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The communication through coherence
(CTC) hypothesis can be extended to
the whole-brain level with neuroimaging
techniques such as functional magnetic
resonance imaging (fMRI) and magne-
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The CTC hypothesis requires maximal
metastability of the underlying dynami-
cal system, which can be studied using
neuroimaging of resting state networks.
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Metastability and Coherence:
Extending the Communication
through Coherence
Hypothesis Using A
Whole-Brain Computational
Perspective
Gustavo Deco1,* and Morten L. Kringelbach2,3,*

Understanding the mechanisms for communication in the brain remains one of
the most challenging scientific questions. The communication through coher-
ence (CTC) hypothesis was originally proposed 10 years ago, stating that two
groups of neurons communicate most effectively when their excitability fluc-
tuations are coordinated in time (i.e., coherent), and this control by cortical
coherence is a fundamental brain mechanism for large-scale, distant commu-
nication. In light of new evidence from whole-brain computational modelling of
multimodal neuroimaging data, we link CTC to the concept of metastability,
which refers to a rich exploration of the functional repertoire made possible by
the underlying structural whole-brain connectivity.

A Fundamental Principle of Communication through Coherence
A hallmark characteristic of neuronal activity is rhythmic oscillation in several distinct frequency
bands ranging from ultraslow to ultrafast, from approximately 0.05 to 500 Hz, as shown by local
single cell spiking activity, local field potentials, electroencephalography (EEG), magnetoen-
cephalography (MEG) (see Glossary), and, for the very low frequencies, functional magnetic
resonance imaging (fMRI). Interactions among neuronal groups depending on neuronal (zero or
non-zero phase) synchronisation could modulate the communication and information process-
ing between those groups of neurons. Two groups of neurons may communicate – or exchange
information – most effectively when their excitability fluctuations are coordinated in time, that is,
when they are coherent. This has been stated as the communication through coherence (CTC)
hypothesis, which posits that cortical coherence is a mechanism that can influence the
transmission of information between neuronal populations [1–3], specifically through gamma-
and beta-band (30–90 Hz) synchronisation. Central to this hypothesis is the idea that synchro-
nisation between neuronal groups can have causal consequences for neuronal communication.
Thus, oscillations are proposed to dynamically shape the computational role of different neuronal
groups linked through static structural connectivity.

More specifically, the CTC principle is an example of an important, well-documentedmechanism
for the state-dependent coupling fundamental for implementing flexible means of effective
communication between different brain regions without changing the fixed underlying
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Glossary
Attractor: a set to which a
dynamical system evolves after a
long enough time. Points that get
close to the attractor remain close,
even under small perturbations.
Bifurcation: an abrupt qualitative
change in the system's dynamics
when one or more parameter pass
through critical values, for instance,
the loss of stability and appearance
of sustained oscillations.
Criticality: at the brink of a
bifurcation, the system displays
certain characteristic dynamical
features, of which most are related to
enhanced fluctuations.
Connectome: the complete
description of the structural
connections between elements of a
nervous system.
Diffusion tensor imaging (DTI): an
MRI technique that takes advantage
of the restricted diffusion of water
through myelinated nerve fibres in the
brain to infer the anatomical
connectivity between brain regions.
Dynamical systems: an area of
applied mathematics that describes the
behaviour of complex (possibly chaotic)
dynamical systems as described by
differential or difference equations.
Edges: in a brain graph, an edge
between nodes (regions or neurons)
indicates that the nodes are
anatomically or functionally
connected.
Functional connectivity (FC):
statistical association – for example,
significant correlations – between
neurophysiological measurements
recorded from anatomically distinct
neurons or regions at several time
points.
Graph theory: a branch of
mathematics that deals with the
formal description and analysis of
graphs. A graph is defined simply as
a set of nodes (vertices) linked by
connections (edges), and may be
directed or undirected. When
describing a real-world system, a
graph provides an abstract
representation of the system's
elements and their interactions.
Hopf bifurcation: in non-linear
dynamics, a Hopf bifurcation is a
local bifurcation in which an initially
stable fixed point of a dynamical
system loses its stability in an
oscillatory manner.
Kuramoto order parameter: a
measure of the level of synchrony
between oscillators in a network.
anatomical structure. Indeed, the CTC hypothesis posits that neuronal interactions depend on
phase relations between neuronal oscillations. Phase relations that time inputs to reach their
target at high excitability allow an effective transmission of spikes. Consistent phase relations
require the synchronisation between neuronal groups. Synchronisation does not necessarily
have to occur at zero phase difference, and the optimal phase relation depends on the frequency
of the involved rhythms and the conduction delays between the neuronal groups. In the absence
of synchronisation, that is, in the absence of a consistent phase relation (zero or non-zero),
transmission will be relatively ineffective. As a consequence, the state of synchronisation
between different groups of neurons in different brain areas allows a flexible switch for different
routes of effective communication, while maintaining the same underlying skeleton of synaptic/
anatomical structural connections. Mathematical modelling has demonstrated that simply
coupling oscillatory systems with a range of structural connectivity patterns will in most cases
merely result in trivial fully asynchronous or synchronous states [4], both of which are inconsis-
tent with the CTC hypothesis. For CTCmechanisms to support communication, synchronisation
needs to be spatially structured and temporally dynamic to link local neuronal groups into
functional networks at the appropriate moments.

