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Abstract

Interpersonal coordination is a core part of human interaction, and its underlying mechanisms have been extensively

studied using social paradigms such as joint finger-tapping. Here, individual and dyadic differences have been found to

yield a range of dyadic synchronization strategies, such as mutual adaptation, leading–leading, and leading–following

behaviour, but the brain mechanisms that underlie these strategies remain poorly understood. To identify individual brain

mechanisms underlying emergence of these minimal social interaction strategies, we contrasted EEG-recorded brain

activity in two groups of musicians exhibiting the mutual adaptation and leading–leading strategies. We found that the

individuals coordinating via mutual adaptation exhibited a more frequent occurrence of phase-locked activity within a

transient action–perception-related brain network in the alpha range, as compared to the leading–leading group.

Furthermore, we identified parietal and temporal brain regions that changed significantly in the directionality of their

within-network information flow. Our results suggest that the stronger weight on extrinsic coupling observed in

computational models of mutual adaptation as compared to leading–leading might be facilitated by a higher degree of

action–perception network coupling in the brain.
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Introduction

Humans are inherently social, as evident across a wide range

of social behaviours and the importance we place on social

interactions. In fact,many of the conditionswe deempsychiatric

disorders, such as autism or social anxiety disorder, manifest as

abnormal social functioning (Young, 2008; Schilbach et al., 2013,
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2016; Bolis et al., 2017). Recently, theoretical and technological

advances in behavioural and brain science havemade it possible

to study social interaction not in isolation, but rather within

a framework assuming multiple interacting agents (Frith, 2007;

Koban et al., 2017; Redcay and Schilbach, 2019). A particularly

important aspect of social interaction is interpersonal synchro-

nization, defined as the adjustment of rhythmical movements
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or actions based on interaction with each other. Interpersonal

synchronization affects not only how we interact but also how

we perceive and relate to other people (Hove and Risen, 2009;

Cirelli et al., 2014; Stupacher et al., 2017a,b). This type of syn-

chronization can emerge spontaneously, such as in the tendency

for synchronized behaviour in walking, joke telling and general

body movements, or with intention, such as in musical perfor-

mance or dance (Richardson et al., 2007; van Ulzen et al., 2008;

Schmidt et al., 2014; Stupacher et al., 2017a). In recent work,

we have shown how interpersonal dynamics in synchronization

tasks can be modelled using a network of coupled oscillators

(Heggli et al., 2019a). We proposed that interpersonal synchro-

nization strategies such asmutual adaptation, leading–following

and leading–leading rely on action–perception links modulated

by individual decisions to integrate or segregate information

related to self-produced actions and the perception of other-

produced actions (Milward and Sebanz, 2016; Novembre et al.,

2016; Koban et al., 2017; Heggli et al., 2019a).While there has been

a considerate amount of research on the nature of these types of

interpersonal synchronization strategies, we know little about

the underlying neural mechanisms (Konvalinka and Roepstorff,

2012; Koban et al., 2017).

Joint finger-tapping paradigms offer a controlled, minimalis-

tic approach to study intentional interpersonal synchronization.

Here, participants are paired in dyads and are asked to tap a

simple rhythm together, with the task to ‘maintain the tempo

and synchronize’ (Konvalinka et al., 2010; Gebauer et al., 2016;

Heggli et al., 2019b). Despite the relative simplicity of such a

paradigm, complex dyadic dynamics can be observed during

the interaction, in particular, in the way participants adjust

their tapping to each other. This can be measured by calculat-

ing lagged cross-correlation coefficients between the interact-

ing participants’ intertap intervals. This is shown in Figure 1A,

where cross-correlation coefficients at lag −1, lag 0 and lag +1

create characteristic lag patterns during synchronized interac-

tion. These patterns and in particular the balance between lag

−1 and lag +1 are indicative of the synchronization strategy.

