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The dynamics of the human brain exhi-
bits ‘slowness’ during spontaneous
activity and task-based cognition.

Whole-brain computational modeling
can account for the mechanisms under-
lying this slowness in terms of maximal
metastability of the dynamical system.

A better understanding of the balance
between fast and slow brain processing
could lead to fundamental new insights
into the brain in health and disease.
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Slowness of thought is not necessarily a handicap but could be a signature of
optimal brain function. Emerging evidence shows that neuroanatomical and
dynamical constraints of the human brain shape its functionality in optimal
ways, characterized by slowness during task-based cognition in the context
of spontaneous resting-state activity. This activity can be described mechanis-
tically by whole-brain computational modeling that relates directly to optimality
in the context of theories arguing for metastability in the brain. We discuss the
role for optimal processing of information in the context of cognitive, task-
related activity, and propose that combining multi-modal neuroimaging and
explicit whole-brain models focused on the timing of functional dynamics can
help to uncover fundamental rules of brain function in health and disease.
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Rediscovering Slowness
In his thoughtful and beautifully written book, Die Entdeckung der Langsamkeit (transl. ‘The
Discovery of Slowness’) [1], the German author Sten Nadolny meditates over the ultimate reasons
for the success and failure of the English polar researcher John Franklin (1786–1847). Franklin was
much celebrated during the Victorian era but perished on his third expedition to discover the
mythical Northwest Passage, supposed to link the Atlantic and the Pacific Oceans above the
northern coast of the American continent. In the novel, Nadolny suggests that Franklin's fatal
attraction to the Arctic was linked to his desire to find an environment suited to his slowness of
thought, which among other things manifested itself in his inability to speak fluently, memorizing
instead ‘entire fleets of words and batteries of response’. Nadolny makes the compelling argument
that the slowness of cognition is an essential component of optimality of thought.

This literary view of slowness resonates well with dual-process theories [2,3], and in particular
with the work of Daniel Kahneman and Amos Tversky, who collected intriguing behavioral
evidence that the human mind consists of two competing fast and slow systems [4,5]. System 1
is fast, instinctive and emotional, whereas System 2 is much slower, more deliberative, and more
logical. System 2 has limited access to System 1, which is the main source of impressions,
intuitions, intentions, and emotions, but it will still consciously elaborate on these and eventually
turn them into beliefs and voluntary actions. A firm neurobiological foundation of these systems
has not yet been established, but there is mounting evidence that these systems are the result of
the dynamics of interacting networks of brain regions over time rather than the contribution of
any single region [6].

The separation of timescales of neural functioning has also been put forward in modern
computational theories of information processing in human behavior [7–9] and in brain disorders
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Glossary
Attractor: a set to which a
dynamical system evolves after a
sufficiently long time. Points close to
the attractor remain close, even
under small perturbations.
Bifurcation: an abrupt qualitative
change in the system's dynamics
when one or more parameter pass
through critical values, for instance
loss of stability and the appearance
of sustained oscillations.
Connectome: the complete
description of the structural
connections between elements of a
nervous system.
Criticality: at the brink of a
bifurcation, the system displays
certain characteristic dynamic
features, of which most are related to
enhanced fluctuations.
Critical slowing down: the
phenomenon that the return-time of a
disturbance back to equilibrium
increases close to a bifurcation.
Diffusion tensor imaging (DTI): an
MRI technique that takes advantage
of the restricted diffusion of water
through myelinated nerve fibers in the
brain to infer the anatomical
connectivity between brain regions.
Dynamical systems: an area of
applied mathematics that describes
the behavior of complex (possibly
chaotic) dynamical systems as
described by differential or difference
equations.
Edges: in a brain graph, an edge
between nodes (regions or neurons)
indicates that the nodes are
anatomically or functionally
connected.
Functional connectivity: statistical
association – for example, significant
correlations – between
neurophysiological measurements
recorded from anatomically distinct
neurons or regions at several time-
points.
Graph theory: a branch of
mathematics that deals with the
formal description and analysis of
graphs. A graph is defined simply as
a set of nodes (vertices) linked by
connections (edges), and may be
directed or undirected. When
describing a real-world system, a
graph provides an abstract
representation of the system's
elements and their interactions.
Hopf bifurcation: in nonlinear
dynamics, a Hopf bifurcation is a
local bifurcation (see above) in which
an initially stable fixed point of a
such as epilepsy [10]. Inspired by the theory of nonlinear dynamical systems (see Glossary),
timescale separation offers, first, a means to separate two sets of variables functionally and,
second, to build hierarchies of processes constituting cognitive architectures. Intuitive examples
include, for instance, handwriting comprising dynamic behavior on fast and slow timescales,
from creating the individual letters forming words to generating sentences and paragraphs [11].

