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“Listening is the key to everything great in music.”
(Pat Metheny)

Even though music is often described as no more than 
sounds — or soundscapes — organized intentionally by 
a composer or performer, it feels meaningful and emo-
tional to most people. From the point of view of music 
theory, music can be broken down into three fundamen-
tal constituents — melody, harmony and rhythm (Fig. 1) — 
each of which is subserved by overlapping but distinct 
neural networks1,2. These fundamental ingredients may, 
in rare instances, be experienced in isolation, such as 
when one is listening to the single melodic lines in a 
Gregorian chant or the epic drum fill in Phil Collins’s 
‘In the Air Tonight’ — introduced unpredictably after 
three minutes of vocals and keyboard playing. Mostly, 
though, these constituents interact to create unified 
musical experiences of a unique cognitive and emotional 
quality. In recent years, it has become increasingly clear 
that to understand why people are so engaged by music, 
we need to understand the neuronal underpinnings of 
music perception, which in turn are closely linked to 
action in the form of overt or covert movements1,3 and 
emotion4. Accordingly, music perception engages brain 
networks related to action, emotion and learning in 
addition to the auditory system (Fig. 1d).

A particularly important feature of music is that its 
structure often involves patterns that allow listeners to 
form expectations, based on statistical learning, which may 
subsequently be fulfilled or betrayed. The experience 
of music is therefore intimately linked to brain-bound 

predictive models: for example, tonality, which is the 
experience of a hierarchy of relations pointing towards 
a tonal centre in melody and harmony; and metre, the 
experience of regularly recurring rhythmic patterns and 
accents, which underwrites the way we move regularly 
to sometimes highly irregular musical rhythms. In this 
Review, we describe the process of listening to music, 
in which we continuously construct predictions of what 
happens next in a musical piece, and how this process 
gives rise to perception, action, emotion and, over time, 
learning, as formulated in the predictive coding of music 
(PCM) model5.

The PCM model states that when we listen to music 
with melody, harmony and rhythm, the brain deploys a 
predictive model — based on prior experience — that 
guides our perception. Take the example of a repeated 
syncopated rhythm (Fig. 2), a rhythm wherein one beat 
is displaced by a fraction. Here we experience an error 
at the unexpected, syncopated note as proposed by the 
PCM model. This may drive an impulse for action in 
the form of enforcing the beat by tapping the foot. This 
active listening process forms the basis of emotional 
responses to music and musical learning, which updates 
our underlying predictive model over time. Music is thus 
a powerful tool for studying the predictive brain, owing 
to the way its structure licenses anticipation.

In the following sections, we provide an overview of 
music perception in the brain. We first introduce the 
PCM model. Then, we discuss the fundamental constit-
uents of music in relation to this model before turning 
to more complex music processing that entails action, 

Melody
Patterns of pitched sounds 
unfolding over time, in 
accordance with cultural 
conventions and constraints.

Harmony
The combination of multiple, 
simultaneously pitched  
sounds to form a chord, and 
subsequent chord progressions, 
a fundamental building block  
of Western music. The rules of 
harmony are the hierarchically 
organized expectations for 
chord progressions.
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emotion and learning. Rather than focusing on the link to 
language — and clinical applications — we focus on the 
basic neuroscience of music processing in the brain and 
requisite prediction-based brain mechanisms. Finally, we 
consider generalizations of the PCM model to encompass 
musical interaction and communication in interpersonal 
relationships and hierarchical organization in groups.

The PCM model
Prediction is increasingly considered a fundamental 
principle of brain processing. Theories of predictive 
processing offer explanations for how specialized brain 

networks can identify and recognize the causes of their 
sensory inputs, integrate information with other net-
works and adapt to new stimuli. Recently, active inference, 
an influential theory of predictive processing6, has pro-
posed that perception, action and learning constitute a 
recursive Bayesian process by which the brain attempts 
to minimize the prediction error between sensory input 
and top-down predictions of that input (Box 1).

For many years it has been clear that music can 
be fully understood only in the light of prediction7–9. 
Music-related predictions are linked to various emo-
tions, and the relationship between musical anticipation 
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Fig. 1 | From the structural constituents of music to perception, action 
and emotion in the brain. The figure shows the constituent parts of  
music and their underlying brain bases as established by electrophysiological 
and neuroimaging techniques. a | The melody (the successive pitches notated 
in the top staff of the score), harmony (the chord progression listed in the 
middle staff) and rhythm (the percussion notation in the bottom staff) in an 
excerpt from ‘Sgt. Pepper’s Lonely Hearts Club Band (Reprise)’ by the Beatles. 
b | Brain responses to music can be measured with neuroimaging methods, 
typically electroencephalography (EEG) or magnetoencephalography (MEG), 
or functional MRI (fMRI), which have different temporal resolutions. The 
sampling for EEG and MEG is typically on the scale of 1–10 ms and for fMRI is 
on the scale of 0.72–3 s. c | Neural markers obtained with two analysis 
methods for EEG/MEG data: event-related potentials and frequency tagging. 
The perhaps most used event-related potentials are the mismatch negativity 
(MMN) and the early right anterior negativity (ERAN), which are markers of 

auditory expectancy violation. The MMN waveform (top) typically occurs  
at around 110–250 ms, while the ERAN waveform (middle) typically occurs at 
around 150–200 ms. The images to the right of these panels show how the 
sources of these signals have been localized in slightly different regions of  
the brain. Finally, another prominent method, frequency tagging, shows  
how the beat (here, an unaccented repeated pulse) and an imagined  
3/4 metre are represented as peaks in the amplitude spectrum of the EEG 
recording (bottom). d | The brain networks involved in music processing, with 
the key brain structures related to music perception, action and emotion 
being highlighted. Learning is illustrated here as the continuous update of 
real-time predictive brain models through Bayesian inference. For part a,  
‘Sgt. Pepper’s Lonely Hearts Club Band (Reprise)’ words & music by John 
Lennon & Paul McCartney copyright 1967 Sony/ATV Music Publishing.  
All Rights Reserved. International Copyright Secured. Used by Permission of 
Hal Leonard Europe Ltd. Part c adapted, with permission, from reF.71, Elsevier.

Rhythm
The structured arrangement  
of successive sound events 
over time, a primary  
parameter of musical structure. 
rhythm perception is based on 
the perception of duration and 
grouping of these events  
and can be achieved even if 
sounds are not discrete, such 
as amplitude-modulated 
sounds.
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and emotion has been proposed to be associated with 
survival-related anticipatory brain mechanisms10. Musical 
expectations are evoked by auditory (bottom-up) sensa-
tions on one hand and depend on the brain’s (top-down) 
predictions on the other. Predictive brain mechanisms 
depend on long-term plasticity and learning11 (forming, 
for example, schematic expectations), familiarity with a 
particular piece or genre of music12 (veridical expectations), 
short-term memory for the immediate musical past 
(forming dynamic expectations) and deliberate listening 
strategies13. The neuronal mechanisms and functional 
architectures underlying musical expectation are thus 
shaped by culture, personal listening history, musical 
training and biology14.

Recently, research into music perception has turned 
towards experiments modelling musical structure, which 
evinces anticipation15 and predictive mechanisms. To 
integrate these approaches in neuromusic research, we 
developed the PCM model in several recent articles5,7,16,17 
(Fig. 2). This model is a special case of the predictive pro-
cessing (Box 1) theory of brain function for music, with 
an explicit focus on the influence of biological, cultural 
and contextual factors.

The PCM model proposes that music perception, 
action, emotion and learning are recursive Bayesian 
processes, by which the brain attempts to minimize 
prediction error18 as formalized in enactive versions of 
predictive processing (also known as active inference). 
Accordingly, the processes underlying music perception 
and action are coupled, such that perception minimizes 
prediction error by updating the predictions, while 
action reduces prediction error by generating predicted 
sensory signals. Emotion, attention and motivation act 
as Bayes optimal biases to contextualize prediction, 
thereby guiding behaviour, action and learning.

The notion of the brain as a hierarchical prediction 
machine — in which sensory input is constantly held up 
against the brain’s beliefs about the causes of this input 
— is consistent with music processing, which is not just 
passive and bottom-up but rests on top-down predictive 
processes, as demonstrated for melody, harmony and 
rhythm later herein. In the case of ambiguous musical 
stimuli, the listener may — depending on musical train-
ing — make the active decision to listen attentively to 
the same piece of music with different metres or tonali-
ties (Fig. 3). Hence, a Bayesian formulation of predictive 
coding applies naturally to processes that involve the 
inference of hidden or latent causes — such as metre 
and tonality — from the music.

When one is listening to music, attentional selec-
tion of which prediction errors to resolve rests on pre-
dicting not just the content of sensory streams but also 
their predictability or precision. Put simply, prediction 
errors are useful only when things are predictable. The 
Bayesian belief updating inherent in the PCM model is 
literally precision engineered, in the sense that it rests on 
predictions of predictability.