The most prominent synchronization strategy, mutual adapta-

tion, emerges when the participants mutually and continuously

adjust their upcoming tap based on the other’s previous tap

(Konvalinka et al., 2010; Gebauer et al., 2014). This results in a

positive correlation at both lag+1 and lag−1, and usually a nega-

tive correlation at lag 0, indicating that the participants’ intertap

intervals oscillate reciprocally around each other (Konvalinka

et al., 2010). Leading–following occurs when one participant uni-

laterally decides to decouple from the other, placingmore impor-

tance on maintaining their own accuracy and stability than the

collective synchronization (Konvalinka et al., 2014). These two

synchronization strategies have been reported across multiple

studies, with mutual adaptation being the most common to

emerge when participants have the same task constraints (Kung

et al., 2013; Konvalinka et al., 2014; Gebauer et al., 2016). Recently,

a third interpersonal synchronization strategy, ‘leading–leading’,

was reported in musicians (Heggli et al., 2019b). Leading–leading

is characterized by a weakly positive correlation at all three

lags, indicating that there is little to no adaptation between the

dyadmembers.Resisting adaptation is a general characteristic of

leaders in joint finger-tapping (Fairhurst et al., 2014; Konvalinka

et al., 2014). These synchronization strategies, like many aspects

of human social interaction, are likely dynamic in their nature.

However, due to the short trials (10 s) in the current experiment,

and the need for multiple finger taps to establish a lag pattern,

here we treat them as stationary (Konvalinka et al., 2014).

Previous neurophysiology research has shown that leaders

and followers in coupled interaction can be distinguished

by a stronger suppression of frontal alpha activity in EEG

among leaders; interbrain synchronization across alpha,

beta and gamma band oscillations during imitation tasks;

and differences in patterns of directed inter-brain coupling

(Dumas et al., 2010; Sänger et al., 2013; Konvalinka et al., 2014).

However, research on symmetric interaction dynamics has in

general been focused on finding neural differences between

synchronized and non-synchronized behaviour, rather than

differences in synchronization strategies (Tognoli et al., 2007;

Dumas et al., 2019). For instance, suppression of the mu rhythm

has been linked to dyadic synchronization levels, and a right

centroparietal oscillatory component termed the phi complex

has been proposed to reflect the partner’s influence on produced

actions in dyadic interactions (Tognoli et al., 2007; Fitzpatrick

et al., 2019). While many of these studies report effects in the

alpha frequency band, there is also evidence for the involvement

of beta frequency band in interpersonal synchronization. For

instance, in-phase transcranial alternating current stimulation

over the left motor cortex at 20 Hz across interacting dyads

enhanced behavioural synchronization in a joint finger-tapping

task (Novembre et al., 2017). Taken together these studies

indicate involvement of multiple complementary mechanisms

in dyadic synchronization.

In this exploratory study, we aimed to identify differences

in neural mechanisms across alpha and beta band frequencies

related to interpersonal synchronization strategies inmusicians.

We used a dual-EEG dataset based on a recent joint finger-

tapping experiment, wherein the interacting musicians exhib-

ited either a leading–leading or mutual adaptation synchroniza-

tion strategy (for behavioural results, see Heggli et al., 2019b).

Here, our approach was to investigate how within-brain pro-

cesses are modulated by interpersonal behaviour. We used a

connectivity-centred approachwherewe analyzed howdifferent

areas of the brain dynamically form temporal networks exhibit-

ing coherent activity. In this framework, cognition is thought

to involve a coordinated integration of information between

brain areas, through metastable networks that collectively form

a repertoire of brain states (Cabral et al., 2014; Deco et al., 2015;

Lord et al., 2019). Such functional networks have been observed

across neuroimaging modalities, both during rest and in active

tasks (Deco et al., 2011). To identify time-varying and transient

brain networks related to synchronization strategies,we adapted

the recently developed Leading Eigenvector Dynamics Analysis

(LEiDA)method (Cabral et al.,2017). Thismethod captures instan-

taneous phase-locking patterns (PL states) in the EEG signal and

uses a clustering algorithm to identify recurrent PL states that

consistently occur across all participants. Following the identifi-

cation of PL states,we can identify between-group differences by

statistically quantifying the group-dependent occurrence prob-

abilities of PL states. To further distinguish differences in neural

mechanisms between synchronization strategies, we also cal-

culated directed phase transfer entropy (dPTE), a measurement

of information flow between brain regions (Hillebrand et al.,

2016). This approach hence allows for identifying both how the

leading–leading and mutual adaptation synchronization strate-

gies differ in terms of the occurrence probability of functional

brain networks and the information flow within networks. By

employing these two complementary data-driven approaches,

we investigated the differences in brain networks between dyads

mutually adapting to each other and the mutually non-adaptive

dyads (leading–leading). We use these differences to infer brain

networks involved in self–other integration.
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Fig. 1. Overview of the paradigm and behavioural data. In (A), a joint finger-tapping paradigm is illustrated. Two participants tap together, in a bidirectionally coupled