In this Review we expand on these ideas to show how slowness is not solely a literary construct
but could be a fundamental principle of brain function, emerging from underlying brain dynamics
as demonstrated by advanced whole-brain computational modeling. We briefly review the rise of
resting-state studies that focus on intrinsic brain dynamics in basic and clinical neuroscience, but
show how the analysis of time in the brain has become increasingly important. In particular,
recent findings [12,13] have radically shifted the emphasis from static spatial correlation analysis
to time-dependent analysis of the fluctuations and dynamics of functional processing. We then
review the role of whole-brain computational modeling in the growing understanding of the
dynamics of brain function, and emphasize how these models can lead to a deeper under-
standing of the spatiotemporal dynamics. We show how modeling has been used to shed new
light on the metastable properties of the human brain, in other words states falling outside the
natural equilibrium state of the system but persisting for an extended period of time. This has
demonstrated that the healthy human brain is maximally metastable, which leads to a natural
slowness of task-related cognition. Finally, we discuss how these new findings of slowness, in an
era of relentless speed, may come to have a profound influence on our understanding of brain
function in health and disease.

Characterizing Functional and Structural Brain Connectivity
Over the past decade there has been an explosion of empirical and theoretical interest in the
spontaneous or intrinsic activity of the brain [14]. Initially, neuroimaging experiments assumed
that this spontaneous activity was mainly noise and could be used simply as a control for
discovering task-related activity [15,16]. However, careful experiments using a wide variety of
neuroimaging techniques have found that spontaneous activity is highly structured in time and
space [17–19]. Neuroimaging experiments uncovered large distributed networks of brain areas
that are highly correlated, and were named resting state networks (RSN) [20,21] – although this
is really a misnomer given that their very existence demonstrates that resting brains never rest
[22,23]. These RSN can be quantified in terms of functional connectivity (FC), which can be
expressed as a matrix containing the correlations across a long time-series between all pairs of
brain areas (at the voxel level or more typically at the level of a given standard brain parcellation
(e.g., [24,25]). Typically this FC matrix quantifies the average spatial structure of the RSN
(Figure 1).

Nevertheless, the question remains of how these correlations emerge in the first place. One
simple idea is that they could be tied to the underlying structure of the anatomical connections
linking them; in many ways akin to the ideas of the medieval philosopher Thomas Aquinas who,
in the spirit of Aristotle, wrote ‘Quidquid recipitur ad modum recipientis recipitur’ – the container
(or recipient) shapes the content. In the case of the brain, the underlying anatomy has been
proposed to shape the functional activity [26,27]. The argument goes that even if the local
neuronal dynamics in each single node (e.g., a voxel) is mainly noise (as evidenced by neuro-
physiological recordings [28–30]), these voxels are linked by anatomical myelinated fibers
connecting them synaptically, and thus their correlations could be driven and shaped by those
links.