Here, we link the CTC hypothesis with recent progress in computational modelling of whole-
brain neuroimaging data, specifically: (i) we propose that the underlying microscopic
CTC-mediated interactions are reflected at the macroscopic whole-brain level of slow oscil-
lations, as evidenced by fMRI, which serves to study the way in which the flexible effective
connectivity repertoire of patterns is implemented within fixed whole-brain anatomical structural
connectivity; (ii) we show that a way to implement the CTC hypothesis, that is, optimal exploration
of the dynamical repertoire inherent in the brain's structural connectivity, is by maximisation of the
metastability. Here, we refer tometastability as a measure of the variability of the states of phase
configurations as a function of time, that is, how the synchronisation between the different nodes
fluctuates across time. Thus, we measure the metastability as the standard deviation of the
Kuramoto order parameter across time. Importantly, both of these extensions can be studied
with whole-brain neuroimaging techniques such as fMRI and MEG of the resting state.

To showcase the importance of CTC and metastability (and vice versa), we will appeal to the
important distinction among structural, functional, and effective connectivity [5]. Structural
connectivity corresponds to the synaptic (anatomical) connections that support dynamics.
These dynamics induce statistical dependencies between nodes, known as functional con-
nectivity (FC). These dependencies are distinct from effective connectivity, which refers to the
directed influence one node (or neuronal population) exerts over another. The key intuition that
we want to convey is that coherence (a measure of FC or frequency-specific dependencies)
determines effective connectivity (the directed coupling), thereby inducing a circular causality
between the two measures. This is formally not unrelated to the slaving principle in synergetics
[6,7]; in the sense that coherence can be regarded as a (macroscopic) order parameter that
enslaves (microscopic) synaptic interactions to produce state-dependent coupling. This activity
or state-dependent effective connectivity underlies metastability and is a crucial aspect of
[1_TD$DIFF]organised dynamics [10_TD$DIFF] and criticality in the brain.

While the main principles of the CTC hypothesis can be easily understood, the mechanistic
implementation of CTC for state-dependent dynamic of effective connectivity is not trivial within
the large dynamical system of the human brain. We show that CTC can exist within the
dynamical system and that it is compatible and consistent with the known detailed anatomy of
the human brain, provided that the brain is working at a dynamical point where the system
shows maximal metastability under spontaneous conditions (i.e., not during task or sensory
stimulation). Furthermore, state-of-the-art large-scale computational modelling of the whole
brain demonstrates that for the working point of the model (fitting empirical neuroimaging data
2 Trends in Neurosciences, Month Year, Vol. xx, No. yy
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Magnetoencephalography (MEG):
a method of measuring brain activity
by detecting minute perturbations in
the extracranial magnetic field that
are generated by the electrical activity
of neuronal populations.
Mean field model: the mean field
approximation consists of replacing
the temporally averaged discharge
rate of a cell with an equivalent
momentary activity of a neural
population (ensemble average) that
corresponds to the assumption of
ergodicity. According to this
approximation, each cell assembly is
characterised by means of its activity
population rate.
Metastability: in dynamical systems,
metastability refers to a state that falls
outside the natural equilibrium state
of the system but persists for an
extended period of time. Here,
metastability can be simply
measured as the standard deviation
of the Kuramoto order parameter
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(Figure 2E).
from the resting state), the system exhibits maximal metastability [8]. This finding is non-trivial
and can be seen as an optimal implementation of the main tenets of the CTC hypothesis, that is,
a system which is able to sustain a maximal number of CTC-mediated routes under rest, which
can be a posteriori selected effectively and flexibly by appropriate external stimulation. In other
words, a broad and flexible metastable exploration of the dynamical repertoire of the brain is
equivalent to the requirement that the system is able to implement a broad range of different
communication routes through phase synchronisation. Within the fixed underlying anatomical
structure of the human brain, this allows a flexible way of implementing a rich set of specific
communication patterns or effective connectivity between different combinations of regions
across the whole brain.

