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Functional complexity emerging 
from anatomical constraints in the 
brain: the significance of network 
modularity and rich-clubs
Gorka Zamora-López1,2, Yuhan Chen3,4,5, Gustavo Deco1,2,6, Morten L. Kringelbach7,8,9 & 
Changsong Zhou3,4,10,11,12

The large-scale structural ingredients of the brain and neural connectomes have been identified in 
recent years. These are, similar to the features found in many other real networks: the arrangement 
of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. 
Here, we examine how modules and hubs shape the collective dynamics on networks and we find 
that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes 
of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs 
are destroyed, we find that functional complexity always decreases in the perturbed networks. 
A comparison between simulated and empirically obtained resting-state functional connectivity 
indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its 
anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new 
hierarchical network model that successfully combines modular organisation with rich-club forming 
hubs. This is achieved by centralising the cross-modular connections through a preferential attachment 
rule. Our network model hosts more complex dynamics than other hierarchical models widely used as 
benchmarks.

The study of interconnected natural systems as complex networks has uncovered common principles of organ-
isation across scientific domains. Two pervasive features are (i) the grouping of the nodes into modules and (ii) 
the presence of highly connected nodes or hubs. It was soon recognised that these two features are signatures 
of hierarchical organisation but attempts to incorporate both into realistic network models have been of lim-
ited success1. Currently, the most popular hierarchical models recursively divide modules into smaller modules2. 
These networks, however, lack of hubs. Investigation of the brain’s connectivity has shed light on how nature effi-
ciently combines the two features. Real connectomes are modular with the cross-modular connections centralised 
through highly connected brain regions which form a rich-club3–5.

The nervous system acquires information about the environment through different channels, known as sen-
sory modalities. Information from each channel is independently processed by specialised neural compartments. 
An adequate and efficient integration of the information of those different channels is necessary for survival6,7. 
In a series of numerical experiments, Tononi and Sporns attempted to identify the right topologies that help 
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optimally balance the coexistence of both segregated subsystems and an efficient integration of their informa-
tion8. Starting from an ensemble of random graphs, an evolutionary algorithm would select those networks with 
the largest complexity. In subsequent iterations the winners would be mutated – slightly rewired – to produce 
another population to start over. The underlying assumption was that an increase of the neural complexity defined 
by the authors would lead to networks with balanced capacity to integrate and segregate information9. This pro-
cedure gave rise to networks with interconnected communities capturing the relevance of modules for the seg-
regation of information. However, the optimised networks lacked of hubs and rich-clubs. Dynamical models on 
modular networks have shown that there is a balanced rate in the number of inter- to intra-modular links that 
optimises the complexity of the network dynamics10,11. This phenomenon has also been observed in contagion 
spreading, where the contagion threshold depends on the node’s degree12. Too few links between the communities 
leads to clustered (segregated) dynamics but no efficient interaction between them. On the contrary, too many 
connections between communities easily leads to a globally synchronised network meaning there is integration 
but no dynamical segregation. A balance is achieved in between. However, it can be argued that in modular net-
works integration is not efficient because it happens via global synchrony, which is an undesirable state of neural 
networks.

Despite these and other past efforts, the relation between a network’s complexity and its capacity to segregate 
and integrate information is yet unresolved and confusing. In particular, their causal relation requires clarifica-
tion. While it seems plausible to assume that the needs of neural systems to integrate and segregate information 
may have led to the development of complex topological features, e.g., modules and rich-clubs, the opposite is 
not necessarily true. A network optimised for high complexity does not necessarily end developing modules and 
hubs, nor being good for integrating and segregating information. The aim of the present paper is to test and cor-
roborate this causal relation only in one direction, namely, that the hierarchical centralisation of cross-modular 
connections through rich-clubs leads to enhanced functional complexity. For that purpose we consider both real 
neural connectomes and synthetic network models. We study the evolution of their functional complexity as the 
networks undergo a transition towards global synchrony by gradually increasing the weights of the links. We find 
that functional complexity emerges for intermediate values of the tuning parameter; when the nodes are neither 
independent from each other nor globally synchronised.

By comparing the real networks to randomised versions in which either the presence of hubs or the modular 
structure are destroyed, we find that both topological features are crucial ingredients for the networks to achieve 
high functional complexity. In the randomised networks complexity is always reduced. To clarify the precise 
impact of rich-clubs we have also carried out a lesion study. Selective removal of the links between the hubs leads 
to a reduction of functional complexity in all cases. The reduction is significant compared to random lesions. 
In the case of the human dataset we also observe that the dynamics of the brain, at rest, reflects a state with 
the largest complexity that its anatomical connectome can host. Last, we introduce a new model of hierarchical 
networks inspired on the topology of neural and brain networks. Our hierarchical network model successfully 
combines nested modules with the presence of hubs. This is achieved by centralising the inter-modular connec-
tivity through a few nodes by a preferential attachment rule. These networks achieve higher complexity than other 
well-known benchmark models.

The manuscript is organised as follows. First we introduce a measure of functional complexity that is based 
on the variability of the pair-wise cross-correlations of the nodes. We then investigate the complexity of neural 
networks in comparison to surrogate networks. Finally we compare the complexity of common random and hier-
archical network models and we introduce the new model of modular and hierarchical networks with centralised 
inter-modular connectivity.

Measuring functional complexity
Despite the common use of the term “complex networks” a formal quantitative measure is missing to determine 
how complex a network is. Here we take an indirect approach and estimate the complexity of the collective 
dynamics that the network can host. In general, the complexity of a coupled dynamical system is a combination 
of the temporal complexity of the signals traced by the individual nodes and of the spatial formation of clusters. 
Because we are here interested on the influence of the network’s topology and because the temporal complexity 
depends on the model chosen for the node dynamics, we study the spatial aspect of complexity. We refer to this as 
functional complexity for consistency with the term functional connectivity to denote the time-averaged dynamical 
interdependencies between neural populations.

Given a network of N coupled dynamical nodes, e.g. neurones, cortical regions or oscillators, its pair-wise 
correlation matrix R reflects the degree of interdependencies among the nodes. When the nodes are disconnected 
from each other, they are also dynamically independent and hence, no complex collective dynamics emerge. All 
correlation values are rij ≈  0, Fig. 1(top). In the opposite extreme, when the nodes are strongly coupled, the net-
work becomes synchronised. However, global synchrony is neither a complex state because all nodes follow the 
same behaviour. In this case all the correlation values are rij ≈  1, Fig. 1(bottom). Complexity emerges when the 
collective dynamics are characterised by intermediate states, between independence and global synchrony. Such 
states are reflected by a broad distribution of rij values, Fig. 1(middle).

At the two extreme cases, independence and global synchrony, the distribution p(rij) of pair-wise correlations 
is characterised by a narrow distribution. In between, at the range in which the network dynamics are more com-
plex, the distribution becomes broader. After these observations we define the functional complexity C of the 
network as the variability of p(rij). Now, there are different manners to evaluate the variance of a distribution. For 
example, in ref. 13, complexity was defined as the normed entropy of p(rij). Here, we choose to define complexity 
as the difference between the observed distribution p(rij) and the uniform distribution. If p(rij) is estimated in m 
bins, the uniform distribution is =µp

m
1  for all bins μ =  1, 2, … , m. Hence, functional complexity is quantified as 

the integral between the two distributions, which is replaced by the sum of their differences over the bins:
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1  is a normalisation factor that represents the extreme case in 

which the p(rij) is a Dirac-delta function δm. That is, when all rij values fall in the same bin as it happens when the 
nodes are either mutually independent or globally synchronised. Because we are only interested in the pair-wise 
interactions we discard the diagonal entries rii from the calculations.

After comparing different alternatives to quantify C we found that the measure in Eq. (1) to be the most 
convenient solution; see Supplementary Information. This choice turned to be the most sensitive to discrimi-
nate between network topologies and also the most robust to variation in the number of bins. The reason is that 
the integral does not simply evaluate the broadness of the distribution but, more generally, its divergence from 
uniformity. This measure of functional complexity is easy to apply to empirical and to simulated data. While in 
this paper we study cross-correlations, the measure can be applied to any other metric of pair-wise functional 
connectivity, e.g. mutual information.