This attractive idea would be testable if it were possible to extract the anatomical structural
skeleton, in other words the structural connectivity (SC), that can be expressed in terms of a
structural connectivity matrix. This can be mapped in vivo in humans on the scale of millimeters
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dynamical system loses its stability in
an oscillatory fashion.
Kuramoto order parameter: a
measure of the level of synchrony
between oscillators in a network.
Magnetoencephalography (MEG):
a method of measuring brain activity
by detecting minute perturbations in
the extracranial magnetic field that
are generated by the electrical activity
of neuronal populations.
Mean-field model: the mean-field
approximation consists of replacing
the temporally averaged discharge
rate of a cell with an equivalent
momentary activity of a neural
population (ensemble average) that
corresponds to the assumption of
ergodicity. According to this
approximation, we characterize each
cell assembly by means of its activity
population rate.
Metastability: in dynamical systems
this refers to a state which falls
outside the natural equilibrium state
of the system but persists for an
extended period of time.
Multistability: coexistence of more
than two stable steady-states at
given parameter values.
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Figure 1. Methods for Characterizing Functional and Structural Connectivity. Neuroimaging data can be used to
extract the functional and structural connectivity in vivo. (A) Typically, obtaining the topological measures of structural
connectivity (SC) requires structural MRI and diffusion tensor imaging (DTI), as well as a parcellation scheme (here we show
the automatic anatomical labeling, AAL, parcellation), and the use of tractography measures to extract the SC matrix. (B)
Similarly, functional connectivity (FC) can be obtained from functional neuroimaging measures of brain activity; for example,
echo planar imaging (EPI) scans that sample the blood-oxygen-level dependent (BOLD) signal timecourse (tc) in each voxel.
Combining this with a parcellation scheme can recreate the regional timecourses for each of the regions in the parcellation.
The FC matrix is typically created from correlating the regional timecourses. (C) Evidence that SC is closely linked to FC has
come from neuroimaging of primates, where cortical patterns of coherent spontaneous BOLD fluctuations are similar to
those of task-evoked responses and anatomical connectivity [26]. The top panel shows a conjunction map of BOLD
correlations within the oculomotor system on dorsal views of the monkey atlas left and right hemisphere surfaces. The
middle panel shows task-related activity in a saccadic eye-movement task. The bottom panel shows the structural
connectivity from the density of cells labeled by retrograde tracer injections into right lateral intraparietal area. Abbreviations:
AS, arcuate sulcus; CeS, central sulcus; IPS, intraparietal sulcus; rs, resting state; SF, sylvian fissure; STS, superior temporal
sulcus.
by using diffusion weighted imaging/diffusion tensor imaging (DWI/DTI) which can measure
the white-matter fiber tracts constrained by the diffusion of water molecules [31,32], and where
the connectivity between brain regions can be reconstructed by probabilistic tractography
[33,34] (Figure 1A).
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Over time, evidence for this hypothesis has accumulated from several sources, including
seminal research in primates, showing that the average FC is significantly correlated with the
SC during rest [26] (Figure 1C). However, this group and others only found low, albeit
significant, structure–function correlations, suggesting that other factors also shape brain
activity. Perhaps the most important clue to other potential influences comes from the fact
that the typical FC matrix calculation ignores the importance of time. We and other
researchers have argued that dynamics are indeed pivotal for understanding how the
FC is shaped, in other words – in addition to the SC – others factors such as time-delays
and the current global working point of the brain are crucial [13]. Thus, careful
dynamical analysis is likely to improve our understanding of the underlying spontaneous
brain activity.

Uncovering the Spatiotemporal Dynamics of Brain Activity
Studies have demonstrated that the correlations among brain regions, both within and between
networks, evolve over time [35–37]. Important insights recently emerged from observations of
fluctuations of the FC when calculated over relatively short sliding windows [12]. Further
progress was made in quantifying the spatiotemporal structure of these fluctuations by intro-
ducing a careful dynamic analysis characterizing the FC dynamics (FCD) and explaining its
nature based on large-scale network models [13]. The method for calculating the FCD is
summarized in Figure 2.

When applied to empirical data, the FCD matrices show a characteristic checkerboard-like
structure that signals when there is switching between different brain states or activity patterns
(Figure 2C). In other words, the analysis can show when a brain network state recurs intermit-
tently over time, across scanning sessions, and even across participants. These results suggest
that spatial patterns are formed, dissolved, and reformed over time, such that periods of resting
activity can be subdivided into subsets or ‘communities’ of brain regions that strongly interact
over a period of time.

