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Musical interaction is influenced by 
underlying predictive models and 
musical expertise
ole A. Heggli  1, Ivana Konvalinka2, Morten L. Kringelbach  1,3 & peter Vuust1

Musical interaction is a unique model for understanding humans’ ability to align goals, intentions, 
and actions, which also allows for the manipulation of participants’ internal predictive models of 
upcoming events. Here we used polyrhythms to construct two joint finger tapping tasks that even 
when rhythmically dissimilar resulted in equal inter-tap intervals (ITIs). Thus, behaviourally a dyad 
of two musicians tap isochronously at the same rate, yet with their own distinct rhythmical context 
model (RCM). We recruited 22 highly skilled musicians (in 11 dyads) and contrasted the effect of 
having a shared versus non-shared RCM on dyads’ synchronization behaviour. As expected, tapping 
synchronization was significantly worse at the start of trials with non-shared models compared to trials 
with a shared model. However, the musicians were able to quickly recover when holding dissimilar 
predictive models. We characterised the directionality in the tapping behaviour of the dyads and found 
patterns mostly of mutual adaptation. Yet, in a subset of dyads primarily consisting of drummers, 
we found significantly different synchronization patterns, suggesting that instrument expertise can 
significantly affect synchronization strategies. Overall, this demonstrates that holding different 
predictive models impacts synchronization in musicians performing joint finger tapping.

Successful interpersonal interaction and communication is dependent on shared predictive models1–4. We under-
stand others’ actions by inferring their goals, beliefs, and attitudes5,6. Recently, musical paradigms have proven 
very useful for studying interpersonal interaction mechanisms, since precise predictive models can be easily 
experimentally manipulated (e.g tonality or meter) and quantified using interaction dynamics, which occur at a 
timescale of milliseconds7. Here we used a minimalistic musical paradigm to investigate the interactions between 
a dyad of two musicians having the same or different top-down predictions.

Humans are highly adept at coordinating movements with one another and do so often without noticing, 
which again influences social behaviour. Hence, interpersonal coordination may be a human predisposition, evi-
dent in behaviours such as the tendency towards synchronised walking8, or how dyads in rocking chairs attempt 
to synchronize even when the natural frequencies of their chairs are incongruent9. This tendency to synchronize 
movements is also visible in body movement in more complex interactions, such as the bodily synchronization 
during joke telling10. Synchronization in these tasks appears to be spontaneous, seemingly without conscious 
effort. In contrast, musical performance requires the ability to synchronize movements on-the-fly between per-
formers, and is a case of intentional interpersonal coordination. Music consists of temporally related sounds, 
where movements must be precisely coordinated both within and between performers11,12. Thus, in music, inter-
personal coordination is a result of intended joint action rather than a spontaneous occurrence or basal mimicry.

Much of interpersonal coordination research – and joint action more broadly – has been concerned with 
understanding the mechanisms that enable people to successfully coordinate with one another13 – specifically, 
the interplay between the top-down predictive and bottom-up reactive mechanisms. It is now well established 
that we make continuous predictions about the sensory consequences of our own actions, allowing us to attenu-
ate perceptions of predicted sensations and amplify salience of externally caused ones14. Prediction hence plays 
a major role in joint action, embedded within a common coding framework of action and perception, scaling 
across the what, when, and where of another’s actions - i.e. what another’s intention to act is, when they will act 
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temporally, and where in the common space they will act15. Joint action may thus best be understood within a 
predictive coding framework6,16–19.

Within this framework, perception and action are governed by top-down processing17. From the viewpoint 
of joint action, this means that assumptions about the interaction are translated into predictions of perceptual 
input – one person’s action output becomes another’s perceptual input, and vice-versa2. These predictions are then 
compared with the perceived input. If they are found to be incoherent, then bottom-up reactive signals serve as 
prediction errors towards the purpose of forming a revised assumption. In this sense, our interaction with others 
and the world as a whole relies on forming, testing, and revising predictive models6.

In music, the top-down predictions are formed not only by interactions, but also by an internal model of 
certain basic constituents of the music itself such as melody, harmony, and rhythm20. Manipulating these internal 
models for musical interaction provides a unique opportunity for experimentally manipulating and measuring 
the influence of the individual top-down predictions on joint action. In the present study we asked two partici-
pants to tap isochronously together, i.e. producing a rhythm based on holding one of two distinct meters (here 
called rhythmical context models, RCM).

Meter serves as a common denominator for most types of music, and especially Western music21. The meter is 
a hierarchical framework consisting of evenly spaced and differentially accented beats, providing to each metric 
position a timing and a metrical weight. Examples of different meters are the rhythmical framework underlying 
waltz (3/4) or march (2/4 or 4/4). The metrical weights are thought to linearly correspond to the strength of the 
expectation towards events occurring at these time points22. In other words, the more metrically salient a position 
is in the hierarchy, the stronger the expectation that events will occur at this metrical position. The ability to per-
ceive meter is fundamental not only to music, but also to language perception, and in motor control23. The ability 
to detect a regular pulse in auditory stimuli may be innate, as shown in EEG-studies demonstrating that infants 
(2–3 days old) are able to detect deviations in beat24.