A crucial concept in predictive coding is the notion 
that prediction errors are weighted by their expected pre-
cision or predictability. In short, the brain has to select 
the prediction errors that drive Bayesian belief updating 
and the ensuing top-down predictions. This selection 

can be regarded as a kind of mental or covert action 
that equips standard predictive coding schemes with an 
enactive and attentional aspect. The requisite synaptic 
mechanisms are thought to depend on neuromodulatory 
synaptic gain control that underwrites sensory attention 
and attenuation. The importance of precision for predic-
tive processing has been shown in studies of auditory 
perception, where the mismatch negativity (MMN) to an 
oddball is modulated by its predictability19. In music 
perception, the finding that the amplitude of the MMN 
— a preattentive marker of prediction error — is reduced 
(to rhythmic deviations and mistuned pitches) in less 
predictable contexts offers a clear example of so-called 
precision-weighted prediction errors20,21. These studies 

Expectations
Mathematically, the expected 
values or means of random 
variables.

Statistical learning
The ability to extract statistical 
regularities from the world to 
learn about the environment.

Tonality
in Western music, the 
organization of melody  
and harmony in a hierarchy  
of relations, often pointing 
towards a referential pitch  
(the tonal centre or the tonic).

Metre
A predictive framework 
governing the interpretation  
of regularly recurring patterns 
and accents in rhythm.

Predictions
The output of a model 
generating outcomes from their 
causes. in predictive coding, 
the prediction is generated 
from expected states of the 
world and compared with 
observed outcomes to form  
a prediction error.

Anticipation
The subjective experience 
accompanying a strong 
expectation that a particular 
event will occur.

Active inference
An enactive generalization  
of predictive coding that casts 
both action and perception  
as minimizing surprise or 
prediction error (active 
inference is considered a 
corollary of the free-energy 
principle).

Prediction error
A quantity used in predictive 
coding to denote the difference 
between an observation  
or point estimate and its 
predicted value. Predictive 
coding uses precision-weighted 
prediction errors to update 
expectations that generate 
predictions.

Schematic expectations
expectations of musical events 
based on prior knowledge of 
regularities and patterns in 
musical sequences, such as 
melodies and chords.

Veridical expectations
expectations of specific events 
or patterns in a familiar musical 
sequence.
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Fig. 2 | Predictive coding of music. a | Music perception  
is guided by the brain’s real-time predictive (generative) 
model (marked with an exclamation mark), which is based 
on prior experience. The predictive model relies on the 
cultural background, musical competence, the current 
context and the brain state, including the attentional state 
and the emotional state, as well as individual traits and 
innate biological factors. The brain constantly attempts to 
minimize prediction error at all levels of the brain hierarchy 
through the process of Bayesian inference. b | The music 
example shows a syncopated rhythm to which the brain 
may apply a 4/4-metre model. The syncopated (unexpected) 
note provokes a prediction error between the sensory input 
and the top-down predictions. This process may lead to an 
impulse for action, in the form of rhythmic movement, such 
as tapping the foot, to produce proprioceptive sensations 
that conform to the predictive model — and attenuate 
(auditory) prediction errors that do not. The recursive 
arrows indicate that this process is iterated every time the 
rhythm repeats. Over time, this forms the basis of learning 
and evolving music-related emotions, which in return 
modify action and perception.
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demonstrate the scope of the PCM model for explaining 
the fundamental aspects of music processing.

Learning can be cast as minimizing precision- 
weighted (that is, predictable) prediction errors over 
time, via experience-dependent plasticity. This is 
equally true for implicit and explicit learning. An exam-
ple of implicit learning is how melodic singing ability or 
tonality perception schema are learned during repeated 
exposure — as evinced by the early right anterior nega-
tivity (ERAN) responses, which are markers of harmonic 
expectation violation in non-musicians and musicians 
alike22,23. Learning to play an instrument involves implicit 
learning but introduces additional top-down effects on 
perception and action. Hence, explicit learning often 
implies altered processing of musical structure violations 
— compared with that in non-musicians — as reflected 
in enhanced ERAN or MMN responses that could be 
regarded as reporting precision-weighted prediction 
errors for melody, harmony and rhythm (see later).

Importantly, experiments have shown that the brain 
architecture subserving precision-weighted prediction 
errors differs depending on which musical phenomenon —  
for example, melody, harmony or rhythm — is being 
studied. For example, a predictive coding-based analy-
sis of the effective connectivity in a melodic oddball 
functional Mri (fMRI) paradigm revealed that mismatch 
responses are best explained by a fully connected bilat-
eral auditory network comprising the primary audi-
tory cortices and the planum temporale24. Here, the  
observed increase in excitatory connectivity from  
the left primary auditory cortex to the planum temporale 
has been interpreted as the passing of a precise predic-
tion error from lower to higher areas of the hierarchical 
processing network25,26, and the observed decrease in 
inhibitory connectivity within the left primary auditory 
cortex has been viewed as a precision-related increase 
in the gain of the superficial pyramidal cells encod-
ing prediction error27,28. By contrast, as discussed later, 

Box 1 | Predictive processing and coding

Predictive processing (also known as active inference) is a general 
theory of neural processing inspired by research in artificial intelligence, 
statistical physics and systems neuroscience6,255,256. The basic idea can 
be traced from the students of Plato, through to Kant and Helmholtz257, 
and to theories of perception as hypothesis testing258. Enactive versions 
of predictive processing offer integrative accounts of action and 
perception259–263 by formalizing how specialized brain networks identify 
and categorize causes of sensory inputs, integrate information with other 
networks and actively sample new stimuli256. In brief, active inference 
proposes that perception, action and learning are Bayesian processes by 
which the brain attempts to minimize hierarchical prediction errors. The 
figure shows a schematic illustration of the computational architecture 
of neuronal message passing that underlies predictive coding in the brain. 
As predictive processing is a generic theory of brain function, the precise 
architecture will vary depending on the functional anatomy in question. 
Part a of the figure shows the basic motif of connections, via which 
prediction errors are formed by comparing bottom-up input with 
top-down predictions. Crucially, these predictions can be of either the 
input or the precision (that is, the predictability) of that input. These 
are designated first-order and second-order predictions, respectively. 
Part b of the figure describes the resulting hierarchical message passing 
implicit in predictive coding, in which forward or ascending connections 
convey prediction errors to higher levels, while backward or descending 

connections supply the predictions that enable the computation of 
prediction errors in the lower level. Black arrows indicate forward 
connections and grey arrows indicate backward connections. In this 
example, unpredicted auditory input is passed forward to the auditory 
cortex in the form of ascending prediction errors (for example, from the 
medial geniculate body). These prediction errors (black arrows) drive 
posterior expectations (for example, encoded by deep pyramidal neurons) 
that return descending predictions (grey arrows) to resolve — or explain 
away — lower-level prediction errors. At the same time, high-level 
expectations about the context generate predictions of precision 
(blue arrows) that modulate the gain of cells encoding prediction errors 
at the lower level (for example, superficial pyramidal cells). This enables 
high levels to select the prediction errors that convey the most precise 
or predictable information (compare with attentional selection). In short, 
there are two kinds of descending predictions in predictive coding: 
first-order prediction of content (grey arrows) and second-order 
predictions of context (blue arrows). Here, context is simply the precision 
or predictability of prediction errors. The resulting precision-weighted 
prediction errors therefore mediate the selection of certain lower-level 
features that are consistent with higher-level constructs. This allows the 
predictive coding of music model to explain figure-ground phenomena 
in music, such as selecting between different metrical interpretations 
of a 3 against 4 polyrhythm.

Dynamic expectations
Short-lived expectations that 
dynamically shift owing to the 
ongoing musical context, such 
as when a repeated musical 
phrase causes the listener to 
expect similar phrases as the 
work continues.

Precision
The inverse variance or 
negative entropy of a random 
variable. it corresponds  
to a second-order statistic  
(for example, a second-order 
moment) of the variable’s 
probability distribution or 
density. This can be contrasted 
with the mean or expectation, 
which constitutes a first-order 
statistic (for example,  
a first-order moment).
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studies of the pleasurable experience of musical harmony 
have revealed predictive coding mechanisms including 
precision-weighted prediction errors29 related to emotion 
and reward brain networks29, whereas studies of musical 
groove have implicated additional motor-related areas.

In the following sections, we review music percep-
tion, action, emotion and learning in the light of the 
PCM model. We begin by summarizing the significant 
progress in our understanding of music perception of 
melody, harmony and rhythm.

Perception of music
Melody. In most musical styles, melody — that is, the 
patterns of pitched sounds unfolding over time — is an 
important part of what defines and distinguishes one 
piece from another. Sing the first eight notes with any 
rhythm and you will immediately identify Beethoven’s 
Fifth Symphony.