Functional complexity of neural connectomes
In this section we investigate the functional complexity of anatomical brain and neural connectomes. We study 
the binary corticocortical connectivities of cats, macaque monkeys and humans, and also the neuronal wiring of 
the C. elegans (see Materials and Methods). We will refer to these as the structural connectivities (SC) and we will 
denote their corresponding correlation matrices R as their functional connectivities (FC). For each SC network 
we study the evolution of its FC as the collective dynamics undergo a transition from independence to global syn-
chrony. This transition is controlled by increasing the weights, or coupling strength g, of the SC links. We compare 
the results to two types of surrogate networks: (i) rewired networks that conserve the degree distribution and (ii) 
random modular networks which preserve the community structure of the original network, see Materials and 
Methods. In the rewired networks the hubs are still present although the modular structure vanishes. The modu-
larity preserving random networks conserve the number of links within and across modules but alter the degree 
distribution and the hubs disappear. For completeness, we also compare the results to those of random graphs 
with the same size and number of links. All results for surrogate networks are averages over 1000 realisations. In 
order to quantify more precisely the impact of the rich-club, we also include a lesion study. After selective removal 
of the links between the rich-club hubs functional complexity is reduced. This reduction is compared to ensem-
bles of randomly lesioned networks.

To evaluate the functional complexity of the SC matrices we first need to estimate their FC matrices at differ-
ent values of the coupling strength, g. Because we want to emphasise the contribution of the network’s topology 
on the dynamics it can host we need to discard, as much as possible, other sources of influence on the network 

Figure 1. Illustration of the measure for functional complexity. When the collective dynamics of a network 
are close to independence or to global synchrony (top and bottom panels) the distribution of the cross-
correlation values are characterised by narrow peaks close to rij =  0 or to rij =  1. Complex dynamical interactions 
happen when the collective behaviour is characterised by intermediate states leading to a broad distribution of 
the correlation values (middle panel). Red lines correspond to the uniform distribution, =p

m
1 , where m is the 

number of bins.
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dynamics. For this reason we introduce a heuristic mapping to analytically estimate the correlation matrices R 
out of the SC without the need to run detailed simulations, Eqs (5) and (7). See details in Materials and Methods. 
Assuming the network consists of a set of coupled Gaussian noise sources the time-averaged cross-correlation 
matrix R of the system can be analytically estimated out of the structural connectivity matrix9. In this framework 
the correlation between brain regions can be understood as the total influence exerted by one region over another, 
accumulated over all possible paths of all lengths within the network. The coupling (the weight of the links), 
serves as a resolution parameter determining the range of correlations. When g is weak perturbations quickly 
decay allowing only for local correlations between neighbouring nodes. As the coupling grows the range of the 
correlations gradually increases. For strong coupling, perturbations propagate along the whole network causing 
global correlations. An unrealistic property of the Gaussian diffusion model is that the system leads to divergent 
dynamics at strong couplings. Motivated by the fact that in neural systems the signals attenuate, that is, informa-
tion fed into the network rapidly disappears or is transformed instead of perpetually propagate along the network, 
we solve the divergence problem introducing an exponential decay for the diffusion of the signals over longer 
paths. This exponential decay guarantees that, once the network is globally correlated, an increase in coupling 
has no influence and the system does not diverge. This property is shared by widely applied models for generic 
oscillatory and neural dynamics, e.g., Kuramoto oscillators and neural-mass models. Simulations performed with 
those models show the same qualitative behaviour as our exponential mapping; see Supplementary Information.

Comparison to surrogate networks. The results for the neural and brain connectomes are shown 
in Fig. 2. As expected, C vanishes at the extremes, when g =  0 and when g is large enough for the networks 
to globally synchronise. Complexity emerges at intermediate levels of g. Find sample correlation matrices in 
Supplementary Fig. S1. All real networks (solid red lines) achieve larger complexity than the surrogates along the 
whole range of g. The bar plots summarise the peak values. The lowest peak corresponds always to the random 
graphs (dotted lines) while the rewired (solid gray lines) and the modularity preserving (dashed lines) networks 
take intermediate complexities. These results show that it is the combination of hubs and modular structure what 
allows the real networks to reach larger functional complexities. Destroying one of these features, either the hubs 
(by randomising the networks to conserve only their modularity) or the modular structure (by rewiring links to 
conserve only the degrees), leads to a notable reduction in complexity. Another observation is that the transition 
to synchrony of the real networks is slower than that of the surrogates. This shows that there is a wide range of g 
for which the complexity remains high.

Since the rewiring procedure does not necessarily disconnect the hubs from each other, it remains unclear 
what is the precise impact of the rich-club itself on the complexity. How is complexity altered when the hubs are 
disconnected from each other? In order to investigate this in more detail we have performed a lesioning study. 
First, we have identified the rich-clubs on each of the four empirical networks, see Supplementary Information, 
and then we have selectively removed all the links between the rich-club hubs. These comprise only a small 
fraction of the total number of links and thus, small but measurable changes in complexity are expected. After 
selective removal of the rich-club links from the SC matrices their corresponding FC matrices were computed 
for the optimal g at which the complexity C(real) of the original networks were maximal. We find that, compared 

Figure 2. Functional complexity of anatomical connectomes. Comparison between the evolution of 
complexity for four neural networks (solid red lines) and the results for surrogate networks: random graphs 
(dotted lines), rewired networks conserving degrees of nodes (dashed lines), and modularity preserving random 
graphs (dashed lines). The right-hand panels summarise the peak complexities achieved in each case. Note that 
absolute values are not comparable across species due to the different size and densities of the connectomes. 
Meaningful are the relative differences with the surrogates.
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to the original networks, the functional complexity C(lesion) in the lesioned networks decreases in all the four 
cases. See Table 1.

The remaining question is whether the observed decrease is due to the selective removal of rich-club links, or 
a natural consequence of perturbing the network by lesioning links. To test this we performed random lesions 
removing the same number of links from each SC. The rich-club links were excluded from the random lesions. 
We generated 100,000 realisations for each SC. In the cases of the C. elegans and of the macaque connectomes 
we find that none of the randomly lesioned networks had lower complexity than the selectively lesioned SC. In 
the case of the cat’s connectome, only 1.5% of the randomly lesioned networks resulted in lower complexity. In 
the human SC, 22% of the randomly lesioned networks lead to lower complexity than the targeted lesion. These 
results confirm that the rich-club is also an important feature for the functional complexity in the networks. In 
all cases the selective removal of rich-club links led to a measurable decrease in C, which resulted significant in 
three of the four datasets.

Complexity of human resting-state FC. To finish this section on the complexity of neural connectomes 
we turn our attention to the human connectome. We compare the functional complexity for theoretically esti-
mated FCs and empirically obtained FCs. First, we consider SC matrices for 21 participants obtained through 
diffusion imaging and tractography. We estimate the theoretical FCs applying the exponential mapping to the 
SCs of every participant. As before, we scan for the whole range of couplings g. The evolution of the average cor-
relations and the corresponding functional complexity for each participant are shown in Fig. 3(a) and (b), solid 
gray curves. The population averages are represented by the red solid curves. Second, we obtained empirical FC 
matrices for a cohort of 16 subjects via resting-state functional magnetic resonance, see Materials and Methods. 
Mean correlations and functional complexity were calculated out of the empirical FCs, solid horizontal lines in 
Fig. 3(a) and (b). The blue solid lines represent the population averages for the empirical values. Comparing the 
theoretical estimates and the empirical observations we find that the functional complexity of the human brain at 
rest lies, within the limitations of cross-subject variability, at the peak functional complexity the anatomical SCs 
gives rise to. Moreover, we note that this intersection happens at the coupling strength at which the simulated FCs 
fit closest the empirical FCs, Fig. 3(c). Here we have quantified closeness as the Euclidean distance between the 
theoretical FC and the empirical FC matrices, diagonal entries ignored.