Hence, rhythm perception is conceptualized as the interplay between the brain’s anticipatory structuring of 
music and what is heard, forming the RCM25. This model is not necessarily stationary and immutable, but rather 
constantly updated through the process of musical interaction. Examples of this would be the waxing and waning 
in tempo found in classical music, or in the organic change to double-time in a jazz performance26. In fact, since 
the meter is a mental model, it is possible to perceive a piece of music from the point of view of two different 
meters. In the case of a polyrhythm, two different perceptual interpretations of the exact same auditory stimulus 
may be equally plausible27.

A classic example of a polyrhythm is the 3-against-4 rhythmical pattern. It may be experienced by playing, 
for example on the drums, at the same time three equally spaced beats with one hand and four equally spaced 
beats with the other, so that the periods of both patterns add up at the same period of time. For such rhythmical 
patterns, it is possible to perceive the meter as either a duple meter (formally 4/4) with the three-beat pattern as 
the counter-metric pattern (Fig. 1a), or, alternatively, as a triple meter (formally 3/4) with the four-beat pattern 
as a counter-metric pattern (Fig. 1b)28,29. The rhythmic organization of the two interpretations in Fig. 1 is exactly 
the same, that is, the cross-rhythmic relationship between the two streams within each pattern is identical. These 
two experiences of the same polyrhythm (albeit with inverted instrumentation) are phenomenologically different 
and is thus analogous to ambiguous images such as Rubin’s vase, which can be seen either as a vase on black back-
ground, or as faces on white background28. As with Rubin’s vase30, cross-rhythm in music can sometimes cause 
perceptual shifts in which the metric model is reinterpreted as one (triple) or the other (duple).

Rubin’s vase is a visual example of ambiguous sensory input which is perceived different depending on the 
underlying mental models. Even though such fundamentally different perception probably often goes unnoticed 
during everyday interaction they occasionally surface, such as in the Internet phenomenon of 2015 of naming 
the colour of a dress (search for the widely used #theDress)31. However, interactions between perception when 
using different mental models and subsequent behaviour have never been studied experimentally. In the visual 
example above, the mental model switches involuntarily between the two percepts. For polyrhythm such as 3 
against four, however, it is possible to make skilled musicians maintain one stable meter (3/4 or 4/4) throughout 
a musical excerpt.

Here, we investigated the behavioural effects of holding one of two RCMs when producing and hearing 
the same rhythmic isochronous pattern (Fig. 2a). In more detail, we designed a joint finger-tapping paradigm 
which had identical rhythms, i.e. motor output, irrespective of whether the underlying RCMs were shared or 
non-shared. A shared RCM occurred when both participants were tapping the same rhythm, and hence having 
the same top-down predictive model (see Fig. 2c). In contrast, when one participant was tapping the polyrhythm 
and the other a straight rhythm, the dyad has two conflicting predictive models resulting in a non-shared RCM. 
Crucially, these rhythms can be constructed so that they result in an equal motor output, which allowed us to hide 

Figure 1. 3-against-4 pattern. In (a) the meter is 4/4 with the three-beat pattern as the counter-metric pattern. 
In (b) the meter is 3/4, with the four-beat pattern as the counter-metric pattern.
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the fact that the dyads were actually tapping different rhythms. Hence, we were able to quantify the effects of the 
internal predictive model on synchronization within the dyads. Previous research has emphasized the necessity of 
shared predictive models of successful interactions, and we therefore hypothesized that a non-shared RCM would 
result in decreased synchronization measures19. We expected this effect to occur due to discrepancy between the 
perceived stimuli and the internal predictive model. In particular, the polyrhythm used in the experiment has a 
bar length of 1.5 seconds whereas the straight rhythm has a bar length of 2 seconds. Thus, any rhythmical adjust-
ment done on the timescale of the bar will be different between the two.