The Neurophysiological Basis and Origin of the CTC Hypothesis
Rhythmic synchronisation in frequency bands such as theta (4–8 Hz), beta (13–30 Hz), or
gamma (30–100 Hz) is related to alternating periods of network inhibition and excitation
[9–11]. The CTC hypothesis suggests that gamma and beta rhythmic changes in excitability
have important consequences for neuronal communication [1–3]. Specifically, the hypothesis
states that two groups of neurons exchange information most effectively when their excitability
fluctuations are coherent [12]. Conversely, if a synaptic input arrives during the inhibitory phase of
the oscillation cycle, its efficacy is likely reduced (because of shunting inhibition on the neurons
receiving the input). Thus, the efficacy of spikes in transmitting information may be influenced by
synchronisation (Figure 1A,B).

Consistent with this hypothesis, task-induced changes in synchronisation or coherence have
been reported at the level of individual regions during selective attention [13], working memory
[14], and motor control [15]. Similarly, such task-induced changes in synchronisation have been
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Figure 1. Principles by which Synchronicity and Oscillations Can Influence Neural Processing. (A) Synchronous
spikes from different sources ([5_TD$DIFF]bottom) may speed neuronal responses compared with asynchronous spikes ( [6_TD$DIFF]top). V is the
membrane potential of an integrate-and-fire neuron (IF). The time taken to reach the threshold for firing is T0 versus T. (B) The
communication through coherence (CTC) theory suggests that effective connections in a network can be shaped through
phase relations [1,2]. The neurons inside the pools A, B, and C are rhythmically synchronised as indicated by the sinusoidal
background local field potential (LFP) and the spikes (vertical red bars) around the peaks. Pools A and B are in phase and
therefore the interchange of spikes is more effective, and more information is transmitted. By contrast, pools B and C are in
anti-phase and therefore fewer spikes are produced in the receiving population, and less information is transmitted. (C)
Bosman et al. [21] main experimental result: simultaneous recordings in two different groups of neurons in V1 (V1a and V1b)
corresponding, respectively, to two different stimuli, and in a third group in V4 of behaving monkeys. The simultaneous
presence of both stimuli induced a gamma rhythm in their respective V1 neuronal group. Only the attended V1 gamma
managed to entrain the V4 gamma, whereas the ignored stimulus induced a gamma rhythm in V1, which did not entrain the
V4 gamma.
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reported between distant cortical regions during working memory [16], long-term memory
encoding [17], visual attention [18], and sensorimotor integration [19] – although note that some
other findings of transient induced gamma-band responses in EEGmay not be linked to CTC per
se but rather have arisen from miniature saccades [20]. Probably the most direct support for the
CTC hypothesis was recently found in experiments, where two different groups of neurons in the
lower visual area V1 and a third group in the higher visual area V4 of behaving macaque monkeys
exhibited selective communication [21,22]. Two stimuli, positioned next to each other at the same
eccentricity a few degrees away from the fixation point of the monkey, were presented simulta-
neously. The two stimuli activated the two separate groupsof neurons in V1,whereas the neuronal
group in V4was activated by either stimulus to approximately the same degree. The simultaneous
presence of both stimuli induced a gamma rhythm in their respective V1 neuronal group. Crucially,
only the V1 gamma induced by the stimulus, that animals were instructed to attend to, entrained
the V4 gamma. The ignored stimulus induced a gamma rhythm in V1, which did not entrain the V4
gamma. In other words, the selective entrainment of V4 gamma by the attended V1 is the likely
cause for the selective routing (communication) of the attended stimulus from V1 to V4, as
predicted by the CTC hypothesis (Figure 1C).