Research has demonstrated that the global phase synchrony of the time-series of brain activity
evolves on a characteristic ultra-slow (<0.01 Hz) timescale, and that its temporal variations
reflect the transient formation and dissolution of multiple communities of synchronized brain
regions [38]. The level of variability of the global phase synchronization can be expressed by the
standard deviation (SD) of the so-called Kuramoto order parameter, defining the metastability
of a given system. Empirical measurements have confirmed that the brain is metastable [39].

Importantly, such time-varying functional connectivity has been reported both in awake humans
and anesthetized macaques [36,40], thus the temporal variability of functional interactions is not
likely to be produced by transitions between different mental states, but instead may be an
emergent property of complex brain networks. These results suggest that the interplay between
space and time in the brain is crucial to unraveling the mechanistic origins of spontaneous
activity.

Whole-Brain Computational Modeling
One powerful way to investigate and model the non-stationary dynamics of whole-brain activity
is to use whole-brain computational modeling (Box 1), which takes into account the interplay and
mutual entrainment of local dynamics using the underlying structural connections, and results in
global whole-brain dynamics (Figure 3A). Indeed, whole-brain models have been shown to be
able to explain the spatial aspects of the resting FC by fitting the spatial correlation as extracted
by the grand average FC [23,41]. Research has shown that the fitting of the grand average FC
overemphasizes the influence of the SC, and that the resulting models are incapable of showing
the non-stationary switching dynamics of the FC [13]. This difference is qualitative and cannot be
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Figure 2. Methods for Measuring Functional Connectivity Dynamics (FCD). (A) FCD captures the spatiotemporal
organization of FC by representing the similarities between FC(t) matrices calculated in a short window of time (usually 60 s)
located at different times, for example TS1 and TS2. This is accomplished by splitting each full-length BOLD time-series into
several sliding windows, M. For each of these sliding window, centered at time t, a separate FC matrix, FC(t), can be
calculated. (B) The FCD is thus a symmetric matrix with dimension M�M where the (ts1, ts2) entry is defined by the Pearson
correlation between the upper triangular parts of the two matrices FC(ts1) and FC(ts2). (C) Thus epochs of stable FC(t)
configurations are reflected around the FCD diagonal in blocks of elevated inter-FC(t) correlations. (D) Simulated FCD. (E) For
comparing the FCD statistics, the upper triangular elements of the matrices are collected over all participants and sessions.
The simulated and empirical distributions can then be compared by calculating the Kolmogorov–Smirnov distance between
them, because this quantifies the maximal difference between the cumulative distribution functions of the two samples. (F)
The metastability can be measured as the SD of the Kuramoto order parameter across time, which provides a measure the
global level of synchronization of the oscillating signals.
simply addressed by quantitative parameter tuning. Following this insight the fitting of FC at one
timescale only was abandoned; instead it was shown that a slight increase in nonlinearity of the
node models suffices to create the non-stationary FCD as observed empirically. In fact, it
appears that the slow switching of FC dynamics is the normal behavior of a nonlinear large-scale
brain network and occurs naturally without any major parameter tuning.

The question therefore arises: what is the purpose, if any, of the slow FCD? Mechanistically, the
most detailed models describe local spontaneous dynamics as attractors by means of explicit
simulations of spiking neurons and their detailed synaptic connections, including the dynamics
of specific neurotransmitter receptor types [42]. However, the emergent collective macroscopic
behavior of brain models has been shown to be only weakly dependent on the details of
individual neuron behavior [43].