Figure 2. (a) An illustration of how an isochronous rhythmic sequence with a 500 ms ITI can be resolved into 
two distinct rhythms – a 3-against-4 polyrhythm at 160 BPM, and a 4/4 straight rhythm at 120 BPM. (b) The 
two scenarios in our experiment. Participants either tapped along with a computer metronome – the non-
interactive condition; or in a bidirectionally coupled state. (c) An overview of the conditions, showing both the 
meter and the task. Note that condition A + B is balanced, so that both member 1 and member 2 performs the 
two distinct rhythms an equal amount of times.
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Further, based on earlier studies, we hypothesized that a leading-following strategy would be more promi-
nent in the non-shared RCM condition2,4 (for an overview of synchronization strategies, see Fig. 3). While the 
underlying mechanisms of synchronization strategies remains a topic of discussion, recent research suggests that 
mutual adaptation is the most efficient strategy and is premediated by a merging of self-other representation19. 
In joint finger tapping tasks, this would entail considering the auditory feedback created by the other as linked to 
one’s own action. In contrast, the leading-following strategy necessitates a consistent categorizing of the auditory 
feedback as belonging to the other person. In the non-shared RCM condition, we hypothesized that differences in 
tapping would force the members into considering the auditory feedback as dissociated from their own tapping. 
From this, one of the members, presumably the one with the most confidence in their own RCM, would then 
gravitate towards a leading role.

Figure 3. (a) An example of the lag analysis. Here, simulated data is shown exhibiting a mutual adaptation 
dynamic. In the first graph the ITI of a simulated sequence is shown. Cross-correlation is performed on the ITI 
timeseries, giving correlation coefficients for lag −1, 0 and +1. (b) An illustration of different synchronization 
strategies and their corresponding lag patterns. Mutual adaptation occurs when a perception-action loop is 
formed between the two members of a dyad, such that they equally weigh the incoming auditory stimuli from 
the other member, and their own model of the task. Leading-following depends on one of the dyad members to 
attenuate the information coming from the other member, here illustrated by the missing connection between 
the blue member’s tapping and the orange member’s headphone. As such, the leader puts more confidence 
in their own internal model. In the case of leading-leading, as observed in our experiment, both participants 
exhibit leading behaviour. Here, they both discard information from the other member and rather relies on 
their own model.
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Methods
Ethics statement. This study was conducted at the Center for Music in the Brain in the Department of 
Clinical Medicine at Aarhus University, and ethical approval were therefore governed by the Central Denmark 
Region Committees on Health Research Ethics. The committee found that the study was not considered a health 
research study according to the Act on Research Ethics Review of Health Research Projects (Act 593 of July 
14th 2011, section 14.1 and 14.2), and did therefore not require ethical approval (reference number 87/2016). 
Nonetheless, the experiment was performed in accordance with Aarhus University’s policy for responsible con-
duct of research and the Declaration of Helsinki. Participants signed consent forms and was informed that their 
participation was entirely voluntarily, and that they could exit the experiment at any time without any penalty 
to the payment for participation. In addition, participants were debriefed and given contact information to the 
researchers performing the experiment. The collected data were anonymized, and no national identification num-
ber was stored.

Paradigm. As we were interested in the interpersonal effects of the RCM, we decided to employ a joint fin-
ger tapping paradigm with bidirectional coupling – participant 1 received auditory feedback of participant 2’s 
taps, and simultaneously participant 2 received auditory feedback of participant 1’s taps. In addition, we added a 
non-interactive scenario where the participants tapped along with a computer metronome to serve as a baseline 
condition (Fig. 2b). Here, they did not receive any auditory feedback from their tapping. To constrain the amount 
of shared information within the dyads in the bidirectional condition we restricted auditory feedback from the 
tapping to only contain a transient sound of equal amplitude and length independent of tapping strength. This 
way the only information communicated between the pairs were their willingness to adapt, through adjusting 
their ITI.

Participants. In order to have participants that could reliably perform the 3-against-4 polyrhythm we 
recruited highly skilled musicians with normal hearing and no known sensorimotor nor neurological disorders. 
Participants were recruited predominantly from the Aarhus region, Denmark. A total of 30 paid volunteers par-
ticipated. They were paired depending on the time slots they signed up for, for a total of 15 pairs with both same 
and mixed gender. Out of these, 2 dyads were discarded due to their inability to reliably perform the polyrhythm, 
and one dyad were discarded due to figuring out the hidden condition. The remaining participants self-reported 
their musical abilities primarily as professional (n = 14) and semi-professional (n = 9), with one participant 
self-reporting as amateur. The participant’s mean age was 23.2 years (SD = 2.8), and 2 were female. Their exper-
tise as measured by the mean of years of formal musical training and years of actively playing ranged from 5 to 
24 years with a mean of 13.6 years (SD = 4.6). Most musicians had a percussion instrument (reported as Drums, 
Classical Percussion, Percussion, Cajon) as their primary instrument (n = 15), with the rest playing harmonic or 
melodic instruments such as the Piano, Guitar, Saxophone and Trombone.