In this section we have shown that the combination of modular architecture and hubs forming rich-clubs in 
anatomical connectomes are key ingredients for their high functional complexity. We have also found that, within 
the constrains of the simple diffusive model here employed and of the cross-subject variability, the human brain at 
rest appears to lie in a dynamical state which matches the largest complexity that the underlying anatomical con-
nectome can host. In the following, we want to better understand how those anatomical features give rise to larger 
functional complexity. Therefore, we study and compare the complexity of several benchmark graph models.

Functional complexity of synthetic network models
In this section we study the functional complexity of common synthetic network models: random, scale-free 
and hierarchical. We also introduce a new model of hierarchical networks which is inspired by the properties of 
neural and brain networks. As in the previous section, for each network we first estimate the expected correlation 
matrix R applying the exponential mapping (see Material and Methods, Eqs (5) and (7)) and then we calculate the 
functional complexity C out of the R matrices using Eq. (1).

Random and scale-free networks. We begin studying random and scale-free graphs of N =  1000 nodes 
and link densities ρ =  0.01, 0.05, 0.1 and 0.2. As expected, the average correlations = ∑ ∑− = >r r

N N i
N

j
N

ij
2

( 1) 1 1  
increases monotonically with coupling strength g, Fig. 4(a) and (c), reflecting the transition the networks undergo 
from independence to global synchrony. Full circles (● ) and full triangles (▲ ) mark the coupling at which  
〈 r〉  =  0.85. Considering the real coupling strength before normalisation, we see that dense networks are easier to 
synchronise; they reach 〈 r〉  =  0.85 at weaker coupling, Fig. 4(e). Functional complexity always peaks in the middle 
of the transition, when 〈 r〉  ≈  0.5, Fig. 4(b) and (d). The complexity of scale-free networks is notably higher than 
that of random graphs. The reason for this difference is that in scale-free networks the hubs synchronise with each 
other earlier than the rest of the nodes14,15. Therefore, at intermediate values of g a synchronised population (com-
posed by the hubs) coexists with the rest of nodes which are weakly correlated. See the correlation matrices in 
Supplementary Fig. S2. Finally, we observe that the peak complexity decreases with density in both random and 
scale-free graphs, Fig. 4(f).

Network C(real) C(lesion) Difference Probability

C. elegans 0.905 0.884 − 2.32% 0.0

Cat 0.658 0.641 − 2.60% 0.015

Macaque 0.646 0.615 − 4.80% 0.0

Human 0.588 0.579 − 1.52% 0.221

Table 1.  Selective lesion of rich-club links. Summary of results for the lesion study. Selective lesion of all 
rich-club links leads to a decrease in functional complexity C(lesion) compared to the complexity of the original 
network C(real). After comparison to equivalent random lesions, the probability of finding a lesioned network 
with complexity lower than C(lesion) is null for the C. elegans and the macaque connectomes, and significantly 
small for the cat.
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Modular networks. We now generate networks of N =  256 nodes arranged into four modules of 64 nodes. 
Both the internal and the external links are seeded at random. We compare networks of varying modular strength 
by tuning the ratio of internal to external links while conserving the total mean degree to 〈 k〉  =  24. Mean inter-
nal degree kint is varied from 12 to 24 and the mean external degree kext is varied accordingly from 12 to 0. The 
strength of the modular organisation is quantified by the modularity measure q16. When (kint, kext) =  (12, 12) the 
network is almost a random graph. When kint increases (and kext decreases) the modules turn stronger until they 
become disconnected at (kint, kext) =  (24, 0).

Figure 5(a) shows that the larger the modularity, the stronger is the coupling required to globally synchro-
nise the network. The modules internally synchronise at rather weak couplings but to synchronise the mod-
ules with each other requires further effort, Fig. 5(b). The sparser the connections between the modules, the 
more difficult it is to synchronise them. As a consequence the distribution of correlations takes a bimodal form  
(see also Supplementary Fig. S2) with one peak corresponding to the weak cross-modular interactions and a  
second peak for the stronger within-modular correlations. The behaviour of complexity is rather different and does 
not monotonically increase with modularity, Fig. 5(c) and (d). In agreement with previous observations in mod-
ular networks of coupled phase oscillators10,11, we find an optimal ratio of internal to external degrees for which 
complexity maximises. In our case this happens for the networks with (kext, kint) =  (5, 19) and modularity q =  0.50.

Hierarchical and modular networks. We finish the section studying the complexity of hierarchical and 
modular (HM) networks. We compare three models; the first two are well known in the literature and we intro-
duce a new model which is motivated by the properties of real brain networks. Additionally, we will compare the 
results to those of equivalent random and rewired networks conserving the degrees.

Fractally hierarchical and modular networks. In an attempt to combine the modular organisation and the 
scale-free degree distribution found in metabolic networks, Ravasz and Barabási proposed a tree-like, self-similar 
network model1,17. The generating motif of size N0 is formed of a central hub surrounded by a ring of N0 −  1 
nodes. To add hierarchical levels, every node is replaced by such a motif in which the original node becomes a 
local hub. Finally, to achieve a scale-free-like degree distribution the hubs are connected to all non-hub nodes 
at the lower branches. The example shown in Fig. 6 is the version with N0 =  5 and three hierarchical levels with 
a total of 125 nodes. For the calculations we consider a version with N0 =  6 and three hierarchical levels leading 

Figure 3. Comparison between estimated and empirical functional connectivity in human resting-state. 
(a) Mean correlation and (b) functional complexity of simulated and empirical functional connectivity (FC) 
matrices. Horizontal lines are the results from empirical FC (one value per subject). Given empirical structural 
connectomes (tractography) corresponding FC matrices were estimated for increasing coupling g. Bold lines 
are population averages of the individual results in gray. (c) Euclidean distance between the theoretical FCs and 
the empirical FCs at different values of g. Green bold curve is the population average. Vertical lines in the three 
panels mark the g at which the fit is best.
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to a total size of N =  216. Due to the deterministic nature of the model, this is the closest we can approximate to 
the 256 nodes of the other hierarchical networks we study. The evolution of the average correlation 〈 r〉  and of 
the complexity C are shown in Fig. 7(a) and (b). The mean correlation of the Ravasz-Barabási network does not 
distinguish from that of the rewired networks. The model achieves a very poor complexity which is overcome 
by both the random and the rewired networks. The large complexity of the random networks in this case can 
be explained by its sparse density (see Fig. 4) of only ρ =  0.031. The reason for why the Ravasz-Barabási model 
fails to match even the complexity of the rewired networks, despite having a scale-free-like degree distribution is 
because, by construction, the hubs of the model are preferentially connected to the non-hub nodes at the lower 
branches. This choice leads to a situation in which the hubs are poorly connected with each other, contrary to 
what happens in many real networks whose hubs form rich-clubs. The Ravasz-Barabási model lacks of a rich-club 
(see Supplementary Fig. S7).

Figure 4. Functional complexity of random and scale-free networks. (a) Mean correlation and (b) functional 
complexity for random graphs of N =  1000 nodes. (c) and (d), same for scale-free networks. (e) Coupling 
strength required for the network to reach average correlation 〈 r〉  =  0.85 depends on the density of the network. 
The real coupling is greal =  g/λmax, where λmax is the largest eigenvalue. (f) Peak complexities reached by the 
networks depends on link density. All results are averages of 100 realisations.