This agrees with fundamental results from statistical physics, which have shown that macro-
scopic physical systems obey laws that can be independent of their mesoscopic constituents
[44]. In turn, this allows whole-brain modeling to use reduced neural mass models, of which
there are two main types: (i) oscillatory models [45–50] and (ii) asynchronous models [51–53].
These models can be unified by using a neural mass local model, such as the normal form of a
Hopf bifurcation, to describe the transition from noise to oscillations, and this has been shown
to exhibit both richness and generality in describing the temporal dynamics of EEG at the local
node level [54,55].
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Box 1. The Virtual Brain

The Virtual Brain (TVB) is a freely-available public tool based on an international neuroscience project that promotes the
large-scale network perspective of brain function and dysfunction, and assembles the neuroinformatics competences for
the computer simulation of individual brain networks [77] (Figure I). This level of description allows mimicking the empirical
data sets obtained from invasive and non-invasive human brain imaging. TVB provides for the first time the possibility to
feed computational neuronal network models with information about brain activity (EEG, MEG), spatially highly resolved
whole-brain metabolic/vascular signals (fMRI), and global measures of neuronal connections (DTI) – for intact as well as
pathologically altered connectivity. This enables the development of individual connectivity-dependent models of
oscillatory activity and the characterization of network mechanisms that underlie the genesis of brain activity. The
TVB platform allows performing either simulation with systematic parameter sweeps for hypothesis testing; or fitting of
parameters against a participant's brain imaging data. These approaches can lead to the development of new diagnostic
and therapeutic interventions. Currently ongoing projects are in the field of epilepsy, stroke, and aging. Beyond the direct
implications for diagnosis, treatment, and prevention of network dysfunctions, the results of the Virtual Brain studies are
likely to significantly contribute to the understanding of fundamental mechanisms of the brain's structure–function
relationship.
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Figure I. Workflow in The Virtual Brain. A template for the cortical surface defines 3D geometry and parcellation.
Methods of DTI allow reconstructing connections and tract lengths of fiber bundles to define a connectivity matrix and
time-delays via signal transmission. Neural population models serve as network nodes generating dynamic signals owing
to their intrinsic dynamics and interactions with other nodes. Interventions such as lesioning the connectivity, or
stimulating brain regions, offer means to probe the brain dynamics in TVB. The resulting brain network dynamics is
registered as raw local field potentials (LFP), BOLD fMRI, EEG, and MEG signals.
The Resting Brain Is Maximally Metastable and Slow
Evidence from a wide range of experiments suggests that the brain is metastable [39] (Box 2).
Further empirical evidence has recently come from whole-brain computational models with
oscillatory local nodes using the Kuramoto model [50,56]. These simulations fitting the model to
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Figure 3. Metastability and Whole-Brain Computational Modeling. (A) Whole-brain computational models can be
constructed using the structural connectivity (SC) between a given parcellation of brain regions, using either oscillatory or
asynchronous local node models to fit the functional connectivity (FC) from neuroimaging data [e.g., fMRI or magne-
toencephalography (MEG) data]. (B) Using an oscillatory local node model based on the Kuramoto model with only two
parameters (global mean delay and coupling strength) showed maximal metastability and therefore maximal exploration of
the dynamical repertoire [50]. The figures show the correlation between real and simulated FC profiles as a function of the
coupling strength and the mean of the delay distribution. The area within the dashed line indicates the parameter range for
which the model provides the best estimates of real MEG FC profiles. Fluctuations in the mean and SD of synchrony degree
are indicative of a metastable synchronization regime (two middle figures). Similarly, in the presence of time-delays, the
metastable synchronization induces a modulation of oscillator frequency, which generates envelope fluctuations of 8–
30 Hz. (C) The temporal dynamics of phase interactions are shown for a typical participant [38]. (D) The power spectrum of
the Kuramoto order parameter is shown across all participants, indicative of slow processing [38]. (E) Structured linear
fluctuations around the spontaneous state show a characteristic slowing down before the bifurcation [51].
MEG data recorded over milliseconds importantly show that the brain is not only metastable, but
maximally metastable, which implies the possibility for the widest exploration of the dynamical
repertoire of the network. The Kuramoto model was implemented within the automatic ana-
tomical labeling (AAL) parcellation of the structural connectivity of the human brain and used only
two parameters, namely the global coupling strength and the mean delay between brain regions.
As shown in Figure 3B, the model fits the data optimally within a limited combination of values of
the two parameters as shown in the plots of (i) goodness of fit to empirical FC data, (ii) mean and
(iii) SD of synchrony degree, and (iv) SD of the 8–30 Hz envelopes. Perhaps most importantly, at
this particular working point of the whole-brain model, metastability is also maximal, which
potentially has deep significance for our understanding of fundamental brain function.
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Box 2. Stability and Time in the Human Brain