Materials and apparatus. Two Arturia Beatstep MIDI controllers were used as tapping devices. MIDI from 
both devices were recorded on the computer running the experiment, using an M-Audio MIDI-to-USB con-
verter. In order to reduce latency between a participant’s tap and the resulting sound, we used two overclocked 
Teensy 3.0 microcontrollers, each with an SGTL5000-based audio board. These were connected to the gate voltage 
output on the MIDI controllers. Using a custom sound generating script, this resulted in tap-to-sound latencies of 
under 1 ms. The paradigm was programmed in Python, using PsychoPy32 and Pyo33, presented using a computer 
running Windows XP, with two monitors – one for each participant.

Stimuli. Each trial was initiated by one bar of an isochronous and unaccented metronome sound. The met-
ronome stimuli were made with a freely available click sound. For rhythm A, the metronome was four beats at 
120 BPM. For rhythm B, the metronome was four beats at 160 BPM. In the bidirectional scenario the metronome 
stopped after one bar. In the non-interactive scenario, the metronome continued throughout the length of the 
trial. In condition A + B the metronome for rhythm B started 500 ms later than the metronome for rhythm A, so 
that the participants would start tapping at the same time.

Task and procedure. Upon arrival, the members of each pair were given information on voluntarily partici-
pating in a research project, received task instructions, and signed consent forms. They were told that they would 
be participating in an experiment wherein we would be looking at the differences between playing a polyrhythm, 
and a straight rhythm. As in previous experiments their main objective was to “synchronize with the sound/
metronome, and try to maintain tempo”34. Participants were given examples of the two tasks they would be per-
forming - a 120 BPM 4/4 simple rhythm (condition A) and the triplet of a faster 160 BPM 3-against-4 polyrhythm 
(condition B), both resulting in an inter-tap interval (ITI) of 500 ms. They were told there would be two scenarios 
- a non-interactive computer scenario wherein they would be tapping along with a computer metronome, and an 
interactive bidirectional scenario wherein they would be tapping along with their partner. In the bidirectional sce-
nario the participants’ auditory feedback was the tapping of their partner, so that dyad member 1 heard member 
2’s tapping, and vice versa. In the non-interactive scenario, the participants only heard the computer metronome.

The participants were instructed that a metronome would always start the task with one bar of clicks, and 
images and text on the screens would inform them of which rhythm to play. Further, they were told to tap with 
their index finger on a marked pad on the MIDI interface, and to sit as still as possible with their eyes open look-
ing at a fixation cross during the actual tapping. Auditory stimuli were delivered using ER-2 insert earphones 
(Cortech Solutions), which provided an external noise reduction of >30 dB. Sound levels were set at a comfort-
able level for each participant. Participants were placed in the same room. While the dimensions of the room 
made it unfeasible to position the participants back-to-back, they were positioned such that no visual contact was 
possible without removing the earphones.

https://doi.org/10.1038/s41598-019-47471-3


6Scientific RepoRtS |         (2019) 9:11048  | https://doi.org/10.1038/s41598-019-47471-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

For the participants, there were four different tasks – non-interactive: playing a 4/4 simple rhythm (A) referred 
to as condition A, or the triplet in a 3-against-4 polyrhythm (B) referred to as condition B; and bidirectional: play-
ing rhythm A, or B. However, unbeknownst to the participants there were trials wherein one participant played 
rhythm A, and the other rhythm B (and vice-versa). This hidden condition, containing the non-shared RCM, is 
referred to as condition A + B (see Fig. 2c). Since we did not want the participants to know that they would be 
performing different rhythms at the same time, we informed them that they would always tap the same. As their 
goal ITI would remain the same in all conditions, this was technically correct. An overview of the conditions 
can be found in Fig. 2c. Each scenario had 100 trials, with 50 trials for each rhythm, for a total of 200 trials. This 
results in 25 trials per scenario for each possible combination of rhythms. Each trial lasted 12 seconds, with the 
first 2 seconds consisting of the metronome, and the rest of tapping.

Data analyses. The paradigm software produced files containing note-on and -off timestamps, which were 
pre-processed in MATLAB35. Only the tapping onset times were analysed, and missing data were dealt with by 
pair-wise deletion of the onset time. One pair of participants were excluded at this stage of the analysis due to 
excessive missing data (more than 25% trials with more than 25% missing taps). From the onset times we calcu-
lated the inter-tap interval (ITI), the time between two successive taps. Five outcome measures were calculated 
– ITIs, synchronization indices (SI), cross-correlations, signed asynchrony, and tapping variability as measured 
by the standard deviation of the asynchronies (SDasy). To quantify stability in synchronization behaviour we also 
calculated the trajectory of the SI during the trial by calculating the average SI at four timepoints consisting of 
four equal subdivisions of the taps in each trial, so that timepoint 1 represents SI in the first quarter of each trials, 
timepoint 2 represents the next quarter of each trial, etc. From MATLAB the data was exported to R for statistical 
analyses36. Averages are reported as mean with standard deviation in cases where a normal distribution exists, and 
median with interquartile range if the distributions did not pass the Shapiro-Wilk test.