Figure 5. Functional complexity of modular networks. (a) Average correlation and (c) functional complexity 
of modular networks as coupling strength g increases. Networks of N =  256 nodes divided into 4 communities. 
Results for networks of different modularity (ratio of internal to external links) are shown, all with same 
number of links. (b) Example correlation matrices R (blue is for rij =  0 and red for rij =  1). Data for one network 
with q =  0.542. (d) Peak complexity achieved by modular networks depends on modularity, compared to peak 
complexity of random graphs (gray line). All data points are averages of 100 realisations.
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Random hierarchical and modular (RHM) networks. In refs 2,18, Arenas, Díaz-Guilera and Pérez-Vicente intro-
duced a hierarchical network model in which a network of N =  256 nodes is divided into four modules of 64 
nodes, each subdivided into another four submodules of 16 nodes, see Fig. 6. The links within and across mod-
ules at all levels are shed at random. The hierarchy is defined by the increasing density at the deeper levels. In the 
previous section we found that in a network composed of four modules of 64 nodes complexity was optimised 
when the mean external and internal degrees were (kext, kint) =  (5, 19). Taking these as the starting point we set the 
mean degree of the nodes at the first level to be k1 =  kext =  5. The remaining 19 links are distributed among the two 
deeper levels. The combination k2 =  6 and k3 =  13 maximises the functional complexity.

The average correlation and the functional complexity of the model are shown in Fig. 7(c) and (d). The behav-
iour of the Random HM networks is very similar to that of modular networks. The transition to global synchrony 
is governed by the interaction between the four large modules because synchrony between the small submod-
ules is easily achieved; see corresponding correlation matrices in Supplementary Fig. S2. The largest complexity 
reached by the model is C =  0.48, only slightly above the one of the similar modular network.

Figure 6. Hierarchical and modular network models. The Ravasz-Barabási model is a fractally hierarchical 
structure that was proposed to reproduce hierarchical features of many natural networks which posses both 
modules and a scale-free degree distribution. The Random HM model by Arenas, Díaz-Guilera & Pérez-Vicente 
is a nested modular network in which sets of random subgraphs (the modules) are randomly linked to form 
larger communities. We introduce a new model, the Centralised HM model which combines a nested modular 
hierarchy with a scale-free-like degree distribution. This is achieved by centralising inter-modular connections 
through hubs that form local and global rich-clubs.

Figure 7. Functional complexity of hierarchical and modular (HM) networks. Mean correlation (upper 
panels) and functional complexity (lower panels) of three hierarchical and modular network models as the 
coupling strength g is increased. (a) and (b) Ravasz & Barabási model, (c) and (d) Random HM model and, 
(e) and (f) Centralised HM network model. All curves are averages for 100 realisations. Variances were very 
small in all cases and are omitted. For each realisation of the RHM and the CHM models, 100 random and 100 
rewired networks were generated.
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Centralised hierarchical and modular (CHM) networks. The coexistence of modules and scale-free-like degree 
distributions is a rather general observation in empirical networks. However, a model that adequately combines 
both features is missing. In brain connectomes both features are combined through the presence of a rich-club on 
top of the modular organisation. That is, cross-modular connections are not fully random but tend to be central-
ised through the hubs3,19,20. Hence, we now propose a hierarchical network model which combines both features, 
modules and hubs, inspired by the observations in brain connectomes. For that we modify the Random HM 
model and replace the random connectivity between modules by a preferential attachment rule. This is achieved 
by sorting the nodes within a module and assigning them a probability to link with external communities pro-
portional to their rank. See Materials and Methods for details. In the following we set the inter-modular links to 
be seeded with exponent γ2 =  2.0 and the links between the four major modules (at the top level) to be placed 
with γ1 =  1.7. These values for the exponents are chosen such that hubs in the resulting networks have rich-clubs 
comparable to those in brain connectomes, see Supplementary Fig. S7.

The average correlation and the functional complexity of the Centralised HM model are shown in Fig. 7(e) and (f).  
The peak complexity is C =  0.57, overcoming those of the other HM networks here investigated. Also, its decay 
at the strong coupling regime is slower than that of random and rewired networks, as observed in the empirical 
brain connectomes, indicating that the model is robust against accidentally falling into global synchrony. To 
keep the network away from global synchrony is a desirable feature for many real systems, specially for brain 
connectomes.

So far, we have shown that a network model constructed with the topological features of empirical neural net-
works, a combination of modular structure with hubs centralising the cross-modular connections, achieves larger 
complexity than standard hierarchical network models. Specially relevant is the improvement over the fractal 
model by Ravasz and Barabási, which has been the only network model proposed so far to combine the modular 
organisation and the presence of hubs in biological networks.

Summary and Discussion
In the present paper we have investigated the richness of collective dynamics that networks of different charac-
teristics can host. For that, we have proposed a measure of functional complexity based on the variability in the 
strength of functional interactions between the nodes. It captures the fact that complexity vanishes in the two triv-
ial extremal cases: when the nodes are independent of each other and when the network is globally synchronised. 
Functional complexity emerges at intermediate states, when the collective dynamics spontaneously organise into 
clusters which interact with each other.

First, we have found that perturbation of brain’s connectivity such that its modular structure is destroyed while 
the degrees are conserved, and the other way around, leads to networks with reduced functional complexity. The 
result is in agreement with the observation that rich clubs increase the set of attractors in a network of spin-glass 
elements beyond a scale-free topology21. We also find that the regime of high complexity is stable and robust 
against the network accidentally shifting towards global synchrony.

Second, we have compared the theoretically estimated functional connectivity to empirical resting-state 
functional connectivity in humans. We have found that, within the limitations of the heuristic mapping here 
employed, the human brain at rest matches the largest functional complexity that the underlying anatomical con-
nectome can host. This carries profound implications for understanding the relationship between structural and 
functional connectivity. Although the origin and the detailed role of the resting-state dynamics are still debated, 
it is well-known that the resting-state activity is highly structured into spatio-temporal patterns22. There is wide 
agreement that both consciousness and cognitive capacities benefit from the presence of a large pool of accessible 
states and to the ability to switch between them. This is supported by the finding that the dynamical repertoire of 
the brain is drastically decreased during sleep23 and under anaesthesia24,25. The variability of brain signals have 
been found to increase with age from childhood to adulthood26.

Last, but not least, we have introduced a new graph model of hierarchical and modular networks that leads to 
higher functional complexity than any of the models previously proposed and commonly used as benchmarks. 
Our model succeeds where previous efforts have failed: to combine nested modules with highly connected nodes. 
Specially remarkable is the improvement over the fractal model by Ravasz and Barabási, which was introduced to 
explain the co-existence of modular and scale-free-like degree distribution in biological networks1,17. The model 
fails to foster complex dynamics; it is even outperformed by comparable random and rewired graphs. The reason 
is that, by construction, the hubs of the Ravasz-Barabási networks are disassortative. That is, they are poorly 
connected with other hubs. This is contrary to the observations in brain connectomes whose hubs tend to be 
assortative and form rich-clubs (see Supplementary Fig. S7). Our hierarchical network model solves the problem 
by centralising the cross-modular communications through hubs with a preferential attachment rule.

Complexity, modules, hubs, integration and segregation. The idea that cortical function is a combination  
of specialised processing by segregated neural components and their subsequent integration is an old concept 
in neuroscience6,7. For example, the Global Workspace Theory by Baars postulated the integration into a global 
workspace of the information processed in parallel by specialised sensory systems27. The lack of whole-brain 
structural and activity data restricted the discussions to a theoretical ground for decades. During the 1990s, the 
study of empirical long-range connectivity in the cat’s and macaque’s cortex evidenced that corticocortical con-
nectivity is modular. Regions specialised in a sensory modality are more often interconnected than with regions 
of other modalities28,29.