Linking Connectomics with CTC for Whole-Brain State-Dependent Coupling
Much evidence for the CTC hypothesis has come from in vivo neurophysiology in animals using,
for example, multi-site spike and local field potential (LFP) recordings [23]. Yet such measure-
ments are difficult to obtain in humans and limited in their spatial extent. This is not fully overcome
by the usage of extended electrode grids over large cortical areas as this does not allow for
access to all brain areas simultaneously. Thus, a major challenge is to relate the macroscopic
level of coherence/synchronisation across the whole brain with a flexible way of implementing a
change of effective connectivity of an underlying hardwired anatomical structural connectivity.
In this way, the findings from the CTC hypothesis can be reflected and thus tested
globally, complementing in this way neurophysiological methodologies focusing on the
original gamma/beta mediation of those interactions. Note that we are not claiming that the
coherence-/synchronisation-mediated correlation that we observe at the whole-brain level is a
mechanism per se, but rather reflecting the signature of an underlying gamma-/beta-band
coherence mechanism (i.e., the traditional CTC mechanism). In fact, many experimental and
whole-brain computational papers show how the slow macroscopic dynamics emerges from
the underlying gamma rhythms [4,24]. Importantly, such a whole-brain perspective would
substantially expand the reach of the CTC hypothesis to the synchronisation along brain-wide
information routes involving many different areas. Indeed, this perspective would allow for the
study of the communication routes across the whole brain in unprecedented mechanistic detail,
potentially enabling understanding the changes between different states of consciousness in
healthy people, as well as the breakdown of neural communication in disease [25].

The most recent advances in [11_TD$DIFF]constructing [12_TD$DIFF]the connectome[2_TD$DIFF] using the latest neuroimaging
techniques [diffusion tensor imaging (DTI), fMRI, and MEG] together with[13_TD$DIFF] graph theory and
large-scale whole-brain computational modelling offer a concrete experimental/theoretical frame-
work for reaching this crucial aim [26]. Neuroimaging data show that during cognition large-scale
network dynamicsexhibit complex spatiotemporal patterns. At very slow frequencies– typically less
than 0.1 Hz – correlated activity can be seen and defines robust spatial ‘networks’ – even at resting,
spontaneous, conditions [27,28]. At higher frequency, patterns of oscillatory activity can change
quickly, and patterns of oscillatory coherence can be seen in multiple frequency bands during task
execution. Asmany cognitive processes involve distributed activity across the brain, understanding
the dynamics at the whole-brain scale may provide key insights into the nature of cognition.

While neurophysiological methods in other animals have been instrumental in forming our
understanding of synchronisation thus far, evidence is now emerging that human neuroimaging
4 Trends in Neurosciences, Month Year, Vol. xx, No. yy
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techniques such as fMRI andMEG can also be used to investigate the state of synchronisation at
different timescales across the whole brain reflecting the underlying CTC-mediated routes.
Under resting state conditions, the grand average FC of a resting brain summarises the well-
structured spatial correlations between different brain areas. Furthermore, whole-brain models
explicitly linking spontaneous local neuronal dynamics with the structural connectivity of the brain
(as, e.g., mapped using probabilistic tractography of DTI data) are able to explain the emergence
of the spatial resting correlations (Box 1).