To measure how well participants synchronised their tapping to either the metronome or each other, we used 
synchronization indices (SI). These are calculated based on the variance of relative phase between two signals, 
giving a unitless number ranging from 0 to 1, based on the following formula37:
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where N represents the number of taps in each trial, and θ1 and θ2 are the phases of each dyad member (or com-
puter metronome and participant in the noninteractive scenario). An SI of 1 represents perfect synchronization, 
and 0 no synchronization. For the non-interactive scenario, we calculated the SI with respect to the metronome 
signal for each participant, for each of the two rhythms (A and B). The resulting SI were then averaged per partic-
ipant per rhythm and compared using a Wilcoxon rank sum test. For the bidirectional scenario the SI were cal-
culated between the pair’s time series, indicating how well the participants synchronized to each other. To classify 
the effect of condition on synchrony while accounting for dyadic differences we used a linear mixed effects model 
(LMM) with the dyads as the random factor and condition as fixed effect38. A rank transformation was applied 
to the SI, and p-values were obtained by likelihood ratio tests of the model with a null-model retaining only the 
random factor.

Asynchrony in the bidirectional scenario was calculated as the difference between tap timing of partners 
in milliseconds. It is signed based on which person is the point of reference, so that when calculated with dyad 
member 1 being the reference, a positive asynchrony means that member 1’s tap precedes member 2’s tap, and 
a negative asynchrony the opposite. We calculated the mean asynchrony per trial. The standard deviation of the 
asynchronies (SDasy), was calculated by taking the standard deviation of the absolute asynchronies per trial, and 
gives an indication of the variability of the finger tapping. A high SDasy indicates that the participants are adjusting 
their taps over a wide range, whereas a low SDasy indicates a more stable and narrow adjustment range. We used 
the same LMM approach as described earlier to analyse both the signed mean asynchrony and the tapping varia-
bility (SDasy), with dyads as random factor, and condition as fixed effect.

To assess directionality in the interaction between the participants we calculated cross correlations at lag −1, 
0, and +1 between each dyad member’s tapping time series (Fig. 3a). The relation between these coefficients 
gives an indication as to how the dyad interacts. A perfectly synchronized trial with no variation in tempo would 
give high correlation at all lags, whereas a trial with high synchrony, but with some variation in tempo, would 
produce the highest correlation at lag 0. If a leader-follower dynamic is present, a positive correlation at either 
lag −1 or lag +1 occurs, depending on which participant is the follower (more adaptive one). This occurs due to 
one member, the follower, lagging one tap behind the leader. Mutual adaptation, wherein both members exhibit 
following behaviour leads to positive correlation at both lag −1 and lag +1, and negative correlation at lag 04. This 
lag pattern occurs due to both members constantly adjusting their ITI in opposite directions on a tap-by-tap basis 
causing the negative correlation coefficient at lag 0. Hence, they are both more correlated to the previous tap of the 
other dyad member, resulting in an oscillation around an optimal ITI and the corresponding positive correlation 
at lag −1 and lag +1 (for an overview, see Fig. 3).

A challenge in correlation analysis of timeseries such as these is the assumption of stationarity. One way of 
addressing this issue is to divide the data into overlapping windows, which comes at the cost of making data 
interpretation harder, due to the increasing risk of spurious correlations39. As our participants consisted of highly 
trained musicians, and our data showed highly stable ITIs, we decided to use conventional cross correlation over 
the entire trial length. To account for dyadic differences, we performed a two-way MANOVA with condition and 
dyad as dependent variables on the Fisher Z-transformed lag coefficients.
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Public significance statement. This study shows that when a pair of musicians thinks differently about a 
rhythm they play together, their performance is worse. However, they are able to recover back to normal perfor-
mance levels after a few taps. When musicians synchronize they use different strategies. Interestingly, we find that 
the strategies used by drummers may be different from other musicians.

Results
Synchronization indices. A likelihood ratio test revealed a significant effect of condition on synchroni-
zation in the bidirectional scenario (χ2 (2) = 13.03, p = 0.0015). We performed Bonferroni corrected post-hoc 
test, using the multcom package in R40. Here, we found that the SI was significantly lowered by approximately 
−0.023 (p = 0.0016) in condition B compared to condition A, and by approximately −0.021 (p = 0.0123) in con-
dition A + B compared to A (see Fig. 4). No significant difference between condition B and condition A + B were 
found, nor between the rhythms in the non-interactive scenario. In the trajectory analysis we performed three 
separate one-way ANOVAs of the rank-transformed SI over the four timepoints, for each of the condition, and 
a significant effect was only found in condition A + B (F(3, 2068) = 4.767, Bonferroni corrected p = 0.0077) (see 
Fig. 5b). A Tukey HSD test showed that the SI significantly increased between timepoint 1 and 3 (p = 0.008) and 
between timepoint 1 and 4 (p = 0.005). While the change in SI between timepoint 1 and 2 appears to suggest an 
increase, it only approached significance (p = 0.067). This means that the synchronization levels increased over 
time in condition A + B.