The question of which is the optimal network structure that allows the brain to optimally segregate and inte-
grate information was investigated by Tononi and Sporns in a series of network optimisation studies. Initially 
random networks were mutated – slightly rewired – and selected to maximise a cost function refered as neural  
complexity8,9. This procedure gave rise to modular networks as those empirically observed. While modular 
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organisation is a signature of segregation, the integration of information in modular networks can only happen 
via the global synchrony of the network. Global synchrony is both a rather inefficient strategy to integrate infor-
mation and an undesirable state of the brain. To solve the puzzle it was proposed, again within the framework of 
the Global Workspace Theory, that integration might be performed by interconnected hubs which have access 
to the information in different segregated modules30–32. Closer analysis of the long-range connectivity in the 
cat’s cortex confirmed that corticocortical connectivity is indeed organised as a modular structure with a set of 
rich-club hubs centralising the multisensory communications3,19,33. Similar architectures have also been identi-
fied in the human anatomical connectome4 and in the neural architecture of the Caenorhabditis elegans5. These 
findings are the starting point for the hypothesis that the specialisation of cortical regions to different sensory 
modality may have triggered the segregation of cortical regions into network modules, while the rich-club hubs 
may be the responsible for the integration step3,20,32–34. We shall notice that this scenario, although reasonable and 
plausible, is still a working hypothesis which needs empirical demonstration. Results on the functional organisa-
tion of the brain during rest and task start to support the hypothesis35. The identification alone of the modular 
architecture with rich-clubs does neither explain how does the brain perform the integration step. Because inte-
gration is inherently related to the dynamic nature of the sensory inputs36, models of propagation of information 
in networks will become relevant to understand this question in the future37.

A common source of confusion in the literature arises from the implicit causal relationships which have been 
drawn between the network’s structural features, its complexity and its capacity to integrate and segregate infor-
mation. The network optimisation performed by Tononi & Sporns illustrates some of these limitations. On the 
one hand, the procedure led to modular networks without hubs. Thus it remains an open question whether opti-
misation of complexity alone results in the network topologies we observe empirically. It would be of high interest 
to use multidimensional optimisation methods which can account for several constraints38 to clarify this ques-
tion. Even if the results were negative, that optimisation of complexity alone does not generate hierarchical net-
works with modules and hubs, this would be important to better understand the “driving-forces” which shaped 
the brain’s connectivity along evolution. On the other hand, Tononi and Sporns presupposed that maximisation 
of the neural complexity measure implied an increase of the network’s capacity to integrate and segregate informa-
tion. However, this causal relation has never been demonstrated. When comparing to our functional complexity 
measure, we find that neural complexity monotonically increases with coupling strength and is maximal when 
the networks are globally synchronised, see Supplementary Information. This contradicts the intention of neural 
complexity, which was proposed to identify networks with optimal balance between integration and segregation. 
At the globally synchronised state there is no segregation and hence, no optimal balance. In order to overcome 
this limitation Zhao, Zhou and Chen proposed an alternative measure of complexity based on the entropy of 
the distribution of cross-correlation values10,13. Here, we have adopted their approach but we have replaced the 
nonlinear entropy function by the integral between the observed and the uniform distributions. This choice con-
siderably enhances the discriminative power of the measure and its robustness to variation in the number of bins 
to estimate the distribution. Find a comparison in the Supplementary Information.

Summarising, in this paper we could confirm that the hierarchical organisation of networks into modules 
interconnected via rich-club hubs lead to an increase of their functional complexity. As we have argued, the 
opposite might not be true. This, and the precise causal relations between a network’s complexity and its capacity 
to integrate and segregate information are still open questions which demand clarification. Explicit efforts are 
required within the field of brain connectivity to corroborate or discard the validity of these working hypothesis. 
In the mean-time, we shall refrain from taking these causal relations for granted; specially, when applying such 
concepts to evaluate and interpret clinical conditions39,40.

Limitations. The temporal evolution of the functional complexity is a relevant aspect we have ignored here. 
A complete characterisation still requires further developments because the complexity of a coupled dynamical 
system is composed by two aspects. One is the formation of complex coalitions between the nodes. This is the 
interaction complexity that we have studied here and which we have coined as functional complexity. The other 
aspect is the complexity of the time-courses traced by the individual signals, or by the system as a whole. From a 
temporal perspective, neither random nor periodic signals are complex41. Random signals are unpredictable but 
represent fully disordered behaviour. Periodic signals are predictable but represent ordered behaviour. On the 
other hand, chaotic signals are complex because they are the result of an intricate mixture of order and unpredict-
ability. However, we should notice that a set of chaotic elements may be synchronised giving rise to low functional 
complexity; a set of coupled periodic signals could result into heterogeneous spatial correlations due to the net-
work’s topology leading to high functional complexity.

The results here presented are to be considered under the constraints and the limitations of the heuristic 
exponential mapping we have introduced to theoretically estimate the networks’ functional connectivity. (i) The 
model is an estimation of the time-averaged cross-correlation and is therefore not suitable to evaluate temporal 
fluctuations. (ii) In diffusion models the nodes are considered as passive relay stations for the flow of information 
while brain regions and neurones likely perform nonlinear transformations to the incoming information through 
active and complex dynamics at the local circuits.

Neural dynamics emerge from nonlinear interaction together with external stochastic perturbations, char-
acterised by complex oscillations. Detailed collective dynamics may depend on various factors, including non-
linearity in the local dynamics and the form of the interactions. However, some generic properties may not be 
dominantly determined by such details, especially the dependence of the dynamical correlation on the network 
topology. Dynamical cross-correlation (functional connectivity) measures the interdependence between brain 
areas over relatively long time scales, thus are mainly determined by the slow modes which can be captured by the 
first few modes in the expansion of the local dynamics and coupling functions42. Estimations derived from linear 
Gaussian processes make good sense to capture the correlated fluctuations around the leading linear modes, but 
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it diverges at strong couplings because it ignores the higher order dynamics. To gain some understanding, we 
have illustrated how a Gaussian diffusion process can be interpreted in terms of the networks’ graph properties, 
in particular on the role played by communication paths of different length.

The heuristic exponential mapping we have proposed further improves such a strategy by effectively tak-
ing some high-order contributions into consideration; specially, the decay of information along the path. It 
accounts for the fact that information in a neural system is used or transformed instead of perpetually diffuse 
within the network. This avoids the divergence problems of the linearised Gaussian diffusion process without 
the need to consider a particular dynamical model. This is also the reason for why the simple exponential map-
ping can capture the behaviour of some coupled dynamical models, e.g., Kuramoto and neural mass models  
(see Supplementary Fig. S6). An advantage of the exponential mapping for the exploratory purposes of the cur-
rent paper was the computational efficiency. It would have been impractical to perform the extensive set of com-
parisons with surrogate networks if actual simulations were to be run for every datapoint.

Outlook. From a practical point of view our measure of functional complexity is an excellent candidate as a 
clinical marker for connectivity-related conditions. Over the last decade it has been consistently reported how 
resting-state functional connectivity differs across healthy subjects and patients suffering from diverse condi-
tions43. Most of those reports are based in the graph analysis of functional connectivity which unfortunately 
depend on several arbitrary choices44,45, e.g., the need to set a threshold to binarise the correlation matrix. Our 
measure of complexity requires no unreasoned choices, it is easy to apply and interpret. The measure can be 
applied to any metric of pair-wise functional connectivity, e.g., mutual information, despite we restricted here to 
cross-correlation. It is also very fast to compute and is thus suitable for real-time monitoring systems.

The new hierarchical graph model we have introduced represents a very satisfactory compromise to combine 
hierarchically modular architecture with a broad degree distribution. From a biological point of view, however, 
we recognise the need to define models which can explain how brain networks developed their current topology 
in the course of evolution. We foresee that the key ingredients of such evolutionary models are: (i) identification 
of the “driving-forces”, e.g., the balancing between integration and segregation, and (ii) a growth process that 
accounts for the increase in the number of neurones or cortical surface over time46,47. Other ingredients shall 
include (iii) the trade-off between the cost and the efficiency of the resulting networks given the spatial con-
straints of the brain48–50 and (iv) the patterns of axonal growth during development51.

As a final remark, we shall notice that although we have here restricted to the study of neural and brain 
connectomes, we are confident that the modular organisation with centralised intercommunication is a general 
principle of organisation in biological networks. We find it reasonable that the assumption of balancing between 
integration and segregation as the principal driving-force to shape the large-scale neural connectomes, is also 
applicable to other networked biological systems. For example, we recently reported that the transcriptional reg-
ulatory network of the Mycobacterium tuberculosis shares fundamental properties with those of neural neural 
networks52. In the end, the transcriptional regulatory network is the system responsible in the small bacterium to 
collect information of the environment through different channels, to process and interpret that information, and 
to efficiently combine it to “take decisions” that improve the chances of survival.