Time is of the essence in the human brain, giving rise to the time-critical neural computations allowing organisms to
survive [75]. This complex brain activity during rest and cognition plays out on the background of the brain's structural
connectivity, and crucially has to balance the exploration of this dynamical potential to ensure stability in the long term
[78].

Whole-brain computational models combine brain structure and activity dynamics to explore and explain the emergence
of resting-state networks mechanistically. Until recently the models have typically been either (i) oscillatory [45–47,49,50]
or (ii) asynchronous [51–53]. These models use different strategies to explain the functional connectivity of the data over
time, either, in the case of oscillatory models, by maximizing the metastability of the dynamics, or, in the case of
asynchronous models, by working at the border of multistability, in other words at a dynamical point at the edge of the
bifurcation where the trivial spontaneous state loses stability. In this Review we argue that it is high time that we move
away from solely describing the average activity over time and to start to describe time-dependent activity. We also argue
that the Hopf bifurcation model captures the best of both models [54,55].

The stability of whole-brain computational models hinges on different concepts from dynamical system. The asynchro-
nous models provide evidence that the simulated functional connectivity best matches empirically observed functional
connectivity when the whole-brain network is subcritical, meaning that there are stable attractor states, a spontaneous
state with low activity in all regions, and several excited states with high activity between selected regions. In other words,
multistability around a spontaneous state defines an operating point such that system activity stochastically explores the
dynamic repertoire inherent to the structural connectivity [42,51].

Similarly, the oscillatory models provide evidence for the importance of metastability, which is a measure of how variable
brain states are as a function of time; for example, how the synchronization between the different brain regions fluctuates
across time. These concepts of multi- and metastability for describing the dynamical systems in the brain are possible
scenarios for the resting state. It remains an active area of research to determine which is a more accurate description
[39].
It is important to realize that this type of discovery can only be made through a combination of
integration and fitting of multimodal neuroimaging data with computational models [42]. Con-
ventional correlational analyses are able to demonstrate that the brain is metastable, but crucially
not whether it is maximally metastable – this is only possible with whole-brain computational
modeling.

One of the important consequences of the brain being maximally metastable is that this implies a
characteristic slowness of spontaneous dynamics (i.e., the switching transitions between brain
states) upon approaching a bifurcation or state transition, a phenomenon termed ‘critical
slowing down’. Although predicted by theory, only recently has this been demonstrated
experimentally in elegant whole-cell patch-clamp recordings from pyramidal neurons and
fast-spiking interneurons in rats [57]. Switching dynamics and co-occurring phenomena have
been previously observed in human behavior [58] and human brain recordings [59,60]. It is the
propagation of switching behavior across brain scales, in other words microscopic to macro-
scopic, that is relevant for cognition [61].

Whole-brain computational models can also be used to study the temporal evolution of resting
state activity using the Kuramoto order parameter to measure the global level of synchronization
of the oscillating signals between brain regions [38]. Figure 3C shows an example of this
temporal evolution of the global level of synchronization in the human brain. Notably, the power
spectrum of this evolves on an ultra-slow (<0.01 Hz) timescale (Figure 3D). Similarly, whole-brain
computational models have demonstrated a critical slowing down on the edge of a criticality
(Figure 3E) [51]. These findings imply that optimality, in the sense of maximally and wide
exploration of the dynamical repertoire of the network, is a fundamental property of optimal
task processing.