When you press a key on a piano keyboard, the 
resulting note comprises a fundamental frequency defin-
ing its pitch30 and a series of overtones that contributes 
to its tone quality (timbre), which distinguishes it from 
other instruments31,32. A large corpus of research has 
been devoted to the study of musical pitch, and it is now 
widely accepted that the brain can extract a single pitch 
percept from complex tones, even in the absence of the 
fundamental33,34. Pitch perception can be separated into 
pitch height and pitch chroma. Two different piano notes 
may have different pitch heights but still be perceived as 
having the same chroma (for example, the note C in dif-
ferent octaves). The auditory cortices are central to pitch 
processing: fMRI suggests that pitch height is processed 
in the planum temporale posterior to the primary audi-
tory cortex, whereas chroma change is processed in the 
planum polare, anterior to the primary auditory cortex35. 
In general, the recognition of pitch from spectrally 
complex sounds is thought to be handled by a ventral 

stream, projecting from primary auditory areas along 
middle and anterior regions to the inferior frontal gyrus 
(Fig. 1d). A dorsal stream, projecting from primary areas 
via the planum temporale over the parietal cortex to the 
dorsolateral prefrontal cortex36, is supposed to support 
sensory–motor integration, articulation and memory 
functions37 and thereby link the neural apparatus for 
melody perception and action38.

Once musical pitches are combined into melodies, 
global properties emerge, such as melodic contour39, 
melodic expectations and tonality40. Most melodies point 
to a certain tonality, even though 12-tone composers such 
as Arnold Schoenberg often try to avoid it. In its simplest 
form, a melody such as ‘Frère Jacques’ is confined to a 
subset of pitches — a scale — with a tonal centre, such as 
a C-major scale, which corresponds to seven white keys 
on a piano keyboard and excludes the associated black 
keys. The tonality is not necessarily expressed directly 
in the auditory input to the ears5 but is an endogenously 
generated hierarchical predictive framework that under-
writes the perception of melody and harmony (Fig. 3). 
Listeners, even without explicit musical training, have 
implicit knowledge of the statistical regularities of melo-
dies of their own culture. This knowledge41 is constantly 
applied to form musical expectations by comparing a 
given note to the given statistical distribution42,43. The 
tonality is an example of one predictive model, which 
underlies melodic expectations.

Importantly, it is possible to model melodic expec-
tation and uncertainty mathematically. Several models 
exist44,45, including the information dynamics of music 
model, which assigns measures of information content 
(contextual unexpectedness: see prediction error) 
and entropy (uncertainty) to each note of a scale using 
short-term and long-term statistical regularities46. 
Mathematical modelling has the advantage that it allows 
the study of perception of ‘real’ music and obviates the 
need for tailored musical excerpts, as traditionally 
used in many experiments. Recently, such models have 
been used to study the neural processing of melodic 
expectations47 in particular using the MMN response48,49 
(Fig. 1). Importantly, in unpredictable compared with pre-
dictable melodic contexts (as modelled by the informa-
tion dynamics of music model21), the MMN amplitude is 
reduced, and behavioural deviant detection is impaired 
with regard to mistuned pitches. In other words, the 
more precise our melodic predictions — according to 
culture-dependent statistical learning — the larger the 
MMNs to surprising notes.

Individual differences have an important role for the 
predictive processing of melody. In general, musicians 
score consistently higher than non-musicians on tests 
that involve distinguishing between different melodies50. 
High scores on such tests are associated with a higher 
amplitude and shorter latency of the preattentive audi-
tory responses, such as the MMN, to expectancy viola-
tions12,51. This indicates that musicians develop a more 
precise predictive model presumably as a result of explicit 
learning.

Melody perception recruits parts of the brain that 
are specialized for purposes other than audition, such 
as motor tasks, as well as emotional and cognitive 

Mismatch negativity
(MMN). A component of  
the auditory event-related 
potential recorded with electro-
encephalography or magneto-
encephalography related  
to a change in different sound 
features such as pitch, timbre, 
location of the sound source, 
intensity and rhythm. it peaks 
approximately 110–250 ms 
after change onset and is 
typically recorded while 
participants’ attention is 
distracted from the stimulus, 
usually by watching a silent 
film or reading a book. The 
amplitude and latency of  
the MMN depends on the 
deviation magnitude, such that 
larger deviations in the same 
context yield larger and faster 
MMN responses.

Functional MRI
(fMri). A neuroimaging 
technique that images rapid 
changes in blood oxygenation 
levels in the brain.

Groove
in the realm of contemporary 
music, a persistently repeated 
pattern played by the rhythm 
section (usually drums, 
percussion, bass, guitar and/or 
piano). in music psychology, 
the pleasurable sensation  
of wanting to move.
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Fig. 3 | How we may experience the same musical material with different real-time 
predictive brain models. a | There can be different interpretations of a simple ambiguous 
melody according to different tonalities; for example, here C major versus A minor. The 
melody is compatible with both C major and A minor, and an individual’s perception of 
harmonic context relies on top-down processes that depend on prior experience, culture, 
competence, context, the current state, personal traits or an active decision to listen  
from a certain viewpoint (for example, major or minor). This may lead to quite different 
experiences of this melody, rendering the melody, for example, happy (major) or sad 
(minor). b | Similarly, a polyrhythm may equally well be heard from the point of view of  
a 3/4 or 4/4 metre as the metrical predictive model. The temporal predictions in these 
two cases will be very different, and the rhythm can thus be experienced as a waltz (3/4) 
or a march (4/4) even by the same individual.
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processes, as shown, for example, in the so-called free 
listening paradigms52–54, which combine music infor-
mation retrieval of real music recordings with fMRI or 
magnetoencephalography (MEG)53,54. Moreover, action 
and perception can be engaged even without stimuli, 
as demonstrated by event-related potential, positron 
emission tomography and fMRI studies showing that 
the formation of musical mental images engages audi-
tory sensory and premotor areas37,55,56. In summary, the 
study of melody processing has moved towards using 
naturalistic melodies, emphasizing the coupling of per-
ception and action-related brain mechanisms, in which 
prediction has a key role.

Harmony. Melodies, especially in Western music, are 
typically accompanied by harmony that is created by 
chord progressions (different chords played successively) 
played either on instruments such as a piano or a guitar 
or by many instruments playing different notes at the 
same time. An example of a single chord is a C-major 
triad, which is the combined sound of the three notes 
C, E and G.

Chords may in themselves give rise to an emotional 
response. For example, the sound of a C-major triad is 
perceived as happier than that of a C-minor triad (C, E♭ 
and G) by Western listeners57. Since the ancient Greeks, 
it has been known that the physical properties of sounds, 
such as the ‘roughness’ of chords, are uniquely determined 
by the integer relationships between the fundamental 
frequencies of these notes, leading to a differentiation 
in Western harmony between consonant and dissonant  
intervals and chords. The smaller this integer relationship 
is, the more likely the notes are to be misperceived as one 
single sound, and this trend has been observed also in 
musically distant cultures58. This is tied to the experience 
of sound roughness59, which is thought to be related to 
the bandwidths of critical auditory bands linked to the 
inability of the basilar membrane in the cochlea to sep-
arate notes that are very close in pitch60,61. Importantly, 
however, roughness may be perceived differently 
according to musical style and culture62.

Chord progressions establish musical expectations 
and typically a sense of tonality. Whereas tonality is 
known in music from all cultures studied63, neurosci-
entific studies have concentrated mainly on Western 
harmony40,64,65, which follows a specific set of rules, 
for example, in different types of harmonic cadences. 
Breaking these rules elicits the ERAN (Fig. 1), which 
was discovered by Koelsch and colleagues using 
electroencephalography (EEG) and MEG66,67. The ERAN 
peaks at 150–200 ms after deviant onset, and its latency 
and amplitude are modulated by attention or knowledge 
of impending outcomes68, and musical training23. The 
sources of the ERAN have been localized in the inferior 
frontal gyrus using MEG as well as fMRI69,70. It is most 
often studied in semi-attended paradigms, in which 
the task requires participants to attend to the musical 
stimulus but not to the deviating chords. In contrast 
to the MMN — which can be evoked by a local mis-
tuning of a specific chord — the ERAN amplitude and 
latency depend strongly on the deviant’s position within 
the chord progression — how well it fits with the rules 

of harmony71–73. The rules of harmony have often been 
termed ‘musical syntax’ or ‘musical grammar’ and are 
thought to be encoded through statistical learning. The 
development of a neural architecture for melody and 
harmony has been studied in adult non-musicians using 
artificial experimenter-generated musical grammars74,75, 
where recognition and liking ratings indicate a general-
ized probability-based perceptual learning mechanism 
as the basis for remembering and appreciating music. 
The precise function of the inferior frontal gyrus is 
still unresolved but is probably related to higher-level 
processing of the temporal order of sequences76.