Spontaneous resting activity is not, however, structured only spatially but also exhibits com-
mon temporal structure, which is characterised by transitions, switching between a few
discrete FC states across time. Most studies have only investigated the grand average FC,
that is, across the whole available time window, which is defined as the matrix of correlations of
hemodynamic blood oxygenation level-dependent (BOLD) signals between all brain regions
over the whole time window of acquisition (Figure 2A). Yet to characterise the time-dependent
structure of the resting fluctuations requires an FC dynamics (FCD) matrix [29], which can be
constructed from smaller sliding windows of activity (Figure 2B,C) or simply based on the
phases of the signal (phase-based FCD) in the following way: (i) each full-length BOLD signal is
first band-pass filtered within the narrowband of 0.04–0.07 Hz, and the time-varying phase
wk(t) of each narrow-band signal k is computed using the Hilbert transform; (ii) the time-varying
phases of all areas,wk(t), define a brain coherence state; (iii) this is a symmetricmatrix where the
(t1, t2) entry is defined by the overlap or phase relation (i.e., cosine of the phase difference)
between the corresponding brain states wk(t1) and wk(t2). Epochs of stable brain state
configurations are reflected around the FCD diagonal in blocks of overlapping elevated
inter-wk(t). Computing the phase FCD statistics simply requires collecting the upper triangular
Box 1. Whole-Brain Models

At the global level, the brain can be described by a large-scale network of local neural networks, or nodes, linked by long-
range connections. The global dynamics of the whole-brain network is determined by the intrinsic dynamics of the nodes,
that is, the dynamics of a node in the absence of all couplings, and the network couplings, which allow communication
between the nodes of the network. The local spontaneous dynamics of a single node can bemodelled as attractors of a
network of spiking neurons coupled through AMPA, NMDA, and GABA receptor synaptic dynamics [42] and can be
captured by neural mass models. Indeed, the emergent collective macroscopic behaviour of brain models has been
shown to be only weakly dependent on the details of individual neuron behaviour [43]. There are two types of reduced
models, namely, those that have used a dynamical mean field model derived from a proper reduction of a detailed
spiking neuron model, which itself is asynchronous by definition [25,44], and those including a priori oscillatory units
[36–38]. It is possible to combine both asynchronous and oscillatory scenarios for obtaining amore realistic description of
the characteristic of the measured signals. For example, a neural mass description based on the most general form that
expresses both noisy asynchronous dynamics and oscillations, namely, a normal form of a Hopf bifurcation [34,35], has
been recently proposed [8].

The structure of the physical couplings is specified by the underlying anatomical skeleton, the so-called structural
connectivity matrix. In humans, this type of anatomical information, that is, the structural connectivity matrix, can be
estimated from DTI, where white matter fibres connecting distant neural populations can be modelled via tractography
algorithms. By contrast, the global characterisation of the whole-brain dynamics is usually described by the FC matrix,
which expresses the statistical dependence between brain regions of neurophysiological signals as recorded with
indirect measures such as fMRI and positron emission tomography (PET), or with direct measures of neuronal activity
such as MEG and EEG [45,46]. The dynamical entrainment and correlations between different local brain region
dynamics are crucially shaped by the underlying anatomical structural connectivity [37,47–51]. Thus, whole-brain
models explicitly link the underlying anatomical structural connectivity matrix, shaping the interplay between the local
dynamics of each node, with the FC matrix, characterising the global dynamics of the brain. Indeed, whole-brain models
can provide a mechanistic explanation of the origin of resting state dynamics (i.e., no stimulation, no task). Recently,
several studies have successfully done so for both resting state MRI [42,52] and resting state MEG [24]. A whole-brain
model has also been used to model important features of sleep [53]. Furthermore, whole-brain models are not only able
to describe grand-averaged spatial FC correlations but also spatiotemporal aspects of the dynamics as specified by
FCD. FCD captures the spatiotemporal organisation of FC by representing the similarities between FC(t) matrices
calculated in a certain window of time (usually 60 s) located at different times t [29].
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Figure 2. Measuring Grand Average Functional Connectivity (FC) and FC Dynamics (FCD). (A) The grand
average FC can be obtained from functional neuroimaging measures of brain activity; using, for example, echo planar
imaging (EPI) scans that sample the blood oxygen level-dependent (BOLD) signal time course (tc) in each voxel. Combining
this with a parcellation scheme, such as the automated anatomical labelling (AAL) [54], can recreate the regional time
courses for each of the regions in the parcellation. The grand average FC matrix is typically created from correlating the
regional time courses. (B) The FCD captures the spatiotemporal organization of FC by representing the similarities between
FC(t) matrices, for example, calculated in over a short sliding window of time located at different times, for example, TS1 and
TS2. (C) The FCD is thus a symmetric matrix where an entry (ts1, ts2) is defined by the Pearson correlation between FC(ts1)
and FC(ts2). Epochs of stable FC(t) configurations are thus reflected around the FCD diagonal in blocks of elevated inter-FC
(t) correlations in empirical (left) and simulated (right) data. (D) For comparing the FCD statistics, the upper triangular
elements of the matrices are collected over all participants and sessions. The simulated and empirical distributions can then
be compared by calculating the Kolmogorov–Smirnov distance between them, because this quantifies the maximal
difference between the cumulative distribution functions of the two samples. (E) The metastability can be measured as
the standard deviation (SD) of the Kuramoto order parameter across time, which provides a measure of the global level of
synchronisation of the oscillating signals.
elements of the matrices (over all participants or sessions) and generating their distributions,
which can then be compared (Figure 2D).