setting so that dyadmember 1 hears dyadmember 2, and vice versa. For the data used in the study, all trials had a target intertap interval (ITI) of 500 ms. Their resulting

time series of intertap intervals is then cross-correlated at lag −1, lag 0 and lag +1. The pattern from this correlation indicates synchronization strategy. In (B), we show

the behavioural results from the data used in this study. Here, N signifies the included participants in each group. One subset of participants, consisting primarily of

drummers paired with drummers exhibited a leading–leading strategy, here shown on the left in group 1. The two other significantly different subsets of participants

both exhibited a mutual adaptation strategy, with differing strengths in the pattern. For further details, see Heggli et al. (2019b). For this study, we collated the two

instances of mutual adaptation, shown here on the right as group 2.

Methods

The behavioural results of the experiment presented here have

been previously reported in Heggli et al. (2019b). For clarity, a brief

description of the participants, protocol and behavioural results

is included below.

Ethics statement

The experiment was conducted at the Center for Music in the

Brain, Department of Clinical Medicine at Aarhus University,

Denmark. Ethical approval was governed by the Central

Denmark Region Committees on Health Research Ethics, which

found that the study was not considered a health research study

in accordance to the Act on Research Ethics Review of Health

Research Projects (Act 593 of 14 July 14 2011, Sections 14.1

and 14.2 (reference number 87/2016)). Hence, the experiment

was conducted in agreement with Aarhus University’s policy

for responsible conduct of research and the ethical guidelines

for experiments with humans in the Declaration of Helsinki.

Signed consent forms were collected for each participant, and

information on the voluntarily nature of the experiment was

given.

Participants

About 22 musicians forming 11 dyads were included in the

dataset, with a mean age of 23.2 years (s.d.=2.8). Participants

self-reported their musical abilities as professional or semi-

professional (n =21), with one self-reporting as amateur.

Task and procedure

The participants were instructed to perform one out of two

rhythms, a simple 4/4 rhythm at 120 beats per minute (BPM),
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or the triplet of a 160 BPM 3-against-4 polyrhythm, according

to instructions shown on a computer screen. Both these tasks

result in an intertap interval of 500 ms. They were either tapping

together with a computer metronome or with each other with

bidirectional auditory coupling. The paradigm contained 200

trials of 12 s, with the first 2 s consisting of a metronome count-

in. Participants were placed in the same room, yet at an angle

so that no visual contact was achieved. They were instructed to

tap on a MIDI pad using their right index finger and to look at

a fixation cross on the computer screen during tapping while

attempting to minimize other movements. The auditory stimuli

were delivered using ER-2 insert earphones (Cortech Solutions),

with sound levels set at a comfortable level for each partici-

pant. As we were interested in interpersonal synchronization

strategies, we here only considered the 100 trials in which the

participants were interacting with each other.

Behavioural results

We classified the synchronization strategies by the pattern of

cross-correlation coefficients of the dyads’ intertap intervals at

lag −1, 0 and+1. We measured the average cross-correlations

over all trialswherein the dyadswere interactingwith each other

and clustered the data using Ward’s clustering method. Three

clusters were found to be significantly different at α <0.05 using

a similarity profile analysis, shown in Figure 1B. Two of the clus-

ters exhibited lag coefficient patterns compatible with mutual

adaptation, whereas the third cluster exhibited the leading–

leading pattern. When assessing the clusters, we categorized

the participants primary instruments as either drums/percus-

sive or harmonic/melodic and found a significant difference in

the primary instruments (Fisher’s exact test, P =0.033) and in

the dyad pairing (Fisher’s exact test, P =0.048), but no differ-

ence in musical experience, synchronization index nor tapping

variability (Heggli et al., 2019b). For the purpose of differentiat-

ing between the leading–leading and mutual adaptation syn-

chronization strategies, we grouped the two clusters of partic-

ipants exhibiting mutual adaptation together into one group

(consisting of 8 dyads, hence 16 participants) and the partic-

ipants exhibiting the leading–leading strategy into the second

group (3 dyads, 6 participants) (see Figure 1B).