Tapping variability, SDasy. A highly significant effect of condition on SDasy was found using a likelihood 
ratio test (χ2 (2) = 16.5, p = 0.0003). The results mirror the findings from the synchronization index, summarized 
in Table 1. Due to this apparent similarity, we performed a correlation to determine their relationship. A Kendall’s 
tau-b correlation showed a strong negative correlation between SDasy and SI (tau-b = 0.496, p < 0.0001).

Cross-correlations. The cross-correlations of the dyads’ ITI were computed separately and averaged for 
each condition and for each dyad. A MANOVA using Pillai’s test statistic resulted in no effect of condition (Pillai’s 
trace = 0.317, F(6, 42) = 1.32, p = 0.2710), but a significant effect of dyad (Pillai’s trace = 1.668, F(33, 66) = 2.5, 
p = 0.0008). An FDR-corrected post-hoc test showed that dyad had a significant effect on all lags (Lag −1 
p = 0.0441, Lag 0 p < 0.0001, Lag +1 p = 0.0381), indicating a high between-dyad variability in their tapping 
strategy.

Inter-tap intervals. A likelihood ratio test showed significant differences in the participants’ ITIs between 
the non-interactive and bidirectional scenario. (χ2(1) = 5.43, p = 0.0198). In the non-interactive scenario, the 
median ITI for both rhythms was 500.24 ms (IQR = 498.9, 503.1), decreasing to 497.34 ms (IQR = 490.7, 510.1) 
in the bidirectional scenario. Three example trials can be seen in Fig. 5a. No significant difference between con-
ditions in either scenario was found.

Asynchrony. Overall, the participants exhibited a low mean asynchrony in the bidirectional scenario of only 
−3.64 ms (SD = 30.8). A likelihood ratio test on the absolute asynchronies only gave a close to significant effect of 
condition on asynchrony (χ2 (2) = 4.87, p = 0.0876).

Inter-dyad differences in tapping strategy. In order to explore the between-dyad variability in the 
cross-correlations, we clustered the data by dyad with the lag data as input using Ward’s clustering method 
(Fig. 6a)41. A similarity profile analysis using the R-package SIMPROF classified three clusters as significantly 
different at α < 0.0542. Visually inspecting the averaged lag coefficients shows that cluster 2 and cluster 3 both 
exhibit patterns resembling mutual adaptation, whereas cluster 1 shows little to no apparent pattern in its corre-
lation coefficients (Fig. 6b).

Figure 4. Synchronization per condition in the bidirectional scenario. Individual data points are shown as red 
dots, and the boxes represent the first and third quartiles, with the median shown as a dark line. P-values are 
obtained from Bonferroni corrected post-hoc test.
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To further classify these clusters, we looked at participants’ primary instruments, categorizing them as 1: 
drums & percussion (D/P), 2: harmonic & melodic (H/M). We also considered the combinations of primary 
instruments within a dyad by pairing them in three levels according to whether they consisted of two D/P 

Figure 5. In (a) representative trials from one dyad are plotted as the intertap interval in seconds over the 
number of taps, for the three conditions. In (b) we show the trajectory of the SI over four timepoints. The 
timepoints represent the median SI over four equal subdivisions of the taps for each trial. Error bars are 
bootstrapped 95% confidence intervals. P-values are obtained from a Tukey’s HSD test.

Synchronization measures in the bidirectionally coupled scenario

Condition A Condition B Condition A + B

SI 0.962 (IQR = 0.932, 0.973) 0.949 (IQR = 0.877, 0.969) 0.955 (IQR = 0.914, 0.969)

ITI 497.3 ms (IQR = 490.7, 506.7) 497.6 ms (IQR = 490.1, 517.1) 497.3 (IQR = 490.7, 508.2)

SDasy 29.6 ms (IQR = 25.2, 41.1) 33.8 ms (IQR = 27.7, 45.1) 32 ms (IQR = 26.6, 42.8)

Table 1. Overview of synchronization measure in the bidirectionally coupled scenario. Values are reported as 
median and interquartile range, due to non-normal distribution of data.
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participants, two H/M participants, or one of each. Further, we classified their experience defined as the mean of 
years of formal musical training and years of actively playing per participant. We compared these values between 
the clusters, in addition to the synchronization index and tapping variability. Only instrument and dyad pairing 
yielded a statistically significant difference (see Table 2).