The output of whole-brain computational models (fitted to the empirical data) can be submitted
to the same phase-based FCD analysis. Comparing the simulated and empirical distributions
requires comparing the means of the Kolmogorov–Smirnov distance between them. The
Kolmogorov–Smirnov distance quantifies the maximal difference between the cumulative distri-
bution function, the phase-based FCD analyses characterise the richness/multiplicity of brain
states across time, which can be interpreted as the available CTC-like routes for state-depen-
dent coupling. Note that these CTC-like routes are possibly reflections, at the level of
6 Trends in Neurosciences, Month Year, Vol. xx, No. yy
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slow/macroscopic BOLD signal, that is, 0.05 Hz filtered data, of the underlying gamma-/beta-
band-mediated CTC mechanisms.

Simply positing a circular causality between functional and effective connectivity does not speak
to a specific link between metastability and CTCmechanisms. There are many mechanisms that
induce state-dependent coupling in the brain; for example, neuromodulatory and mean field
effects. For instance, it is well known that increases in mean activity levels [14_TD$DIFF]increase effective
connectivity [30]. The particular form of state-dependent coupling assumed by the original CTC
hypothesis depends upon precise phase relationships at gamma/beta frequencies. This is
interesting because coupled phase oscillator (e.g., Kuramoto) models of neuronal dynamics
can be cast explicitly in terms of the phase entrainment and effective connectivity among the
phases of an oscillation [24,31]. Technically, this dependency is encoded in something called a
phase interaction function. The maintenance of a particular communication channel through
coherence suggests a persistent phase relationship. Similarly, the number or repertoire of such
coupling dynamics corresponds to the number or variability of phase relationships. This is
important because the variability of the Kuramoto order parameter (that reflects the phase
relationships) can then be used to quantify the number of realised CTC-like channels. In the
following, we will use proxies for this variability to illustrate the implicit repertoire afforded to
the brain. Crucially, the variability of the Kuramoto order parameter (and its proxies from
dynamical FC) measure metastability [32].

Thus, computing the phase-based FCD of empirical and simulated resting data can help
characterise the CTC-mediated routes. It is also possible to extend this analysis to task-based
activity. The flexible selection of different CTC-mediated routes under different task-based
conditions requires resting activity to have access to many possible CTC-mediated routes,
that is, exhibit a broad exploration of the underlying dynamical repertoire. In this key scenario, a
‘gentle’ change triggered by external stimuli or a task can easily bias communication to different
CTC-mediated routes. In terms of dynamical systems, this scenario implies that the CTC
hypothesis would require the resting brain to exhibit maximal metastability, refining and providing
evidence in favour of the synergetics hypothesis of Haken [6] (later further explored by Tognoli
and Kelso [33]).

Whole-Brain Computational Modelling, Metastability, and CTC-Mediated
Routes
While phase-based FCD is a powerful tool for measuring the spatiotemporal unfolding of FC, a
mechanistic understanding of brain function and underlying computational mechanisms, such
as those posited by the original CTC hypothesis, can be aided by whole-brain computational
modelling. Such models are key to understanding the relationships between maximal metasta-
bility and the flexibility between different routes available to CTC and CTC-like mechanisms at
the global level of neuroimaging. A particularly powerful computational approach is [15_TD$DIFF] the use of the
normal form of a Hopf bifurcation at the level of each brain region. Research has shown the
usefulness, richness, and generality of this type of model for combining the best of oscillatory
and asynchronous models and thus describing the temporal dynamics of EEG at the local node
level [34,35].