Materials and Methods
Connectivity datasets. Find in Table 2 a summary of properties of the empirical connectomes used in this 
paper.

Caenorhabditis elegans. The C. elegans is a small nematode of approximately 1 mm long and is one of the most 
studied organisms. Its nervous system consists of 302 neurones which communicate through gap junctions and 
chemical synapses. We use the collation performed by Varshney et al. in ref. 5; the data can be obtained in http://
wormatlas.org/neuronalwiring.html. After organising and cleaning the data we ended with a network of N =  275 
neurones and L =  2990 links between them. For the general purposes of the paper we consider two neurones 
connected if there is at least one gap junction or one chemical synapse between them. We ignored all neurones 
that receive no inputs because they are always dynamically independent. The resulting network has a density of 
ρ =  0.04 and a reciprocity of 0.470 meaning that 47% of links join neurones A and B in both directions while the 
remaining 53% connect two neurones in only one direction. Most of the reciprocal connections come from the 

Network N L Density Reciprocity Comms. Modularity

C. elegans 275 2990 0.04 0.47 4 0.417

Cat 53 826 0.30 0.73 4 0.270

Macaque 85 2356 0.33 0.74 3 0.402

Human (21 subs) 76 655–1061 0.23–0.37 undir. – —

Human (average) 76 935 0.33 undir. 3 0.33

Table 2.  Summary of neural and brain network datasets. In this paper we have used four real datasets 
of structural connectivity. The table sketches their principal properties: their size N (number of neurones 
or cortical areas), their number of links L or the number of communities identified (Comms.). The human 
structural connectivity is the only undirected dataset because tractography does not distinguish directionality of 
the projections.

http://wormatlas.org/neuronalwiring.html
http://wormatlas.org/neuronalwiring.html
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gap junctions, which are always bidirectional; only 21% of the chemical synapses are devoted to connect two 
neurones in both directions.

Cat cortex. The dataset of the corticocortical connections in cats was created after an extensive collation of liter-
ature reporting anatomical tract-tracing experiments53,54. It consists of a parcellation into N =  53 cortical areas of 
one cerebral hemisphere and L =  826 fibres of axons between them. After application of data mining methods29,53 
the network was found to be organised into four distinguishable clusters which closely follow functional subdi-
visions: visual, auditory, somatosensory-motor and frontolimbic. The network has a density of ρ =  0.30 and 73% 
of the connections are reciprocal.

Macaque monkey. The macaque network is based on a parcellation of one cortical hemisphere into N =  95 areas 
and L =  2390 directed projections between them48. The dataset, which can be downloaded from http://www.
biological-networks.org, is a collation of tract-tracing experiments gathered in the CoCoMac database (http://
cocomac.org)55. Ignoring all cortical areas that receive no input we ended with a reduced network of N =  85 cor-
tical areas. The network has a density of ρ =  0.33 and reciprocity r =  0.74.

Human structural connectivity. Structural connectivity was acquired from 21 healthy right-handed volunteers. 
Find full details in refs 56,57. This study was approved by the National Research Ethics Service (NRES) committee 
South Central – Berkshire in Bristol and carried out in accordance with the approved guidelines. All participants 
gave written informed consent.

Diffusion imaging data were acquired on a Philips Achieva 1.5 Tesla Magnet in Oxford from all participants 
using a single-shot echo planar sequence with coverage of the whole brain. The scanning parameters were echo 
time (TE) =  65 ms, repetition time (TR) =  9390 ms, reconstructed matrix 176 ×  176 and reconstructed voxel 
size of 1.8 ×  1.8 mm and slice thickness of 2 mm. Furthermore, DTI data were acquired with 33 optimal non-
linear diffusion gradient directions (b =  1200 s/mm2) and 1 non-diffusion weighted volume (b =  0). We used the 
Automated Anatomical Labelling (AAL) template to parcellate the entire brain into 90 cortical and subcortical 
(45 each hemisphere) as well as 26 cerebellar regions (cerebellum and vermis)58. The parcellation was conducted 
in the diffusion MRI native space. We estimated the connectivity probability by applying probabilistic tractogra-
phy at the voxel level using a sampling of 5000 streamline fibres per voxel. The connectivity probability between 
region i to j was defined by the proportion of fibres passing through voxels in i that reach voxels in j59. Because of 
the dependence of tractography on the seeding location, the probability from i to j is not necessarily equivalent 
to that from j to i. However, these two probabilities were highly correlated, we therefore defined the undirected 
connectivity probability Pij between regions i and j by averaging these two probabilities. We implemented the 
calculation of regional connectivity probability using in-house Perl scripts. Regional connectivity was normalised 
using the regions’ volume expressed in number of voxels.

The 21 networks so constructed were all composed of N =  116 brain regions and a number of links ranging 
from L =  1110 undirected links for the sparsest case (density ρ =  0.17) to L =  1614 for the densest (ρ =  0.24). 
These networks are individually used for the results in Fig. 3. In order to derive an average connectome, used in 
the results of Fig. 2, we performed an iterative procedure which automatically prunes outlier links (data-points 
falling out of 1.5 times the inter-quartile range). For each link between regions i and j outlier values of Cij are 
identified among the initial 21 measures available for the link (one per subject) as those values out of the 1.5 
inter-quartile range (IQR). If outliers are identified we remove them from the dataset and search again for out-
liers. The procedure stops when no further outliers are identified. This method allows to clean the data without 
having to set an arbitrary threshold for the minimally accepted prevalence of the link across subjects. The average 
network contains approximately the same number of links as the individual matrices. Defining the average con-
nectivity by computing the simple mean across the 21 Cij matrices (a usual approach in the literature) leads to an 
average connectivity matrix that contains more than twice the links in the matrices for individual subjects. For 
consistency with the datasets of the cats and the macaque monkeys, we show in the paper the results for the sub-
networks formed only by the N =  76 cortical regions (38 per hemisphere) and ignoring all subcortical areas. We 
found qualitatively the same results in the cortical subnetwork and in the full-brain network, with the only differ-
ence that the cerebellum and the vermis form a very densely interconnected community that synchronises easily.

Human functional connectivity. Data were collected at CFIN, Aarhus University, Denmark, from 16 healthy 
right-handed participants (11 men and 5 women, mean age: 24.75 ±  2.54). All participants were recruited 
through the online recruitment system at Aarhus University excluding anyone with psychiatric or neurolog-
ical disorders (or a history thereof). The study was approved by the internal research board at CFIN, Aarhus 
University, Denmark. Ethics approval was granted by the Research Ethics Committee of the Central Denmark 
Region (De Videnskabsetiske Komitér for Region Midtjylland). Written informed consent was obtained from all 
participants prior to participation.

The MRI data (structural MRI and rs-fMRI) were collected in one session on a 3 T Siemens Skyra scanner at 
CFIN, Aarhus University, Denmark. The parameters for the structural MRI T1 scan were as follows: voxel size of 
1 mm3; reconstructed matrix size 256 ×  256; echo time (TE) of 3.8 ms and repetition time (TR) of 2300 ms. The 
resting-state fMRI data were collected using whole-brain echo planar images (EPI) with TR =  3030 ms, TE =  27 ms, 
flip angle =  90°, reconstructed matrix size =  96 ×  96, voxel size 2 ×  2 mm with slice thickness of 2.6 mm and a 
bandwidth of 1795 Hz/Px. Approximately seven minutes of resting state data were collected per subject.