Discussion
In cases of a non-shared RCM, participants performed significantly better at the end of the trials than at the start. 
This pattern was not seen in either of the conditions with an equal RCM. This indicates that the internal predictive 
models impact synchronization when performing joint finger tapping, even though the intended motor outputs 
in the different conditions are the same. In addition, we identified a subgroup of our participants exhibiting an 

Figure 6. Results from clustering the cross-correlations. A dendrogram of the resulting clusters is shown in (a), 
with colour indicating significant differences at α < 0.05. In (b), the averaged correlation coefficients for lag −1, 
lag 0, and lag +1 is shown for each of the clusters, with standard error of the mean error bars. Clusters 2 and 3 
can be described as mutual adaptation. Cluster 1 is an example with no clear pattern of interaction, that may 
come from both participants attempting to lead, causing a leading-leading pattern. Interestingly, this was found 
primarily in dyads with drummers.
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interaction pattern not reported in coupled interactions before – with very low correlation coefficients across lags 
−1, 0, and +1, as if they did not interact much with each other, while exhibiting stable tapping behaviour. The 
subgroup consisted primarily of drummers paired with drummers. Earlier studies primarily report two synchro-
nization strategies in coupled conditions, namely mutual adaptation and leading-following2,4,34. We observed a 
third possible strategy we term leading-leading, wherein synchronization occurs without any apparent dyadic 
interaction.

Spontaneous synchronization is thought to occur due to a merging of self-other representations, wherein an 
action-perception loop is created such that one person’s action output becomes another’s perceptual input, and 
vice-versa4,19,43. However, explicit synchronization as encountered in our study may be a more complex phenom-
enon. Musical rhythmic interaction relies on both maintaining the tempo and synchronizing with other perform-
ers, and thus participants may choose to weight these two aspects differently. In our study, we did not find any 
differences in inter-tap intervals between the bidirectional conditions. The participants performed at a median 
ITI of 497.34 ms, with an IQR of 490.7 ms to 510.1 ms. This is consistent with research on the just-noticeable 
differences in tempo sensitivity, which has shown a detection threshold of around 2% difference in sequences at 
500 ms44, and suggests that the RCM did not significantly influence our participants’ ability to maintain tempo.

While tempo remained relatively stationary, we found differences in synchronization measures. The dyads in 
our experiment exhibited an increase in SI in the trials with a non-shared RCM. This effect was significant when 
comparing the first 25% of taps in a trial with the third and fourth 25% of taps. While there was a trend towards an 
increase in SI in the second 25% of taps compared to the first 25%, this did not reach statistical significance. This 
effect was not found in neither condition with a shared RCM. A possible explanation here is that the participants 
start out by keeping their two distinct RCMs, but after recognizing that synchronization is impaired, they aban-
don their individual RCM and default to a following behaviour. This then leads to an interaction that, as a whole, 
does not exhibit a large negative effect on synchronization measures. When looking at the entire trials we found 
that condition A + B was in fact in between condition A and condition B in synchronization measures. The dyads 
achieved an average SI of 0.955 in condition A + B, as compared to 0.962 in condition A and 0.949 in condition B. 
Hence, the musicians in our study appear to be resilient to the effects of holding a non-shared RCM.

A plausible explanation of this observed behaviour is found in the brain’s tendency for computational opti-
mization. Viewed from the framework of predictive coding under the free energy principle, the brain constantly 
attempts to optimize its use of energy by minimizing the error between its predictions and the sensory input45. 
Thus, when humans are interacting, spontaneous synchronization may occur as a result of individuals minimiz-
ing the differences in self/other representations19. In our study, the decreased SI seen at the start of the non-shared 
RCM trials may represent the participants individually searching for a magnitude of variability wherein they are 
able to minimize the difference between self and other representation. Our data then suggests that explicit syn-
chronization such as rhythmic joint action may share many traits with spontaneous synchronization.

Previous studies on joint finger tapping in a bidirectionally coupled setting predominantly report mutual 
adaptation as measured by cross-correlations4,34. Similar patterns of interaction are also found in experiments 
studying, for instance, imitative hand movements46, in target directed tapping tasks47, and in piano perfor-
mance48. This type of behaviour, wherein participants constantly adapt to each other, is proposed to be the most 
energy efficient way of interpersonal coordination19.

Consistent with this, when analysing the lag coefficient of our participants we found that two out of three clus-
ters showed patterns in line with mutual adaptation. These two clusters included the majority of our dyads and 
differed only in strength of the correlation while retaining the same pattern. However, we found a third cluster 
which exhibited a lag pattern not indicative of either leading-following nor mutual adaptation (see Fig. 5b). The 
pattern, consisting of weak but positive correlations at all three lags, shows that there are little to no systematic 
interaction between the dyad members. Yet, the participants still achieve synchronized behaviour. A likely reason 
for this type of pattern to occur is if both participants are attempting to lead, and hence do not adapt to each other. 
This type of leading-leading-pattern is, to our knowledge, only previously observed in uncoupled interactions4.