With musical training, perception and action net-
works in the brain become more tightly coupled, which 
facilitates more precise active inference. Studies have 
shown motor-related cortical activity in professional 
pianists listening to piano music77–79 and activity in a 
frontoparietal motor-related network in non-musicians 
listening to a learned melody after practice playing80. 
For trained pianists, internalized harmonic expecta-
tions in auditory and motor networks may furnish 
modality-specific networks for harmony prediction 
that interact with the inferior frontal gyrus to optimize 
action and perception81. It is thus likely that musi-
cal expertise affects harmony processing by engaging 
motor mechanisms because of the active experience in 
auditory–motor association.

As for melody processing, a recent trend has been to 
model both music and expected brain responses mathe-
matically to enable more ecologically valid approaches to 
the study of harmony. This allows a better understand-
ing of the often-reported link between musical harmony, 
emotions and pleasure. Modelling harmony regularities 
in a corpus of harmonic sequences from the Billboard 
Hot 100 pop songs, Cheung and colleagues29 showed 
maximal pleasure ratings with regard to expected chords 
in unpredictable chord sequences and conversely to 
unexpected chords in predictable chord sequences, and 
linked this to activity in key limbic and reward-related 
brain structures: the amygdala, the hippocampus and the 
nucleus accumbens (NAcc).

The aforementioned studies highlight the ability of 
harmony to engage motor, emotion and learning-related 
mechanisms. Cognitive studies of harmony, however, 
mainly use Western harmony as the source of auditory 
stimulation, which reduces the generalizability of the 
results. At the level of a single interval, native Amazonian 
individuals with limited exposure to Western music do 
not exhibit a Western-like preference for consonant 
versus dissonant intervals62, indicating that aesthetic 
preference for certain intervals may be culture depend-
ent. Importantly, the statistical regularities or the har-
monic syntax (captured by ERAN) — which undergird 
many predictive processes related to harmony — differs 
between cultures and styles of music, leading to quite 
different expectations when, for example, people are 
listening to blues versus compositions by Beethoven. 
The well-known associations between major and minor 
and happy and sad emotions, respectively, in Western 
harmony are prime examples of the complexity in deter-
mining the influence and interaction between univer-
sal and cultural factors in the perception of harmony.  

Pitch
The perceptual correlate  
of periodicity in sounds that  
allows their ordering on a 
frequency-related musical scale.

Timbre
Also known as tone colour or 
tone quality, the perceived 
sound quality of a sound, 
including its spectral 
composition and its additional 
noise characteristics.

Chroma
The pitch class containing  
all pitches separated by an 
integer number of octaves. 
Humans perceive a similarity 
between notes having the 
same chroma.

Information content
The contextual 
unexpectedness or surprise 
associated with an event.

Entropy
in the Shannon sense, the 
expected surprise or information 
content (self-information).  
in other words, it is the 
uncertainty or unpredictability 
of a random variable (for 
example, an event in the future).

Magnetoencephalography
(Meg). A neuroimaging 
technique that measures the 
magnetic fields produced by 
naturally occurring electrical 
activity in the brain.

Event-related potential
A very small electrical  
voltage generated in the  
brain structures in response  
to specific events or stimuli.

Consonant and dissonant 
intervals
Psychologically, consonance  
is when two or more notes 
sound together with an absence  
of perceived roughness. 
Dissonance is the antonym of 
consonance. Western listeners 
consider intervals produced  
by frequency ratios such as  
1:2 (octave), 3:2 (fifth) or  
4:3 (fourth) as consonant. 
Dissonances are intervals 
produced by frequency ratios 
formed from numbers greater 
than 4.

Harmonic cadences
Stereotypical patterns 
consisting of two or more 
chords that conclude a phrase, 
section or piece of music.  
They are often used to 
establish a sense of tonality.
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This association is not found in all musical cultures82, 
which speaks against a universal relationship. However, 
it has been proposed that the lower pitch intervals, and 
slightly lower average pitch in the minor mode simulate 
speech when we are sad83–85. It is still unclear whether 
this is a universal principle expressed differentially in dif-
ferent cultures. Nevertheless, basic emotions may still be 
recognized in realistically sounding music material across 
cultures86. However, this is an ongoing field of study.

In summary, predictive structures in musical har-
mony (often referred to as ‘syntax’) have proven an 
invaluable domain for studying prediction error and 
its relationship to musical emotion and its relation to 
musical learning and culture. For harmony and melody, 
tonality offers a predictive context in the PCM model, 
and this profoundly affects brain processing since both 
operate and interact in a shared pitch-based domain. 
The PCM model may explain why a melodic line with-
out harmonies still suggests an underlying harmonic 
scheme — through the way the brain generates implicit 
predictions based on harmonic priors.

Rhythm. When we listen to ‘Blame It on the Boogie’ by 
the Jacksons (Fig. 4), it is difficult to refrain from tapping 
a foot or bobbing one’s head to the beat. This explicit link 
between the body and the mind, action and perception 

has recently made musical rhythm a burgeoning topic in 
cognitive neuroscience.

Rhythm can be produced by the onset of the notes 
in a melody or without a melody when it is played on 
designated percussion instruments, where pitch may be 
less clear87. The perception of rhythm usually involves 
the simultaneous perception of evenly spaced pulses88 
and a metre, which structures this pulse train and its 
subdivisions into patterns of differentially accented 
beats. Listening to pulse trains involves the prediction 
of following events89, as indicated in studies showing 
brain responses to omission of a beat or after the end of 
rhythmic sequences90–93.

Brochard and colleagues94 provided strong evidence 
for metre perception in the simplest possible experimen-
tal setting using event-related potentials to show that lis-
tening to an entirely regular and unaccented metronome 
causes the brain to automatically register some beats as 
more salient than others, even in the absence of any such 
structure in the stimulus. Hence, the pulse and the metre 
are not necessarily expressed directly in the auditory 
input to the ears5 but emerge under hierarchal predic-
tive processing that enables the recognition of successive 
musical events over time95–97. The perception of a clear 
musical metre facilitates rhythm memory98,99, learning100 
and perceptual sensitivity even at a young age101.

Electroencephalography
(eeg). An electrophysiological 
method that measures 
electrical activity of the brain.

a  Groove: pleasurable feeling of moving to music
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Fig. 4 | Groove: the pleasurable sensation of wanting to move to music. 
a | How the inverted U-shaped relationship between rhythmic predictability 
and the experience of groove observed in groove ratings can be modelled as 
the product of stimulus syncopation and the precision of the predictions 
relative to prediction error; that is, the precision of our metrical expectations16. 
The U shape implies that there is a sweet spot at which we experience the 
pleasurable experience of wanting to move. Hence, the experience of groove 
is a trade-off between stimulus complexity (amount of syncopation) and the 
ability to maintain a sufficiently stable metre for moving in time with music. 
b | In the song ‘Blame It on the Boogie’ by the Jacksons, the rhythm of the 
melody quickly reaches and remains at a medium level of syncopation 

corresponding to the groove sweet spot. c | Activity in motor-related structures 
(premotor and basal ganglia regions), reward-related structures (orbitofrontal 
areas and nucleus accumbens) and timing-related brain structures in the basal 
ganglia when contrasting medium and high syncopation rhythms136. dPMC, 
dorsal premotor cortex; mOFC, medial orbitofrontal cortex; PFC, prefrontal 
cortex; SMA, supplementary motor area. For part b, ‘Blame It on the Boogie’ 
words and music by Elmar Krohn, Thomas Meyer, Hans Kampschroer, Michael 
Jackson Clark and David Jackson Rich copyright 1977 Delay Edition. All Rights 
Administered by Chrysalis Music Holdings GmbH. All Rights Reserved. 
International Copyright Secured. Used by Permission of Hal Leonard Europe 
Ltd. Part c adapted, with permission, from reF.136, Elsevier.
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Despite the possibly innate human ability to synchro-
nize movements to the musical metre, this ability is not 
easy to model computationally. Recently, Large and col-
leagues created a neuronal network model with two hier-
archical levels: one corresponding to the sensory system 
modelled with a simple Hopf bifurcation and the other 
corresponding to the motor system tuned to operate near 
a double limit cycle bifurcation102. This model was able 
to explain participants’ ability to synchronize finger tap-
ping with increasingly syncopated rhythms. Accordingly, 
frequency tagging (Fig. 1) in electrophysiological recordings 
shows that even for such rhythms in which the metre is 
not acoustically accented, the fundamental frequencies of 
the metre still dominate the signal103,104. However, the neu-
ral entrainment to rhythm and the different contributions 
of auditory and motor cortical and subcortical structures 
in establishing the metre percept are still far from well 
understood105, and it is essential to acknowledge a substan-
tial top-down influence on metre perception18,106. Metre 
perception may hence be modulated by cultural107–109 and 
innate biological factors (Fig. 2).