Beyond Resting: The Brain Is Slow During Stimuli/Task Processing
One must question the importance of slowness in the resting brain when it could be argued that
cognition is more about engaging with tasks and stimuli than what is done at rest [16]. From the
Trends in Cognitive Sciences, October 2015, Vol. 19, No. 10 623
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Figure 4. Slowness in Processing of Natural Stimuli. (A) The complexity of brain activity in response to natural
sequence of images (movie) was significantly higher than to temporally and spatially scrambled images (with preserved first-
order statistics). Adapted from [63]. This suggests that the temporal binding of information in human brain is better suited to
the natural, slow timing/latencies of stimuli than to rapid unstructured noise. (B) Similarly, recordings of neural activity in
awake ferrets to natural scenes stimuli (movie, M) show that the neural activity is well matched to the spontaneous neural
activity (S). (C) We hypothesize that the binding (i.e., the level of encoding of information) is maximal when the brain is
maximally metastable. This could be tested using a whole-brain computational model optimized to spontaneous activity but
driven by external stimuli. This suggests that for the brain to optimally process external signals, the latencies should be on
the order of the underlying latency of the timing of the resting brain, in other words of the switching between resting brain
states, which existing data suggest would be with a latency of external input of around 20 s. At that point, the external signal
‘resonates’ with the underlying latency of the whole-brain dynamics, leading to optimal processing.
very start, neuroimaging experiments have – albeit mostly involuntarily – explored the link
between spontaneous and task-related activity by pervasive use of subtraction paradigms.
Nevertheless, it is only with the rise of resting-state paradigms that a better understanding has
arisen of the link between them [23,62].

Neuroimaging experiments have started to reveal some of the key differences between spon-
taneous and task-related activity in further well-controlled ways and, in particular, have begun to
quantify the speed of processing. One recent experiment assessed brain activity patterns in
response to a natural slow, temporal sequence of images (movie), which was scrambled over
time (scrambled movie) or space (noise); thus preserving the first-order statistics across stimuli
[63] (Figure 4A). Strong and widespread cortical activity was found in all conditions, but
selectively the Lempel–Ziv complexity of these activity patterns was found to have the highest
value for the movie and was minimal for the noise condition. Thus, while the stimuli were carefully
matched, meaningful integration and segregation of externally driven information over time
clearly rely on slow processing of natural, temporally structured information.

Similarly, studies in other animals have established links between spontaneous activity and
externally driven information. For example, a recording study in awake ferrets found a strong
similarity between stimulus-evoked and spontaneous neural activities to responses evoked by
natural scenes [64] (Figure 4B). They found improvements in this activity during development,
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which demonstrates that the brain clearly adapts to the slowness of natural stimuli at the neural
level.

Nevertheless, these are correlational results, and whole-brain computational modeling can
provide new evidence for what happens during stimuli/task processing, where the evoked
brain activity is designed for optimal processing and where the encoding of external information
takes place at an optimal ‘slow’ range of latencies (i.e., at the timing of cognition).

We hypothesize that it should be possible to measure the binding ability of the human brain as a
function of the latency of the external stimulation. Binding is defined as the amount of information
of the input signal which is encoded in the network across time, in other words the entropy of all
nodes across time [65]. The link to stimulus-evoked activity can be explored by simulating
natural, external stimulation using the well-known independent stochastic (Ornstein–Uhlenbeck)
process with equal variance but different latencies [66]. Subsequently, this would allow mea-
surement of the binding of information over time by the brain activity using a sliding-window
approach (Figure 4C) [65]. Existing evidence of ultra-slow activity [38] suggests that a clear
maximum will emerge around at 20 s, which means that, around this relatively slow time-point,
the brain is able to optimally process external inputs. In other words, to process optimally
external time-signals, their latencies should be on the order of the underlying latency of the timing
of the resting brain, in other words of the switching between resting brain states. At that point,
the external signal ‘resonates’ with the underlying latency of the whole brain dynamics, and
therefore the processing is optimal.

As shown earlier, this slowness in processing, or the latency of the metastability, is the result of
the resonance of the latency of the external inputs with the crucial slowing down or intrinsic
slowness of the switching between the different brain states (at rest). Thus, importantly, this
finding is unlikely to be an artefact of, for example, low-pass filtering of the BOLD signal.