The cluster found in our data did not show significant differences from the other two in terms of experience 
or synchronization measures, however, it did have a significantly higher occurrence of drummers and a higher 
occurrence of dyads consisting of drummers paired with drummers. In ensembles, and particularly in rhythmic 

Characteristics of clusters

Cluster 1 Cluster 2 Cluster 3 Statistical value

Instrument D/P = 5
H/M = 1

D/P = 0
H/M = 4

D/P = 8
H/M = 4 p = 0.033

Dyad pairing
D/P + D/P = 2
D/P + H/M = 1
H/M + H/M = 0

D/P + D/P = 0
D/P + H/M = 0
H/M + H/M = 2

D/P + D/P = 2
D/P + H/M = 4
H/M + H/M = 0

p = 0.048

Experience 12.62 (SD = 2.43) 14.31 (SD = 3.1) 13.13 (SD = 5.8) F(2,19) = 0.155 
p = 0.857

SI 0.911
(IQR = 0.676, 0.966)

0.9579
(IQR = 0.934, 0.979)

0.96
(IQR = 0.937, 0.973)

F(2,8) = 1.17 
p = 0.358

SDasy 12.6 ms, SD = 14.4 4.1 ms, SD = 2.9 4.8 ms, SD = 7.2 F(2,8) = 2.715 
p = 0.126

Table 2. Characteristics of clusters. For instrument and dyad pairing, we performed a Fisher’s exact test. For 
experience, SI and SDasy, a one-way ANOVA were performed. We report the median and interquartile range for 
data that was not normally distributed, and mean and standard deviation for normally distributed data.
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bands, drummers are usually expected to be the main timekeeper. They usually produce rhythmic patterns 
consisting of multiple actions on differing metrical levels, as exemplified by the archetypical four-on-the-floor 
rhythm found in disco, pop, EDM, and rock. This pattern exists on a 4/4 meter, with the bass drum being hit every 
beat, the snare every other beat, and the hi-hat usually every half beat. To play such a rhythm a higher internal 
stability is needed than in for instance more melodic or monophonic instruments such as the voice, or the saxo-
phone. Thus, one may argue that drummers are trained to be less metrically adaptive than other musicians.

It should, however, be noted that the cluster found in our data is relatively small, and individual differences 
or social factors could also play a large role in the observed data. For instance, synchronization is reduced when 
performing a repetitive task with a partner that arrives late49. As the two other clusters in our data also contained 
drummers, and dyads consisting of drummers paired with drummers, we would not generalize this effect to all 
drummers, but rather posit that this lag pattern may come about when two musicians that both are highly con-
fident in their own internal RCM interact. To further explore the factors underlying if this type of interaction a 
follow-up study is necessary.

It is well known that musicians’ skills depend on instrument, level of expertise, and which genre of music they 
predominantly perform in50–53. On a neuronal level, these differences may manifest in low-level processing such 
as the mismatch negativity (MMN), a pre-attentive component of the auditory event-related potential considered 
to be a prediction error signal54,55. EEG studies have shown differences in sensitivity and amplitudes in MMN 
responses between musicians belonging to different genres53,56. On a behavioural level, drummers have been 
shown to be better at certain rhythmical tasks, yet the extent of these differences between types of musicians 
are not yet fully understood57–59. It might well be that these differences do not fully manifest in the common 
single-person experiments typically used in research on rhythm perception and production. Interacting with a 
computer-generated pacing signal, even if such signal is adaptive, does not fully capture the intricacies of joint 
action. Our study is one of the first to show that instrument-specific differences on an individual level may also 
impact synchronization strategies in interpersonal interaction.

conclusion. We tested the effect of dyads having a shared or non-shared rhythmic context model on synchro-
nization in a joint finger tapping task. Having a non-shared model resulted in impaired synchronization at the 
start of a task, but the dyads recovered quickly. This suggests that in rhythmic joint action, musicians are able to 
efficiently adapt their own predictive models in order to facilitate interaction. Most dyads exhibited lag coefficient 
patterns indicative of mutual adaptation, except for a subset considering predominantly of drummers which 
showed a novel leading-leading-pattern suggesting little to no dyadic interaction. We find that a possible explana-
tion for this is that the drummer’s role in normal musical performance may differ from many other instruments. 
Drummers often serve the role of timekeeper and motorically require a higher degree of internal synchronization 
of motion. The finding is of high interest, as it complements the strategies of leading-following or mutual adapta-
tion in synchronization behaviour, by providing a third alternative wherein synchronization occurs without any 
apparent dyadic interaction. Further, it emphasises that differences between individual musicians, such as which 
instrument they play, also affect interpersonal synchronization strategies.

Data Availability
The data reported in this paper is available upon request. Due to data protection laws, a data processing agree-
ment may be required.
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