Rhythm and metre perception is more developed in 
musicians, who, as with melody and harmony, score con-
sistently higher than non-musicians on rhythmic ability 
tests50. In addition musicians exhibit a higher amplitude 
and shorter latency of the MMN to violations110, sug-
gesting that they deploy more precise predictive models 
than non-musicians.

The literature on rhythm perception discloses the 
involvement of the auditory pathway in detecting struc-
tural deviations from the metre110. These deviations are 
marked by the MMN, which again is modulated by the 
predictability of the rhythmic context20. Rhythm per-
ception involves large parts of the motor system — the 
premotor cortex, supplementary motor area, basal gan-
glia and cerebellum111–113. This motor system activity can, 
to some extent, be attributed to the establishment and 
maintenance of the musical pulse and metre114. These 
processes, which underlie our ability to dance to music, 
are measurable already in newborns115, and can be influ-
enced by training infants to recognize either a duple 
metre (2/4) or a triple metre (3/4) of the same ambigu-
ous rhythm116. Furthermore, synchronizing movements 
to the same metre may lead to prosocial behaviour117, 
as shown in studies where infants exhibit more helpful 
behaviour after having been bounced in synchrony with 
an experimenter118.

The complexity of the brain circuits underlying metre 
perception may explain why metre perception is so 
rarely observed in non-human animals and never with 
the same accuracy and flexibility as in humans. Humans 
have the ability to synchronize finger tapping to a simple 
metronome at different tempi between approximately 
40 and approximately 400 beats per minute depend-
ing on musical expertise and do so by predicting the 
subsequent beats — and may perform the task across 
modalities119,120. By contrast, rhesus monkeys can only 
with great difficulty be trained to follow the beat at dif-
ferent tempi and then tap some hundreds of milliseconds 
after the beat instead of predicting it121. MMN record-
ings to onbeat and offbeat deviants show that monkeys 
are sensitive to the isochrony of the stimulus but only 

humans are sensitive to its metrical structure122. Studies 
in chimpanzees show equally poor results in beat syn-
chronizing to metronomes123. Even though they may 
possess the ability to predict the upcoming beats, they 
lack tempo flexibility. Hence, rhythmic ability for music 
clearly depends on the expressivity or depth of predictive 
coding of the human brain.

In summary, the study of musical rhythm demon-
strates how sensory input provided by auditory rhythms 
(bottom-up) are met by predictive models such as the 
metre (top-down), and how this process gives rise to 
auditory–motor coupling in the human brain. The 
involvement of the motor system entails higher pre-
cision of the auditory predictions as hypothesized by 
prediction-based models. In the following section, we 
consider more complex musical phenomena, which 
integrate melody, harmony and rhythm and exemplify 
the crucial role of precision-weighted prediction error.

Action
Why do people rush to the dance floor when hearing the 
grooves on James Brown’s records and move to the music 
with such apparent pleasure124–126? The study of groove 
and the pleasurable sensation of wanting to move to 
music127 is a prime example of how the PCM model — and  
the concept of precision-weighted prediction error — can  
inform our understanding of music processing.

Groove research primarily relates to music originat-
ing in the African diaspora, such as soul, funk, disco, 
Latin, jazz, hip hop and other dance-related genres128. 
Typically, these styles are characterized by the presence 
of a rhythm section comprising percussion, bass and 
chord instruments. This rhythm section is supposed to 
keep a constant beat — often taking the form of a con-
stant syncopated rhythmic pattern repeating after one, 
two or more bars throughout longer parts of the musical 
form. Groove is a seemingly unique and ubiquitous trait 
of humans, which emphasizes the link between percep-
tion and action formulated in active inference129. In this 
regard, the brain’s constant evaluation of prediction error 
arising from syncopations — defined as the appearance of 
a beat on a metrically weak accent preceding a rest on a 
metrically strong accent130 — has been proposed as one 
of the underlying mechanisms of groove131 and as one of 
the reasons why we move to music.

The influence of syncopations on the experience 
of groove has been described by the predictive cod-
ing of rhythmic incongruity (PCRI) model16, a formal 
operationalization of the PCM model for rhythm only. 
According to the PCRI model, brain and behavioural 
responses to rhythm are modelled in terms of the 
precision-weighted prediction error; that is, the prod-
uct of the metrical predictability (precision) and the 
stimulus deviations from the metre (Fig. 4). Importantly, 
this model explains the observed inverted U-shaped 
relationship between the degree of syncopation in and 
the experience of groove132,133, where rhythm excerpts 
with medium levels of syncopations are rated as more 
pleasurable — and movement inducing — than low and 
high levels of syncopations.

According to the PCRI model, these medium-level 
syncopated rhythms optimize what the system treats 

Frequency tagging
A method of analysing 
steady-state evoked potentials 
arising from stimulation  
or aspects of stimulation 
repeated at a fixed rate.  
An example of frequency 
tagging analysis is shown  
in Fig. 1c.

Syncopations
A shift of rhythmic emphasis 
from metrically strong accents 
to weak accents, a characteristic 
of multiple musical genres, such 
as funk, jazz and hip hop.
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as precision-weighted prediction error, in that both the 
prediction error and the precision of the prediction are 
at intermediate levels in the processing hierarchy. In 
intermediate-level syncopated rhythms, the brain may, 
according to active inference, resolve prediction error 
either by revising predictions or through action — for 
example, by moving the body. Actively resolving predic-
tion errors may explain our drive to reinforce the metre 
— by moving in time with the beat — while attenuating 
the precision of proprioceptive and auditory prediction 
errors. By contrast, rhythms with lower levels of synco-
pation evince little prediction error and less incentive to 
move. Conversely, for the highest levels of syncopations 
our mental model of the metre is less precise than the 
sensory evidence, precluding sensory attenuation and 
movement.

The inverted U-shaped relationship between syn-
copation and groove experience has been replicated 
independently of culture and rhythmic proficiency128 
and using physiological measurements such as pupil-
lometry134. It has been tested for rhythm and groove in 
a within-culture and between-culture approach128,132,135 
and is influenced by musical expertise135.

Optimal levels of the pleasurable sensation of want-
ing to move have been linked recently to neural activity 
in the brain’s motor and pleasure networks136 (Fig. 4), 
and can thus be seen as a result of precision-weighted 
prediction error arising from a discrepancy between the 
syncopation in the auditory input and the motor system’s 
propensity towards isochronism16,102. Importantly, opti-
mal groove experience has been linked to activity in the 
NAcc and the orbitofrontal cortex, which are key regions 
of the reward network that are particularly sensitive to 
the predictability of the consequences of action136.

It is important to note that the relationship between 
the rhythmic sensory input and the schematic expec-
tations of the metre is only one of several interacting 
predictive processes occurring contemporaneously. 
When rhythm section patterns are repeated over and 
over again, the brain forms short-term rhythmic expec-
tations that — after repeated listening — may turn into 
veridical expectations about the time course of a spe-
cific piece of music55,137,138. It is equally important to 
note that the repeated patterns in many non-Western 
grooves, such as the Afro-Cuban tumbao, still support 
a stable metre sensation in experienced listeners, even 
though they contain few onsets on the most salient 
metrical positions139. There is therefore an ongoing 
debate as to what extent the metre — which arguably is 
a construct based on a Western musical tradition, where 
there is a strong correlation between note frequency 
and metrical accentuation — can be considered the 
most important predictive reference structure in other 
styles of music140.

In summary, the PCM model proposes that the pleas-
urable wanting to move is mediated by prediction-based 
brain mechanisms that optimize the syncopation-related 
precision-weighted prediction error, thereby engag-
ing the brain’s motor and reward systems. The right 
level of syncopation offers the opportunity to actively 
resolve uncertainty by moving — which can lead to the 
experience of ‘pleasure’.

Emotion and pleasure
A defining feature of music, closely related to theo-
ries of its evolutionary origin141, is its ability to evoke 
a range of feelings and emotions, which may be sim-
ilar to everyday emotions, such as happiness, sadness, 
surprise and nostalgia, or may provide music-specific 
experiences, such as the sensation of groove described 
earlier herein. Even though music is clearly able to give 
rise to everyday emotions142,143, and adults listen to music 
partly to regulate their affective state144, it is not possi-
ble to equate valence and liking. A negatively valenced 
emotion such as sadness is the eighth most commonly 
reported emotion induced by music145,146. Furthermore, 
there is a dissociation of valence and pleasure ratings82 
as well as a dissociation of the brain networks under-
lying the experienced valence and pleasure in sad and 
happy music. Liked music elicits more activity in the 
corticothalamostriatal reward circuits than disliked 
music, regardless of whether the music is sad or happy147. 
Because of this apparent paradox, musical sadness is the 
subject of several recent studies148,149, and multiple theo-
ries try to explain its existence, often pointing to societal 
and individual benefits82. As an example, the catharsis 
process by which sad music is seen to provide relief for 
negative emotions that we all experience in a safe con-
text is thought to promote social cohesion instead of, for 
instance, aggression.

