in the data, including statistical variability of the brain

response itself, and hence should lead to more accurate quantifi-

cation of localization accuracy uncertainty or confidence interval

estimates.
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Detection of regions of significant activation in cortical maps

In contrast to dipole localization, where the number of spatial

parameters is far fewer than the number of detectors, cortically

constrained maps typically contain far more surface elements than

detectors. This overparameterization leads to high spatial correla-

tion in the maps and presents difficulties in determining a suitable

threshold for detecting statistically significant activation. Applying

a simple Bonferroni correction and testing at each surface element

will lead to a very conservative threshold. Conversely, an

unacceptably high false-positive rate may arise if no correction is

made for multiple hypothesis testing. The standard approach to this

problem is to control the familywise error rate (FWER), that is, the

chance of any false positives under the null hypothesis (type 1

error). Parametric random field methods and nonparametric

permutation methods address this problem by estimating family-

wise-corrected thresholds. Here we review these approaches as

they might be applied to the detection maps in Eqs. (14–16).

Parametric statistical methods are well established in fMRI and

PET neuroimaging studies, where image maps are analyzed using

massively univariate hypothesis tests against the null hypothesis of

no activation. The theory of random fields (RFs) is used to

approximate the upper tail of the maximum distribution of the

image statistics using the expected value of the Euler characteristic

of the thresholded image (Worsley et al., 1996). Adapting the

theory to MEG or EEG inverse problems is complicated by their

highly nonuniform spatial correlation structure. A thorough treat-

ment of such fields is given by Worsley et al. (1999).

Barnes and Hillbrand (2003) present an application of RF

theory to MEG data. Their method is specifically tailored to

LCMV beamforming solutions, and the statistic images are formed

as maps of source power change between an active and a passive

state in a specific time–frequency interval. In Pantazis et al.

(in press), we apply RF results to the noise normalized minimum-

norm reconstruction maps defined in Eq. (14). Expressions for the

RESEL count and the Euler characteristic density are based on the

prestimulus cortical maps and are used to derive an analytical

solution for the maximum distribution of the image statistics. A

transformation similar to Worsley et al. (1999) is used to

compensate for the heterogeneity of the RFs. The application of

statistical parametric mapping to low resolution electromagnetic

tomography (LORETA) image maps computed from event-related

potentials is treated by Park et al. (2002). They construct
Fig. 6. Examples of significant activation maps for permutation and random field m

(a) permutation method controlling spatiotemporal FWER and using unsmoothed c

unsmoothed current densities, (c) permutation method controlling spatial FWER

FWER and using smoothed current densities. Smoothing is optional for permutat
volumetric current density maps, apply three-dimensional Gaussian

smoothing, and analyze the data using the traditional Gaussian RF

theory.

The permutation method (Nichols and Holmes, 2001) is a

nonparametric approach to controlling the FWER. It is restricted to

data that satisfy an exchangeability criterion, that is, the requirement

that under a null hypothesis H0, the distribution of the statistic of

interest remains unaltered when the labels of the data are permuted.

In the case of MEG or EEG data, we can permute pre- and post-

stimulus data under the H0 that there is no event-related activation.

With permutation tests, we have the flexibility of using any statistic

without the need to know its distribution. We then calculate this

statistic for all permutation samples and the resulting empirical

distribution is used to define familywise-corrected thresholds.

Blair and Karnisky (1994) were the first to use permutation

tests in an EEG study. Permutation samples were created by

exchanging frequent and rare channel waveforms from a standard

oddball paradigm, and permutation statistics obtained by subtract-

ing the time courses between these two experimental conditions

and averaging to form a single time course. The empirical

distribution of the maximum statistic over time was used to extract

a global threshold and temporally localize significant activity.

Permutation tests can be extended to provide combined spatial and

temporal localization of brain activation. Pantazis et al. (in press)

used a permutation scheme where maps of cortical activation are

permuted. The goal was to localize those surface elements in space

and time that exhibit significant experimental effects. By randomly

permuting pre- and post-stimulus data from the collection of

individual epochs in an event-related study, we learn the maximum

distribution of the statistic and use this to control the FWER. This

approach implicitly accounts for both spatial and temporal

correlation in the cortical maps. An alternative permutation scheme

proposed by Singh et al. (2003) detects event-related synchroniza-

tion or desynchronization components in a MEG study involving

visual stimulation and an LCMV beamformer applied to data

decomposed in multiple frequency bands.

We close by illustrating RF and permutation methods applied to

a simulation of sources in the right and left somatosensory areas.

Shown in Fig. 6 are examples of significant activation maps as

derived in Pantazis et al. (in press). By comparing Figs. 6a and b,

we see that spatiotemporal thresholds are more stringent than

spatial thresholds, because the false positives are controlled over all

time slices. Further, spatial smoothing increases SNR at the
ethods for two simulated sources on the right and left somatosensory area;

urrent densities, (b) permutation method controlling spatial FWER and using

and using smoothed current densities, (d) RF method controlling spatial

ion tests, but necessary for RFs to avoid conservative thresholds.
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expense of lower resolution (Figs. 6b and c). In simulation studies,

permutation and random field methods perform similarly with

smoothed cortical activation maps (Figs. 6c and d).

We should comment here that permutation and RF tests do not

address the limited resolution of MEG reconstruction methods. The

MEG inverse problem is ill-posed and cortical activation maps are

of low resolution and tend to mislocalize source activation. If the

inverse method identifies experimental variation in some region,

permutation and random field tests will identify these regions

regardless of the presence of an actual source at those locations.

The activation maps in Fig. 6 show the signal leakage onto

neighboring gyri that is typical in MEG imaging studies.
Concluding remarks

We have provided a brief survey of the issues in solving the

forward and inverse problem in EEG and MEG. An open source

Matlab toolbox that implements many of the methods discussed

can be found at http://neuroimage.usc.edu/brainstorm/ (Baillet et

al., 2004). We have also discussed methods for comparing different

inverse procedures and for assessing statistical significance of

inverse results from experimental data. In this short article, there are

many important aspects and recent developments in this field that

we are not able to address. We believe that of particular importance

among these are the following: (i) the use of independent

components analysis as a means of separating physiological and

other noise processes from brain activation, and possibly for also

separating distinct components of neural activation; (ii) the use of

time–frequency analysis and coherence analysis applied to single

trial data to better elucidate the mechanisms underlying commu-

nication between neuronal assemblies; and (iii) the development of

methods for simultaneous acquisition and analysis of EEG and

MEG data with other modalities, principally fMRI, which have the

potential to combine the high temporal resolution of electro-

physiological data with the higher spatial resolution of hemody-

namic effects measured with fMRI (Dale et al., 2000). The analysis

of MEG and EEG data remains a rich research area, which together

with the other brain imaging modalities, will lead to an increased

understanding of the cortical specialization and neuronal networks

that underlie human brain function.
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