The possible extension of the original CTC hypothesis to investigate CTC-like state-dependent
coupling has been explored using whole-brain computational modelling with the Hopf bifurca-
tion, linking the underlying brain architecture (structural connectivity) with the dynamics of
neuronal activity (Figure 3). In whole-brain computational models, network topology is derived
fromDTI, where coupling strength is typically assumed to be equal for all connections and can be
scaled with a global scaling factor [36]. The whole-brain computational model is constrained by
the structural connectivity, and fitted to empirical neuroimaging data, whether coming from fMRI
Trends in Neurosciences, Month Year, Vol. xx, No. yy 7
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Figure 3. Investigating the Optimality of Communication through Coherence (CTC) Routes Using Whole-
Brain Modelling. The figure shows the fit of a whole-brain computational Hopf model to spontaneous blood oxygen level-
dependent (BOLD) data from healthy participants as a function of the global coupling strength, that is, the global synaptic
efficacy scaling the underlying diffusion tensor imaging (DTI)-based structural connectivity matrix used in the model. (A) The
CTC routes are shown as the variability (standard deviation, STD or Std) of the phase-based functional connectivity
dynamics (FCD) of the model (blue line) as a function of coupling strength compared with the standard deviation of the FCD
for the empirical data ( [7_TD$DIFF]broken line). (B) The best fit between the model and empirical data was found by calculating the
Kolmogorov–Smirnov distance between the empirical and simulated FCD as a function of the coupling strength (red line,
minimum at around 0.45). (C) Similar findings are shown for the level of metastability as a function of the coupling strength
(blue line), where the [7_TD$DIFF]broken line is the empirical metastability of the empirical data. (D) Fitting of the grand-averaged
functional connectivity (FC). (E) Using the optimal model parameters, the available dynamical CTC routes can be found for
various underlying brain architectures, for example, the full normal brain model (structural connectivity, SC) and models with
various degrees of damage to regional connectivity. As can be seen, themean FCD and Std FCD decrease monotonically as
the SC has removed the 12 low degree regions (non-rich club, NRC), followed by SC without 12 top rich club (RC) regions
[39], which have been proposed to form a structural backbone of the human brain. Finally, the most damage to CTC routes
was found in SC without the 12 top binding club (BC) nodes [26].
[36,37] or MEG [38]. Figure 3A–D shows how the Hopf model [34,35] fits empirical BOLD resting
state data as a function of changing the global coupling strength. In particular, the best fitting of the
dynamical spatiotemporal measurements (FC, FCD, and maximal metastability) supports the
availability of CTC-like routes (the variability of FCD is shown in Figure 3A; the FCD fitting in
Figure 3B and metastability in Figure 3C). As can be seen from these figures, the richness of the
exploration of the dynamical repertoire during the resting state (i.e., themultiplicity of synchronised
brain states) is strongly constraining to a limited working region. The grand-averaged FC
(Figure 3D) also fits well, but is less sensitive to the optimum working region in terms of coupling
strength. Indeed, large regions of the coupling parameters are consistent with the empirical data.
Instead, the figure shows that the best fitting of the spatiotemporal characteristics of the empirical
resting fMRI data can be found as the minimum of the Kolmogorov–Smirnov distance between
empirical andsimulatedFCD (Figure 3B). This optimumcorresponds toaworking regionwhere the
metastability is maximal (Figure 3C), and where the temporal variability of the FCD is also maximal
8 Trends in Neurosciences, Month Year, Vol. xx, No. yy
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Outstanding Questions
How are top-down influences on rhyth-
mic synchronisation exerted across the
whole brain?

How best to measure the precise spa-
tiotemporal dynamics of coherence/
synchronisation across the whole
brain?

How best to use whole-brain compu-
tational modelling to perturb the struc-
tural and functional changes in whole-
brain dynamics?

What is the specific impact on CTC of
changes in structural connectivity in
different neuropsychiatric disorders?