The different ways in which the human brain 
might conduct the translational process from music 
to emotion can be explained by several psychological 
mechanisms150, which typically fall into three categories: 
hardwired responses, evoking universal survival-related 
responses such as when brainstem responses to loud 
sounds trigger fear responses; extramusical associa-
tions, in which music links to some extramusical space 
that carries the particular emotion, such as evaluative 
conditioning, emotional contagion, visual imagery and 
episodic memory; and anticipation, when musical struc-
ture establishes, fulfils or disappoints expectations that 
are set up within the music itself. Whereas hardwired 
responses and extramusical mechanisms in principle 
can be elicited by sounds alone, anticipation depends 
on the organization of sounds into a meaningful suc-
cession of events — a defining characteristic of music 
that is closely connected to predictive coding. Since the 
publication of a seminal book by Meyer8, it has become 
increasingly clear that music anticipation may induce 
various complex emotional responses such as awe, sur-
prise and discomfort and evoke laughter, foot tapping, 
humming, tears and a lump in the throat10. It can give 
rise to psychogenic responses such as ‘shivers down the 
spine’, increased heart rate and increased perspiration151.

Functional neuroimaging studies of music and emo-
tion show that music perception engages emotion-related 
brain networks and that music can modulate activity in 
limbic and paralimbic brain structures such as the amyg-
dala, NAcc, hypothalamus, hippocampus, insula, cin-
gulate cortex and orbitofrontal cortex4. An outstanding 
question is to what extent the emotion-related networks 
involved in processing of music are mediated by univer-
sal, cultural or individual factors: that is, which aspects 
of music perception are developed only after exposure 
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to a specific musical culture? One pioneering study86 
comparing Western listeners with participants from the 
African Mafa people pointed towards the above chance 
level recognition of basic emotions — such as happy, sad 
and scared or fearful emotions — when they were lis-
tening to the other culture’s music. Importantly, though, 
Mafa individuals, who have been culturally isolated from 
Western music, showed much lower emotion recogni-
tion performance with regard to Western music than 
Western listeners. Furthermore, in a recent large-scale 
Internet study, US and Chinese listeners identified 13 
distinct types of subjective experience associated with 
music from both cultures152. It is, however, unclear 
to what extent music emotions can be universally 
recognized153, or how much they are a result of statistical 
learning caused by increasingly globalized music listen-
ing behaviours154. Speaking to the latter, recent mod-
elling approaches highlight the importance of aligned 
musical priors to the cross-cultural experience of music 
emotion155,156. Predictive coding has therefore become a 
hot topic in the study of music-related emotions.

A particularly interesting example of predictive pro-
cessing of music is the link between musical anticipation 
and pleasure, similar to the well-established difference 
between wanting and liking157. Music pleasure was orig-
inally proposed to be linked to positive reward predic-
tion errors, which arise when what is heard proves to be 
better than expected. This was first studied through the 
experience of musical chills that were correlated to activ-
ity in the reward system158. Recently, these intense expe-
riences have been shown to lead to dopamine release in 
the striatal system159,160 with distinct roles for the caudate 
(anticipation) and the NAcc (reward experience)161 and 
related to the degree of emotional arousal162. The criti-
cal role of the interaction between the auditory cortex 
and the subcortical reward network for the enjoyment 
of music is further supported by studies on the very 
few people for whom music holds no reward value — 
despite normal perceptual ability and normal auditory 
and musical perceptual abilities as well as reward-related 
responses in other domains163. These individuals show 
reduced NAcc responses and decreased functional 
connectivity between the right auditory cortex and the 
ventral striatum — including the NAcc — compared 
with their responses on a monetary gambling task and 
compared with other participants with normal or greater 
than average pleasure responses to music164.

On the basis of active inference formulations of pre-
dictive coding models, Gebauer et al.165 hypothesized that 
both confirmation and violations of musical expectations 
are associated with the hedonic response to music via 
recruitment of the mesolimbic system and its connections 
with the auditory cortex. This was recently supported by 
a demonstration of associations between music-induced 
pleasantness and musical surprises in the activity of and 
connectivity patterns involving the Nacc — a central com-
ponent of the mesolimbic system166. Furthermore, that  
study found surprise-related activation in the NAcc 
that was more pronounced among individuals who 
experienced greater music-induced pleasantness.

A significant contribution to the understand-
ing of the predictive coding mechanisms of musical 

pleasure was the aforementioned study by Cheung and 
colleagues29, who combined computational modelling 
of expectation in naturalistic chord sequences in songs 
from the Billboard Hot 100 with fMRI. They found opti-
mal pleasure to be associated with surprising chords in 
predictable sequences (high precision, high surprise) 
and predictable chords in unpredictable sequences (low 
precision, low surprise) and that this interaction corre-
sponded to activity in the amygdala and hippocampus, 
whereas activity in the NAcc reflected only precision. 
This is consistent with the optimal zones of predictability 
and uncertainty in musical pleasure that are found in 
modelling studies167.

Closely related to the subject of musical pleasure is 
musical taste. Why do people with very similar cultural 
exposures to music often differ greatly in musical prefer-
ences? This is a complex question that includes psycho-
logical answers168, such as the well-known mere exposure 
effect showing increased liking with repeated listening 
to musical pieces169. Other important determinants of 
musical taste include contextual factors such as impor-
tant sociological reasons, where music can be seen as a 
means to express group affiliation170,171. In addition, as  
illustrated by the studies on music anhedonia, individ-
ual factors play an important role in music perception 
and thereby musical taste. Personality, as rated, for 
example, by the ‘Big Five’ or the Zuckermann sensation 
seeking score, has therefore consistently been related to 
differences in musical taste172,173. As musical pleasure 
depends on whether culturally learned musical expec-
tancies are fulfilled or violated174, listeners often exhibit 
biases favouring music of their native culture, making 
yet another case for predictive coding as an underlying 
mechanism of musical taste168.

In summary, predictive mechanisms in music and 
the brain are key to understanding complex questions 
related to music-related emotion. A full description 
of the precision-weighted prediction errors involved 
in music-related emotions still eludes us, but the 
contribution of predictive coding is becoming clearer.

Learning
One of the best-studied individual factors influencing 
music perception is musical learning, which is integral 
to the PCM model. Playing music is a highly specialized 
skill that places immense demands on the underlying 
neural resources. Accordingly, several cross-sectional 
studies of music perception and performance have indi-
cated training-related changes in networks for auditory 
processing, motor representations, emotion, visual per-
ception and mental imagery1. Thus, the study of how 
musicians’ brains evolve through daily training is an 
effective way of gaining insight into the brain’s remark-
able potential for change during development and 
training175. The differences in cognitive skills relevant to 
music perception between musicians and non-musicians 
correspond to differences in both brain structure and 
brain function between these groups. Classic studies 
have shown that musicians exhibit morphological differ-
ences in the fibre bundle in the corpus callosum176,177, as 
well as increases in cerebellar volume178 and grey matter 
volume increases in primary motor and somatosensory 
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areas in the left precentral gyrus, premotor areas and 
left cerebellum179,180, in areas involved in temporal struc-
turing of language and music181,182 and in areas involved 
in auditory perception183. Studies have also revealed 
specific effects of musical training on white matter 
development184,185. Other studies have found functional 
differences between musicians and non-musicians in 
auditory and motor areas1,186 that are dependent on the 
musical instrument187,188, practice habits189, the level of 
expertise190 or the style of music being played191,192.

These functional and structural differences, which 
are associated with differential music training, have 
been taken as evidence for long-term influence on the 
brain due to active inference and learning. It is, however, 
not possible to draw conclusions about causality from 
cross-sectional approaches. Recently, there has been a 
growing amount of causal evidence from longitudinal 
approaches highlighting the influence of long-term 
and short-term training on brain anatomy and func-
tion and in particular the development of auditory and 
motor processing, and auditory–motor coupling. In a 
pioneering study, using direct current EEG analyses, 
Bangert and Altenmüller193 showed auditory–motor 
coupling changes in the cortex of beginners after as little 
as 20 min of piano training. The enhanced coupling of 
brain resources for perception and action was recently 
related to increased functional connectivity within the 
sensorimotor network and increased functional and 
structural connectivity of the auditory–motor network 
after 24 weeks of musical training194. In addition, a 
recent study showed increased activity in frontoparietal 
and cerebellar areas related to storage of newly learned 
auditory–motor associations following 6 weeks of piano 
training when participants were merely listening to 
the melodies195.