EEG data acquisition and processing

Continuous dual-EEG data were recorded from 32 scalp sites

using Ag/AgCl impedance-optimized active electrodes (actiCAP,

Brain Products, Germany). The electrodes were placed according

to the extended international 10–20 system. Recordings were

performed simultaneously from both members of each dyad

using two identical BrainAmp MR amplifiers, recorded through

the same software interface in order to achieve synchronized

recordings (BrainVision, Brain Products, Germany). Electrode

impedances were measured to <25 kOhm at start of recording.

An online high-pass filter at 0.1 Hzwas applied during recording,

and the data were digitized at a sampling rate of 1000 Hz.

EEG data preprocessing

The EEG data were preprocessed using the MATLAB software

toolbox FieldTrip (Oostenveld et al., 2011). For artefact removal

we first epoched all the trials from −3 s before trial start to 14 s

after metronome start. We applied a band-stop filter at 50, 100

and 150 Hz to account for power line noise and a high-pass filter

at 1 Hz to remove slow drifts in the data. The data were visu-

ally inspected for each subject, and trials exhibiting clear non-

cortical signals were removed. In addition, for eight subjects one

or two noisy electrodes were removed (mean=1.25 electrodes).

At this point, one subject was rejected due to excessively noisy

signals (time-locked abrupt amplitude changes corresponding to

finger tap events were present in all electrodes, likely due to

head movements). Following visual inspection, we used inde-

pendent component analysis (ICA) to extract eye blink compo-

nents, and identified an average of two components per partic-

ipant (Jung et al., 2000). After reconstructing the signal without

the identified eye blink-related ICA components, we replaced

any missing electrodes using the average of its neighbours and

re-referenced the data to the average overall electrodes.

Source reconstruction

To harmonize our results with existing literature on functional

connectivity and to make inferences about interacting brain

regions (which cannot be done in sensor-level analysis of func-

tional connectivity in EEG), we performed source reconstruction

(Lai et al.,2018).We usedminimum-norm estimation in FieldTrip,

using a template standard head model (Oostenveld et al., 2003)

and a cortical sheet with 5124 vertices (Tzourio-Mazoyer et al.,

2002), as illustrated in Figure 2A. The preprocessed EEG data

were down-sampled to 250 Hz, and estimation was performed

on a per-epoch basis with noise covariance calculated over the

400 ms prior to trial start, retaining only the data from trial

start to trial end (12 s). To partly alleviate limited spatial reso-

lution and to harmonize our analysis with existing research on

functional connectivity, we parcellated source-resolved signals

into 39 regions of interest (ROIs) using a parcellation template

from Colclough et al. (2015). This parcellation is based on MEG-

acquired resting state data and is connectivity based as opposed

to anatomically based. This parcellation offers a relevant selec-

tion of regions, as well as a conservative number of ROIs which

made it well suited for our low-density EEG array. Nonetheless,

the limited spatial precision of the source-resolved signal should

be noted. (For a list of ROIs, and their centre of gravity, see

Supplementary Table 1.) This procedure was applied to each

subject separately, resulting in 21 N × T matrices, with N =39

representing the brain ROI and T ranging from 238650 to 310000

due to removal of noisy trials (161 out of a total of 2100 trials) in

the preprocessing step.

Dynamic phase-locking analysis

To calculate the phase alignment between each pair of brain

regions, we first filtered the data into two frequency ranges

of interest, the alpha range (8–12 Hz) and the beta range (12–

30Hz), using a sixth-order Butterworth bandpass filter to achieve

a steep cut-off, illustrated in Figure 2A (Sharma et al., 2017; Oh

et al.,2018). These two frequency rangeswere chosen due to their

prevalence in the EEG literature considering interpersonal syn-

chronization (Tognoli et al., 2007; Babiloni et al., 2012; Konvalinka

et al., 2014; Novembre et al., 2016, 2017; Dumas et al., 2019). Due to

the high temporal resolution of the data, we chose a windowed

approach wherein we first estimated the phases at each sample

point, t, using the Hilbert transform. Following this we calculated

a dynamic phase-locking matrix dPL (n1,n2,w), which estimates

the phase alignment between brain areas n1 and n2 at time

window w using the circular mean over 50 non-overlapping

samples, as shown in Equation 1. To calculate the circular mean,
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Fig. 2. In (A), the source reconstruction process is illustrated. Electrode positioning is illustrated on a template standard head model, with a cortical sheet inside. The

minimum-norm estimation of source activity was parcellated into 39 brain regions, here illustrated by a horizontal section. Example data from one brain region was