We used the automated anatomical labelling (AAL) template to parcellate the entire brain into 116 regions58. 
The linear registration tool from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford)60 was used to 
co-register the EPI image to the T1-weighted structural image. The T1-weighted image was co-registered to the 
T1 template of ICBM152 in MNI space61. The resulting transformations were concatenated and inverted and 

http://www.biological-networks.org
http://www.biological-networks.org
http://cocomac.org
http://cocomac.org
http://www.fmrib.ox.ac.uk/fsl
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further applied to warp the AAL template58 from MNI space to the EPI native space, where interpolation using 
nearest-neighbour method ensured that the discrete labelling values were preserved. Thus the brain parcellations 
were conducted in each individual’s native space.

Data preprocessing of the functional fMRI data was carried out using MELODIC (Multivariate Exploratory 
Linear Decomposition into Independent Components) Version 3.1462, part of FSL (FMRIB’s Software Library, 
www.fmrib.ox.ac.uk/fsl). We used the default parameters of this imaging pre-processing pipeline on all partici-
pants: motion correction using MCFLIRT60; non-brain removal using BET63; spatial smoothing using a Gaussian 
kernel of FWHM 5 mm; grand-mean intensity normalisation of the entire 4D dataset by a single multiplicative 
factor and high pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma =  50.0s). 
We used tools from FSL to extract and average the time courses from all voxels within each AAL cluster. We then 
used Matlab (The MathWorks Inc.) to compute the pairwise Pearson correlation between all 116 regions, applying 
Fisher’s transform to the r-values to get the z-values for the final 116 ×  116 FC-fMRI matrix.

Community detection. After application of data mining methods the corticocortical network of the cat 
network was found to be organised into 4 distinguishable clusters which closely follow functional subdivisions: 
visual, auditory, somatosensory-motor and frontolimbic29,53. For the other three real datasets we investigated 
their modular structure using Radatools (http://deim.urv.cat/~sergio.gomez/radatools.php), a software that 
allows to detect graph communities by alternating different methods. We run the community detection such that 
it would first perform a coarse grained identification of the communities using Newman and Girvan’s method16 
and then a method by Gómez and Arenas named ‘Tabu Search’18 was applied. Final optimisation of the partitions 
was performed by a reposition method.

The neural network of the C. elegans was partitioned into four modules of size 8, 64, 92 and 111 neurones 
respectively with modularity q =  0.417. The corticocortical network of the macaque monkey was divided into 
three modules of 4, 38 and 47 cortical areas with q =  0.402. The average human corticocortical connectome was 
divided into three modules of sizes 20, 26 and 30 with modularity q =  0.33. In two of the modules there is a dom-
inance of one cortical hemisphere while the third module contains left and right areas in similar numbers.

Surrogates and synthetic network models. The network analysis, the generation of network mod-
els and the randomisation of networks has been performed using GAlib, a library for graph analysis in Python 
(https://github.com/gorkazl/pyGAlib). The network generation and rewiring functions are located in the sub-
module gamodels.py.

Random graphs. Random graphs were generated following the G(N, L) model that seeds links between ran-
domly chosen pairs of nodes in an initially empty graph of N nodes until L links have been placed. Random 
graphs were produced using the function RandomGraph.

Scale-free networks. Random graphs with scale-free degree distribution were generated following the method in 
ref. 64. The nodes are ranked as i =  1, 2, … , N and they are assigned a weight =

∑

α

α

−

−p i( ) i
jj

. To place the links, two 
nodes i and j are chosen at random with probabilities p(i) and p(j) respectively and they become connected if they 
were not already linked. The procedure is repeated until the desired number of links are reached. Scale-free net-
works generated using this preferential attachment rule achieve, on the limit of large and sparse networks, a 
degree distribution p(k) ∝  e−γ with γ =  (1 +  α)/α >  2. Tuning α in the range [0, 1) scale-free networks with expo-
nent γ ∈  [2, ∞ ) are generated. Here, we set α =  0.5 to achieve scale-free networks with γ =  3.0. The exponent in 
individual network realisations fluctuated between 2.6 and 3.4. The function ScaleFreeGraph generates scale-free 
networks with desired size N, number of links L and exponent γ.

Rewired networks. Given a real network it is often desirable to compare it with equivalent random graphs which 
have the same degree distribution as the original network. A common procedure is to iteratively choose two links 
at random, e.g. (i, j) and (i′ , j′ ), and to switch them such that (i, j′ ) and (i′ , j) are the new links. The method is usu-
ally attributed to Maslov & Sneppen65 but it had been proposed by several authors before refs 66–70. The function 
RewireNetwork returns rewired versions of a given input network. In order to guarantee the convergence of the 
algorithm into the subspace of maximally random graphs, the link-switching step is repeated for 10 ×  L iterations, 
where L is the number of links.

Modular and nested-hierarchical networks. Random modular networks were generated, as the random graphs, 
choosing two nodes at random and connecting them if they were not previously linked. The difference lies on 
choosing the two nodes either from the same module or from two different modules. The nested hierarchical 
model with random connectivity2 is an extension of this procedure such that modules are subdivided into further 
modules. The function HMRandomGraph generates both modular and nested hierarchical networks depending 
on the input parameters.

Nested-hierarchical networks with centralised connectivity. While in the nested hierarchical random model the 
connections between the modules are shed at random, in neural and brain networks inter-module connections 
and communication paths tend to be centralised through the hubs19. We here propose a model of hierarchical and 
modular networks that combines both features. For that we modify the nested hierarchical model to replace the 
random connectivity between modules by a preferential attachment rule. We start by creating the 16 random 
graphs of 16 nodes each and mean degree κ3 =  13 of the deepest level. Then, the nodes of each submodule are 

http://www.fmrib.ox.ac.uk/fsl
http://deim.urv.cat/~sergio.gomez/radatools.php
https://github.com/gorkazl/pyGAlib
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ranked as i =  1, 2, … , N3 =  16 and they are assigned a weight =
∑

α

α

−

−p i( ) i
jj

. To place the inter-modular links, two 
nodes i and j are chosen at random from two different modules with probability p(i) and p(j) respectively, and 
they become connected if they were not already linked. The procedure is repeated at each hierarchical level until 
the mean degree of inter-modular links are κ2 =  6 and κ1 =  5 as we had in the nested random hierarchical net-
works. Scale-free networks generated using this preferential attachment rule achieve, on the limit of large and 
sparse networks, a degree distribution p(k) ∝  e−γ with γ =  (1 +  α)/α >  264. Tuning α in the range [0, 1) scale-free 
networks with exponent γ ∈  [2, ∞ ) are generated. The inter-modular links at the second level are planted using 
γ2 =  2.0 and the links between the four major modules at first level are placed with γ1 =  1.7. The function 
HMCentralisedGraph generates nested-modular hierarchical networks with the inter-modular links centralised, 
seeding the inter-modular links at each level with a preferential attachment rule of desired exponent γ.

Modularity preserving random graphs. Given a network with a partition of its N nodes into n communities we 
generated graphs with the same modularity but randomly connected. Therefore we first counted in the original 
network the number of links Lrs between any two communities r, s =  1, 2, … , n. So, Lrr are the number of internal 
links within the community r and Lrs are the number of links between nodes in community r and community s.  
Then, the generation procedure is the same as for the random modular networks but considering the specific 
number of links to be planted in each case. The resulting random networks have the same modularity q as the 
original network for the given partition. Modularity preserving random graphs were generated using the function 
ModularityPreservingGraph.

Ravasz-Barabási networks. The Ravasz-Barabási model is composed of a ring of N0 −  1 nodes connected to 
their first neighbours surrounding a central hub. To generate subsequent hierarchical levels every node becomes 
the central node of a copy of the original motif. Finally, the central nodes are connected to all the non-hub 
nodes in the lower hierarchical levels of the branch they belong to. The function RavaszBarabasiGraph creates 
Ravasz-Barabási networks with desired size N0 in the original motif and desired number of hierarchical levels.