Could metastability and the availability
of CTC routes serve as a potential bio-
marker for neuropsychiatric disorders?
(Figure 2A). These twomeasurements characterise the richnessof the explorationof thedynamical
repertoire in terms of multiplicity of visited synchronised brain states, and shows that the largest
repertoire of effective patterns (or routes) are found when the model is maximally metastable.

Notably, the model achieves the observed high metastability and high variability/multiplicity of
synchronised brain states only for a particular scaling of coupling strength in the very particular
underlying structural connectivity structure derived from fMRI of the healthy human brain [26].
Simply coupling oscillatory systems with different connectivity structures will in most cases result
merely in trivial fully asynchronous or synchronous states [4], which are both inconsistent with
the availability of sufficient routes for the CTC hypothesis. Instead, there may well be something
important about the particular non-random, non-regular, but more specific pattern of the
underlying anatomical structural connectivity of the brain, which is important for implementing
and sustaining a rich repertoire of effective connectivity.

Indeed, as shown in Figure 3E, damage to selective parts of this structure significantly impairs
the ability of the system to sustain this dynamical repertoire of potential CTC-like routes. As can
be seen, if the connections of a group of nodes in the structural connectivity are damaged, this
results in a decrease of the level of synchronisation (mean FCD) and variability (Std FCD), that is, a
deterioration of the repertoire (Figure 3E). In particular, the results are strongly dependent on
which exact nodes of the structural connectivity are damaged. Figure 3E shows the results
obtained for the normal intact structural connectivity, and for the damaging of the 12 top nodes
with regard to either (i) being non-rich club members (i.e., nodes with lowest degree), (ii) being
rich-club members (highest degree) [39], and (iii) being members of a binding club (highest
reduction of entropy) [26]. The largest deterioration comes from pruning the nodes fulfilling
central structural (RC) or dynamical (BC) roles.

Concluding Remarks
In this opinion article, we have explored the potential of the original CTC hypothesis to cast light
on whole-brain mechanisms for communication made possible by coherence both at the
microscopic and mesoscopic level. In particular, we have explored the links between metasta-
bility, an important signature of a healthy brain, and that of the CTC mechanisms of state-
dependent coherence. We have shown that the original CTC hypothesis is a well-documented
important mechanism for a fast rhythm of cognition and we are proposing that these mecha-
nisms are reflected on a much slower, even ultraslow timescale that is equally important for
studying cognition [16_TD$DIFF] [8]. We are proposing that a flexible modulation of effective connectivity
requires maximal metastability to allow for a full exploration of the rich functional repertoire made
possible by normal structural brain connectivity.

Still, it is important to consider the functional asymmetry in brain networks. Current methods do
not take this into account at the level of undirected (symmetric) measures, such as coherence,
and often overlook the fact that the brain is hierarchically organised, that is, ascending con-
nections are very different from descending connections. This is an outstanding challenge for
descriptions of brain dynamics in terms of globally coupled maps (see Outstanding Questions).

Here, we have shown that emerging evidence from topological analysis of structural connectivity
in the human brain combined with whole-brain computational modelling supports the idea that
the CTC hypothesis supports a flexible communication between areas. Specifically, the evi-
dence suggests that the healthy brain is maximally metastable, which is required for the optimal
exploration of the effective dynamical repertoire of patterns. If the underlying structural connec-
tivity is damaged, as is found in many brain disorders, a much more limited repertoire of CTC
routes is available, with potentially severe consequences. For example, it has been shown that
the anterior insula and cingulate cortex are part of the common neurobiological substrate for
Trends in Neurosciences, Month Year, Vol. xx, No. yy 9
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mental illness across six diverse diagnostic groups (schizophrenia, bipolar disorder, depression,
addiction, obsessive–compulsive disorder, and anxiety) based on ameta-analysis of grey matter
loss in 193 neuroimaging studies of 15 892 individuals [40]. There is evidence from whole-brain
computational models that removing these and other regions results in a particularly strong
reduction of the underlying repertoire as compared with the healthy brain [41]. This strongly
suggests that CTC mechanisms might be impaired in neuropsychiatric disorders, perhaps
differentially depending on the underlying changes in structural connectivity. As such, this
reinforces the potential use of the CTC hypothesis together with whole-brain computational
modelling for understanding the underlying mechanisms of brain disorders [25].
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