Viewed in the light of the PCM model, the afore-
mentioned studies indicate that auditory–motor learn-
ing leads to increased recruitment and adaptation of 
higher-order action-related resources (top-down) related 
to mere listening to music (bottom-up). Targeting the 
development of auditory predictive coding longitudi-
nally in children, Putkinen and colleagues followed pre-
school children over several years, obtaining measures 
at ages 2–3 years, 4–5 years and 6–7 years from individ-
uals who attended a musical play school throughout the 
follow-up period and children with shorter attendance 
at the same play school196. Their results showed that the 
musical group activities enhanced the development of 
the MMN to timbre, melody, mistuning and rhythm. 
This was taken as evidence for a facilitation of predictive 
coding of neural sound discrimination of musical train-
ing during early childhood. In later childhood between 
the ages of 7 and 13 years old197, the MMNs related to 
deviants in harmony increased more in the music group 
than in the control group despite lack of evidence for pre-
training neural differences between the groups in sound 
discrimination. These results are consistent with earlier 
findings from cross-sectional studies of training-related 
enhanced precision in melody, harmony and rhythm 
perception in children (for example, see reF.198).

Several cross-sectional and longitudinal neuro-
scientific studies point to a putative transfer effect of 

musical training to cognitive abilities and brain process-
ing related to reading and language skills199–202, cognitive 
inhibition tasks176 and music training as a possible sup-
plementary tool for helping children with developmen-
tal disorders203 such as dyslexia204,205. While the causal 
relationship between musical training and music-related 
brain processing seems well established, it is still contro-
versial to claim that music training has a positive effect 
on other cognitive abilities206,207.

In summary, cross-sectional and longitudinal studies 
of musicians and musical learning elucidate how predic-
tive mechanisms for music are shaped by learning208–210. 
It appears that the heightened demands on auditory–
motor coupling in music performance shapes brain 
structure and the ability to form music-related predic-
tions with high precision. The studies discussed above 
shed light on how the complex relationship between 
factors such as musical training, culture, listening his-
tory, music-stylistic preferences, context, personality 
and genotype significantly influences the precision and 
ensuing amplitude of the explainable prediction error, as 
well as how the brain infers a predictive model from the 
musical context (Fig. 2). These factors are also crucial for 
how we understand the music of others. In the following 
section, we propose how music and the PCM model can 
be extended to encompass the role of communication 
in dyadic interactions and hierarchical organization in  
groups.

Musical communication
Even though most of the literature reviewed in this 
Review treats music perception in the individual brain, 
music is fundamentally a social phenomenon, in that 
we often make, listen and dance to music together. This 
makes it a fine-tuned instance of coordinated human 
interaction that involves interpersonal synchronization, 
social entrainment, learning, improvisation and commu-
nication (see Box 2 for an example of this in other ani-
mals). Recently, the development of research methods 
such as dual EEG has prompted a line of neuroscientific 
and behavioural research into musical interaction211,212. 
It shows how competence, social context and mind 
set, such as empathy perspective taking, may promote 
interpersonal coordination213 (Fig. 5).

Musical interactions rely heavily on prediction. 
While playing, we continuously make predictions about 
the sensory consequences of our own actions that we 
generally use to attenuate predicted sensations and 
amplify those caused by others214. This selective attention 
and attenuation is found throughout the animal king-
dom (Box 2), but the more advanced ability for shared 
predictive processing — needed for the full experience 
of music — has so far been found only in humans215. 
Joint action may thus be best understood within a pre-
dictive coding framework216,217, where the emphasis is on 
establishing a shared narrative and mutual predictability. 
Recent studies have leveraged this perspective looking at 
musical interactions when two individuals tap together.

These paradigms involve a dyad of two individu-
als who are finger-tapping together under different 
conditions120. Participants are typically placed in sep-
arate rooms with headphones and EEG equipment. 
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Some studies are focused on sensorimotor synchroni-
zation, where the participants are told to synchronize 
finger tapping to each other218, while some studies focus 
on isochronous self-paced tapping219, and yet others 
study synchronization with a computer-generated 
metronome220,221 or with piano recordings of self and 
other222,223. In studies where the participants are told 
to synchronize finger tapping to each other, the tap-
ping analyses reveal that dyads contain leaders and/or 

followers who differ in terms of the degree to which 
they adapt to or rely on the actions of their partner. 
The correlation between the participants’ tap sequences 
demonstrates that the interaction is guided by mutual 
efforts to reduce prediction error at the millisecond level. 
This may result in at least three different relationships 
between participants: leader–follower relations wherein 
the leader is non-adaptive, which forces the follower to 
adapt to maintain synchronization224; mutual adaptation, 

Box 2 | Hermeneutics, communication and music

Musical communication is a special case of fundamental communication 
between conspecifics, ranging from identifying a conspecific264 through  
to sharing conceptual narratives217,265. Predictive processing here takes a 
central role in the following sense: if I assume that you are like me, and you 
assume I am like you, then there is an implicit mutual predictability for free. 
In music, this corresponds to sharing tonality or metre; technically, this 
mutual predictability can be formalized as predictive coding — or more 
generally Bayesian belief updating based on shared (exchanged) sensory 
signals. If we share the same generative model, our neuronal dynamics can 
harmonize and evince a form of generalized synchrony266. From a cognitive 
perspective, this means we are ‘singing from the same hymn sheet’. This 
enables an elemental theory of mind, enabling me to infer what you are 
‘singing’. An example of communication using birdsong is shown in the 
figure217. It shows a simulation of neuronal hermeneutics; namely, what 
does this song mean to a bird? Here, two birds with the same generative 
models — but different initial conditions — sing for 2 s and then listen  
for a response. The shaded areas indicate which bird is currently singing: 
red for the first bird and blue for the second bird. When singing, sensory 
prediction errors are attenuated so that predictions are realized through 
action. Conversely, when listening, sensory prediction errors are attended 
by assigning them high precision. The upper panels show the sonogram 
heard by the first bird (red lines in the lower panels; note that the 
timescales differ between the upper and the middle/lower graphs). 

In the left panel, the birds cannot hear each other, while in the right panel 
they can. The posterior expectations for the first (red) bird are shown in  
red as a function of time — and the equivalent expectations for the second 
(blue) bird are shown in blue. In the left panel, because this bird can hear 
only itself, the sonogram reflects descending proprioceptive predictions 
based on expectations in the higher vocal venter (HVC; a premotor region, 
middle panel) and area X (a higher-order area, lower panel), which projects 
to the auditory thalamus. The blue and red lines reporting expectations 
about underlying causes (that is, fluctuations in amplitude and frequency) 
generating the birdsong are shown for the HVC and area X in the middle 
and lower panels, respectively. Note that when the birds are listening,  
their expectations at the first level fall to zero, because they do not hear 
anything. However, the slower dynamics in area X can generate the song 
again after the end of each listening period. In the right panel, the two birds 
can hear each other. In this instance, the expectations show synchrony at 
both the sensory and the extrasensory hierarchical levels. Note that the 
sonogram is continuous over successive 2-s epochs — generated alternately 
by the first bird and the second bird. The key role of precision emerges again; 
here, in selectively attending to sensory streams — generated by the birds 
— in a coordinated way that enables turn taking and communication267,268. 
This predictive coding framework provides a powerful model for describing 
musical communication (Fig. 4). Figure adapted, with permission, from 
reF.217, Elsevier.
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in which both participants constantly adapt their taps 
to their partner’s last tap218; and leader–leader rela-
tions, which may occur if tappers are highly rhythmi-
cally skilled musicians and both follow their own pulse 
without taking the auditory input from their tapping 
partner into account225. Importantly, participants adapt 

differently to each other depending on their underlying 
internal predictive model. When musicians tap together 
with different underlying musical metres (for example, 
4/4 and 3/4), they initially synchronize their tapping 
more poorly than when they hold identical musical 
metres in their minds225. This shows that interpersonal 
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Fig. 5 | Musical interaction. The figure presents a model of musical communication inspired by predictive coding showing 
the continuous and reciprocal process of harmonizing expectations. a | Two improvisers (denoted by the red brain and the 
blue brain) may initially have different schematic expectations; that is, they could experience different metres (a 3/4 and 
4/4 metre) and tonalities (C major and A minor) while playing together. b | Over the course of the interaction, these models 
may become harmonized into a shared experience of a 4/4 metre and C major through reciprocal predictive coding 
mechanisms254. c | How a simulated interaction between two improvisers may evolve over time with three different types 
of simultaneously occurring and interacting musical expectations: schematic, veridical and dynamic expectations. Initially 
(marked with yellow, corresponding to part a), the schematic expectations (based on experience of metre and tonality)  
are quite different as illustrated in the music examples. After a while (marked with green, corresponding to part b), when  
a shared predictive metre and tonality model has been established, the schematic expectations of the two improvisers 
converge. The middle and bottom plots illustrate that veridical expectations (of familiar musical material) and dynamic 
(short-term) expectations will be more but not fully harmonized after the shared schematic expectations are established. 
d | A data-based example of synchronization of dynamic metrical expectations, when two individuals from the same 
musical background tap a simple rhythm together. The connectivity-based electroencephalography data (computed  
from recurrent phase-locking patterns227) highlight how the information flows differently (as indicated by the arrows) in  
a non-adaptive musician versus an adaptive musician within a right-lateralized temporoparietal brain network with key 
nodes in the right somatosensory cortex, right precuneus, right supramarginal gyrus and right middle temporal cortex. 
Negative values indicating receiving areas are in blue and positive values indicating transmitting areas are in red. Part d  
is adapted, with permission, from reF.227, OUP.
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synchronization is dependent on the tappers’ individual 
predictive coding (Fig. 5).