Mapping functional connectivity from anatomical connectomes. The collective dynamics of cou-
pled systems depend on many factors such as the topology of the network (the structural connectome), the model 
chosen for the local node dynamics (e.g., Kuramoto oscillators, neural-mass models or spiking neurones) and the 
coupling function between them which determines how information is passed from one node to its neighbours. 
The purpose of the present paper is to investigate the influence of the connection topology while discarding 
as much as possible other influences. For that we propose a simple mapping to analytically estimate the func-
tional connectivity out of a structural connectome. This is accomplished by considering a diffusive model with 
non-linear (exponential) decay of information transmission at longer paths. The convenience of this mapping 
for the present purposes are twofold. First, it avoids internal parameters. The only free parameter controlling the 
collective behaviour is the strength of the connections. Second, it allows to analytically estimate the functional 
connectivity without the need to run otherwise time-consuming simulations.

In order to illustrate the nonlinear mapping we here propose, let us first revisit a widely used linear stochastic 
model. Given a network of N neural populations represented by the binary adjacency matrix A with Aij =  1 if node 
i sends a projection to node j and Aij =  0 otherwise, the firing rate ri of each population can be expressed following 
a generic rate equations, often also referred as the Wilson-Cowan model:

∑α η=− + Θ





+ +





=
r r g A r I ,

(2)
i i

j

N

ji j i i
1

where α is the inverse of the relaxation time, Θ (·) is a positive sigmoidal function, g the coupling strength, Ii an 
external input and ηi a noise term. Under the assumption of weak coupling the fluctuations xi of the firing rates ri 
around their mean can be linearised as:

∑α ασ ξ=− + +
=

x x g A x 2 ,
(3)

i i
j

N

ji j i
1

2

where ξi is now a Gaussian white noise with zero mean and unit variance, and σ its variance. This is also known as 
an Ornstein-Uhlenbeck stochastic process. Given the column vectors xT =  (x1, x2, … , xN) and ξT =  (ξ1, ξ2, … , ξN), 
the system can be rewritten in matrix form as:

α ασ ξ=− + + .


gx x A x 2 (4)T 2

The transpose of the adjacency matrix AT is important when the network is directed such that the dynamics 
of population i is determined by its inputs, not by its outputs. The covariance of this multivariate Gaussian system 
can be analytically estimated9,71 by averaging over the states produced by an ensemble of noise vectors ξ. Defining 
Q =  (1 −  g/αAT)−1, the covariance matrix is thus

σ
α

ξ ξ σ
α

ξ ξ σ
α

= ⋅ = ⋅ = ⋅ = ⋅ .COV X Q Q Q Q Q Qx x( ) 2 ( ) ( ) 2 2
(5)

T T T T T T
2 2 2

As stated above, the Gaussian diffusion process in Eq. (3) is a linear approximation of the fluctuations in 
Eq. (2) that is valid only for weakly coupled networks. Because the linear equation lacks of the sigmoidal function 
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Θ (·) which delimits the amplitude of the inputs received by a neural population, its solution diverges to infinity 
when g/α equals any of the eigenvalues of the adjacency matrix A3. In order to compare networks of different size 
and density, the coupling strength shall be normalised such that λ=g g/ max where λmax is the largest eigenvalue 
of A. For directed networks λmax is replaced by the largest norm of A’s complex eigenvalues. In this case the matrix 
Q is defined for all α∈g [0, ) and the solutions of Equations (3) and (4) converge. The α parameter, which is 
usually regarded as an important parameter that controls re-entrant self-activations of the neural population plays 
here a rather irrelevant role. It only re-scales the coupling, shifting the strength at which the network diverges but 
it does not change the functional form of the solutions. Hence, we will consider α =  1. We will also consider that 
g is the normalised coupling such that the system converges for g ∈  [0, 1).

We now explain the solution of the Gaussian diffusion model in terms of the graph properties of the under-
lying structural connectivity. Therefore we note that the matrix Q can be represented as the following series 
expansion:

∑=
−

= + + + + = .
=

∞
Q

gA
gA g A g A g A

1
11

(6)l

l l2 2 3 3

0

It is well-known that in a network the total number of paths of length l between two nodes is given by the 
powers of the adjacency matrix Al. This includes paths with internal recurrent loops. From this point of view we 
realise that Qji represents the total influence exerted by node j over node i, accumulated over all possible paths of 
all lengths. The relation between the structural and the functional connectivities is thus translated to understand-
ing how the state of one node propagates to all others along the intricate organisation of paths within the complex 
network. Previous work in this direction has shown that the capacity of neural random networks to display oscil-
latory behaviour depends on the distribution of cycles (re-entrant paths)72, reflected by a sudden change of the 
network’s topology when super-cycles are formed from merging of isolated loops.

From its series expansion we realise that the linear Gaussian diffusion model assumes that paths of any length 
are equally influential. The series only converge when the coupling is small enough such that the powers of gl 
decrease faster than the growth in the number of paths of length l represented by Al. In neural systems this sce-
nario is rather unrealistic since information fed into the system decays rapidly due to the stochasticity of synaptic 
transmission and to the interaction between excitatory and inhibitory neurones in local circuits. That is, informa-
tion does not perpetually propagate along the network and signals attenuate over longer processing paths. 
Empirical evidence from resting-state functional magnetic resonance has shown that, in general, the functional 
connections between regions with direct structural connections are stronger, but significant functional connec-
tions can also occur between regions without a direct connection73. While direct structural connections seem to 
play a major causal role in shaping the resting-state functional connectivity, the flow of information over alterna-
tive processing paths cannot be neglected. It is thus more natural to assume that shorter processing paths are more 
relevant than longer ones. Mathematically, the general problem is to find a set of coefficients {cl} for which the 
series ∑ =

∞ c Al l
l

0  converge for any adjacency matrix and coupling strength. Although the solution to this problem 
is not unique, a satisfactory solution is motivated by the measure of communicability in networks74,75. 
Communicability is a generalisation of the path-length on graphs to consider a general flow of information that 
favours short paths over longer paths without ignoring them. There is also indications that the communicability 
is the Green’s function of the network dynamics in case of diffusion processes, that is, the solution for the propa-
gation of a single, infinitesimal perturbation.

The communicability between two nodes i and j is defined as the exponential of the adjacency matrix (eA)ij. 
This can itself be decomposed into a series with coefficients cl =  1/l! and hence, we re-define the influence matrix 
Q in Eq. (6) as:

∑= = + + + + = .
=

∞
Q g A

l
gA g A g A e1

! 2! 3! (7)
exp

l

l l
gA

0

2 2 3 3

From a physical point of view this represents the diffusion of local perturbations along the network with 
nonlinear (faster) decay for longer paths75 and it has the advantage of being free of the divergence problem of 
the linear Gaussian propagator. In a network nodes interact only locally with their direct neighbours, however, 
local perturbations propagate and can be “sensed” by other nodes giving rise to correlations also between distant 
nodes. The intensity of that correlation is thus determined by two critical factors: (i) the structure of the paths 
along which the perturbation propagates and (ii) the attenuation that the perturbation experiences along the way. 
When g is weak, perturbations quickly decay giving rise to local correlations only around the perturbed node. As 
g grows perturbations propagate deeper inside the network giving raise to stronger correlations.

Following the argumentation above, we will compute the covariance matrices as in Eq. (5) but replacing the 
propagator kernel Q by Qexp in Eq. (7). Such a modification still keeps the simplicity and elegance of the original 
linear Gaussian process, but captures the physically plausible effects of convergence in the dynamical process. 
As shown in the Supplementary Information the results obtained with this simple mapping are consistent with 
those obtained after simulations of the networks using widely applied models for generic oscillatory and neural 
dynamics, e.g. Kuramoto oscillators and Neural-Masses.

A final note, because the coupling required to reach global synchrony depends on the size and the density of 
the network, the interesting range of g at which the transition happens is different in every case. For convenience 
and for illustrative reasons we normalise the adjacency matrix by its largest real eigenvalue λmax before the calcu-
lation of Qexp. We observed that this normalisation aligns the transition to synchrony for most networks to happen 
in the range g ∈  [0, 10).
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