Concluding Remarks and Future Perspectives
Slowness is not obviously a desirable quality in a ruthless natural world built primarily on survival;
even so, the relative evolutionary success of humans is evidence that a degree of slowness of
cognition combined with fast reactions can be highly adaptive. The flexibility of human cognition
for goal-directed behavior relies on our ability to build coherent, distributed dynamical states by
segregating and integrating information on multiple timescales [65].

As an example, think about how helpless human infants are during infancy and childhood, and how
caregiving behavior must be key to the survival of the human species [67,68]. Caregiving behavior
depends partly on very fast processing of infant cues, exemplified by the fact that infant sounds
elicit significant activity already after only 50 ms in the brainstem [69], and that infant facial features
elicit activity in the orbitofrontal cortex within around 130 ms [70]. However, once this attentional,
orienting response has taken place, it is replaced with careful, slow caregiving behavior that can
address the specific needs of the infant. This slower, deliberate cognition has been shown to rely on
much later brain activity in distributed networks which include the very same regions of the
orbitofrontal cortex recruited earlier for the fast response [71]. This is potentially important for
the future well-being of the infant given how slow, maladaptive parental cognitions such as
rumination and worry can lead to significant disturbances in the parent–infant relationship [72].
More generally, the dual process of fast, attention-orienting activity followed and modulated by
slower, conscious cognitive processes has been shown to be a recurrent theme across the
sensory modalities that is highly dependent on intact reward processing [73–75].

What has been lacking is a mechanistic understanding of how the human brain achieves the right
balance between the slow and fast processes across temporal hierarchies in cognitive
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Outstanding Questions
What are the necessary and sufficient
brain regions for balancing fast and
slow processing?

How does the balance between slow
and fast processing change between
different conscious states, for example
between being awake and different
stages of sleep?

What are the neural mechanisms by
which the reward system can bias
the brain to change the balance
between fast and slow processing?

What is the developmental trajectory of
slowness?

How does the balance between slow
and fast processing change in specific
brain disorders?

Could slowness be a biomarker of a
healthy brain?
architectures [7]. We have presented here emerging evidence that, during task processing, the
maximally metastable brain contains intrinsic brain activity that is designed for optimal process-
ing, and can encode external information at an optimal ‘slow’ range of latencies.

This new insight into striking the optimal balance between fast and slow cognition may also be
important for understanding the progression in brains from healthy to diseased. As such, it adds
to current ideas of using connectomics in neuropsychiatry to discover new biomarkers and
potential treatments [76] by using whole-brain computational models for understanding funda-
mental principles of brain function, especially to further understand the importance of time [53].
As a result, the field is now beginning to shift from using static grand averages (mean-field
model; based on connectomics) to characterizing the time-dependent dynamics of whole-
brain networks. It would be of considerable interest to test whether slowness could be an
essential biomarker of a healthy brain (Outstanding Questions).

Overall, the rediscovery of time in cognitive neuroscience and connectomics is leading to
new insights into the fundamental principles of brain function. Not only may this help to
better understand the human brain's precarious balancing act of processing and predicting
stimuli on different timescales, whether slow or fast – but it may also lead to a new
appreciation of how slowness can help us deal with what may feel like an ever-accelerating
pace of life. Nadolny suggests that Franklin may have sought the Arctic to match the speed
of his thought processes, but ultimately the most important factor is the balance between
fast and slow, between adequately processing the past to predict not only the now but the
future. As observed by the Polish poet Wislawa Szymborska ‘when I pronounce the word
Future, the first syllable already belongs to the past.’ Nonetheless, by learning to optimally
balance fast and slow processes in the maximally metastable brain, we may be able to
extend the ‘now’ into the ‘long now’. This balancing act could potentially be extended to a
Zen-like perspective of observing infinite gratitude for the past, infinite service to the present,
and infinite responsibility for the future. Although such balanced states are rare, science
reminds us that a potential route could be through the built-in slowness of the architecture of
our brains.
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