Differences in dyad tapping behaviour — for example, 
exhibiting a leader–follower, mutual adaptation or leader–
leader tapping pattern — can be modelled using a coupled 
oscillator model, which contains one internal and one 
external Kuramoto oscillator per person, consistent with 
how the PCM model describes bottom-up and top-down 
influences on neural processing226. EEG data furthermore 
showed that dyad members exhibiting mutual adaptation 
behaviour evinced intrabrain neural synchronization in 
an action–perception-related brain network to a higher 
degree than leader–leader dyads227 (Fig. 5).

In summary, the dyadic tapping studies illuminate 
how musical interaction is guided by mutual reduction 
of prediction errors, in effect rendering them mutually 
predictable. They may serve as a model for how com-
petence, social context and dyadic interactions depend 
on predictive brain processing in general and serve as 
an example of how the PCM model may be extended 
to communication of musical meaning between indi-
viduals. This neuroscience research opens a window to 
perhaps the most challenging question about music: how 
music becomes meaningful228,229. Accordingly, we specu-
late that one of the things that makes music meaningful 
from a neuroscientific perspective is when musical inter-
action — in the form of listening to or making music 
together — over time shapes each of the participating 
individuals’ attentional selection, engendering shared 
predictions of precision — and the synchronization of 
joint attention. This gives rise to shared musical expec-
tancies, which undergirds music perception, action, 
emotion and learning.

Collective musical improvisation is a particularly 
demanding example of musical communication, in 
which musicians’ predictive models need to be aligned to 
a large degree. This is found in many styles of music; for 
example, in jazz, in which improvisation is the central, 
defining element, and where one of the most important 
purposes of compositions is to serve as a framework for 
soloists to improvise on. In general, musical improvi-
sation is seen by many researchers as a prime example 
of human creativity involving moment-to-moment 
interaction between perception and action230–233. The 
studies on jazz improvisation have consistently impli-
cated several brain regions related to movements, motor 
sequence generation, attention and executive control, 
voluntary selection, sensorimotor integration, multi-
modal sensation, emotional processing and interper-
sonal communication234–236. These include prefrontal 
brain regions, such as the presupplementary area, medial 
prefrontal cortex, inferior frontal gyrus, dorsolateral pre-
frontal cortex, dorsal premotor cortex and auditory 
cortices237,238. This is not surprising since improvisation 
involves several processes simultaneously. A jazz musi-
cian has to play, listen to what the other musicians are 
playing and evaluate how the music sounds as a whole 
while choosing which direction to take and generate new 
phrases to play next239. Therefore, the neuronal processes 
underlying musical improvisation must necessarily be 
predictive in nature and allow dynamic shifts between 
different networks and brain states240.

Recent cutting-edge neuroimaging connectiv-
ity measures — built on whole-brain computational 
modelling241 — have made it possible to understand 
the changing predictive brain states that underlie com-
municative creativity in real time. The few studies of 
musical improvisation from a whole-brain connectiv-
ity perspective point to a large repertoire of brain states 
involving functional brain connectivity among frontal 
and parietal regions within default, salience and execu-
tive brain networks230,237,242,243. Interestingly, this is similar 
to networks found in more general creativity tasks such 
as when participants perform the classic divergent think-
ing tasks — pointing towards musical improvisation as a 
model for understanding human creativity244,245. This is 
usually understood as carefully creating a sensorium in 
which the opportunity to resolve (that is, explain away) 
prediction error is itself predictable — much like know-
ing the punchline of a joke resolves uncertainty in an 
entirely predictable fashion.

Even though musical improvisation involves pre-
dictive brain processes246, there is an apparent paradox: 
although the primary purpose of the brain is to mini-
mize prediction error, the primary purpose of improv-
isation is to create something new but aesthetically 
and emotionally appealing, which will then necessarily 
create prediction error. The improviser’s difficult task 
is therefore to balance novelty and predictability in a 
way that generates pleasure responses in listeners7 or 
stimulates their cognitive curiosity, in the same way 
that the dance music producer tries to hit the sweet 
spot of groove.

Because of the array of skills that are necessary to 
improvise at a high level, jazz musicians have been shown 
to outperform other types of musicians in domain- 
specific tasks such as ear training task performance 
and in quantitative brain measurements with regard to 
melodic expectancy violation12. This is coupled with 
findings from resting-state fMRI that show that impro-
vising musicians exhibit more distributed, globally 
connected cortical networks than classical musicians, 
who instead show higher within-network connectiv-
ity than the former247, and morphometric findings of 
structural differences between these different groups 
of musicians248,249. In a recent study, the amplitudes of 
event-related potentials in response to chords that varied 
in expectancy were significantly correlated with behavi-
oural measures of fluency and originality on a diver-
gent thinking task, indicating a putative transfer effect 
of music skills to more domain-general processes250. It 
remains an open question whether increased creative 
skills in general can be gained through musical improvi-
sation training, and how this training may alter predictive 
mechanisms in the brain.

Conclusions and future avenues
The past 20 years of research into music in the brain 
has created a foundational understanding of how  
the brain processes music through predictive coding. The  
coming years could be dedicated to understanding 
the way music shapes social interactions and the role 
of predictive coding in creating shared meaning and 
perhaps even states of eudaimonia through music.  

Eudaimonia
in Aristotelian ethics, refers  
to a life well lived or human 
flourishing, and in affective 
neuroscience, it is often  
used to describe meaningful 
pleasure.
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As part of this journey, there are many unresolved ques-
tions. In this vein, we note recent development towards 
cross-modal paradigms and the need for cross-cultural 
brain experiments to supplement our current knowl-
edge of music and the brain, which is almost exclusively 
based on studies of Western music and participants. 
Another interesting — but so far unanswered —  
question is whether it is possible to self-generate an 
MMN during mental imagery of music. Would it be pos-
sible to have a pleasurable groove experience by imag-
ining a funky rhythm without moving? As there would 
be no sensory information with which to compare the 
internal metre model, the PCM model would hypothe-
size that it would be difficult to generate precise predic-
tion errors at least for lower-level predictions, but this is 
an empirical question that could be tested. Furthermore, 
only a few studies have considered the influence of the 
different predictive frameworks in which musical events 
are embedded. It remains for future studies to clarify 
the interaction between melody, harmony and rhythm 
— for example, the influence of shifting tonalities or 
metrical displacement of a given melody — as well as 
the interaction between lyrics and melody. Whereas this 
Review has focused mainly on predictive coding related 
to expectations in melody, rhythm and harmony, there 
are presumably also predictive mechanisms at work 
associated with voice leading, instrumentation, timbre, 
soundscapes or musical events such as when there is the 
so-called drop in electronic dance music. These may be 
related to more abstract auditory prediction processes 
in the brain.

The PCM model offers a compelling but not exclu-
sive framework for these endeavours. An alternative to 
the PCM model’s probabilistic approach — of model-
ling hidden reference structures — is an oscillator-based 
approach simulating perception of metre and tonal-
ity in terms of the resonance of coupled nonlinear 
oscillators97,102,251,252. The oscillator approach gives greater 
weight to stimulus properties than to the top-down 
effects of learned musical experience. As a result, it will 
have difficulties in accounting for the range of musi-
cal phenomena that can be accounted for by the PCM 
model or other prediction-based approaches, such as the 
action simulation for auditory prediction hypothesis, 
which proposes that the motor system contributes to the 
accuracy of auditory predictions by providing a periodic 
temporal framework through these connections215,253. 
However, the two accounts could usefully be com-
bined given their different levels of processing, with 
the oscillator-based approach providing the basis for 
internal or generative models the brain uses to elaborate 
probabilistic predictions (see Box 2 for an example).

Overall, we hope that the PCM model will continue 
to shed light on the neural mechanisms underlying 
music perception, action, emotion and learning and 
that it will be useful in understanding prediction as a 
fundamental principle behind brain function. These 
insights may offer a new pathway to understanding how 
music becomes meaningful to the individual as well as 
in musical interactions between people.
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