shown unfiltered in grey and filtered to 8–12 Hz in red. In (B), we illustrate the LEiDA analysis. In 1, the instantaneous phase at time t is shown for the 39 brain regions,

illustrated as arrows located on the centre of gravity of each region. In 2, the phases are shown in the complex plane, and 3 shows the resulting phase-locking matrix at

time t. The leading eigenvector,V1, of the phase-lockingmatrix is shown in 4. This vector captures themain orientation of the phases at a given time, and each element

corresponds to its projection into the vector, here illustrated as a bar plot. We divide the elements into two communities, with red indicating a projection that has a

higher value than the mean of the eigenvector and blue indicating a value below the mean. In this study, we calculate one V1 for each time window of 200 ms, shown in

5. The resulting V1’s is then clustered using k-means clustering, here shown as an example for k = 3 in panel 6. Each cluster is represented by a cluster centroid vector,

which is considered a recurrent phase-locking pattern (PL state). In 7, we show the resulting brain network for elements in the cluster centroid which are positive in

relation to the mean.
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we used the CircStat toolbox in MATLAB (Berens, 2009). In com-

parison to the commonly used phase-locking value (PLV) which

is close to 1 when there is little variation in phase difference over

time, our measure reaches 1 when there is no phase difference

between the two signals at a given timepoint and−1 when the

phase difference is 180◦ (Lachaux et al., 1999; Lord et al., 2019).

The window size of 50 samples, corresponding to 200 ms, was

chosen due to the observation of fast transient brain networks

occurring at this timescale in magnetoencephalography studies

(Baker et al., 2014; Vidaurre et al., 2016):

dPL (n1,n2,w) = α (cos (θ (n1, t1..50) − θ (n2, t1..50))) (1)

This resulted in a three-dimensional dPL for each subject

with size N × N × W, where N =39 is the number of brain areas

andW is the number of timewindows, ranging from4773 to 6200.

Leading eigenvector dynamics analysis

To investigate the temporal dynamics of the dPL we adapted the

LEiDA method (Cabral et al., 2017). Here, the leading eigenvector

of the dPL is calculated for each window w, resulting in a 1× N

vector capturing the main phase orientation over all regions

illustrated in Figure 2B. We then calculate the mean value of

the elements in the vector and divide the brain regions into

two communities based on their relation to the vector mean.

Using this approach, we capture the dominant connectivity pat-

tern for each window and are able to substantially reduce the

dimensionality of the data, now consisting of 120 218 vectors in

total.

Phase-locking states and occurrence probability

To identify a discrete number of PL patterns, we used a k-means

clustering algorithm to divide the collated PL eigenvectors into a

predefined number of clusters, k. We illustrated this for k =3 in

Figure 2B.Here, an increase in kdivides the data into increasingly

finer patterns. There is as of yet no consensus on the optimal

number of functional networks to consider in task-related EEG

data, and we therefore chose a wide range with k ranging from

4 to 20 (Lord et al., 2019). The k-means clustering algorithm was

run using the squared Euclidean distance for optimization, with

50 repetitions for each k and a maximum of 200 iterations. From

this clustering we obtain k cluster centroids in the shape of 1× N

vectors. These vectors represent recurrent PL states found by the

clustering algorithm. Subsequently, we obtain the occurrence

probability for each of these PL states per k by calculating the

number of windows assigned to a given PL state divided by the

total number of windows, per group.

Selecting the optimal k

We assessed statistical difference in the occurrence probabilities

for each single PL state between groups using a permutation-

based two-sample t-test with 5000 permutations, for each level

of k. Subsequently, to account for the increased chances of find-

ing false positive due tomultiple comparisons,we used a thresh-

old wherein significance was defined as α = 0.05/k, functioning

as a per-k Bonferroni correction. As the aim of the current study

was to identify differences between the two groups, we selected

the k that best detected difference in occurrence probability for

PL states. For the alpha frequency range, this was found for one

state with k =13. However, in the beta frequency range, none

of the comparisons were significant at the threshold level (see

Supplementary Figure 1).

Within-network information flow analysis

While the LEiDA analysis allowed us to identify PL states con-

taining brain networks of interest, it does not measure informa-

tion flow within these networks. Furthermore, as the PL states

found by LEiDA are based on decomposing the connectivity

matrix using the leading eigenvector, it only finds the most

prominent brain network at a given time. To better understand

the activity within networks, we used phase transfer entropy

(PTE) to assess the brain regions’ preferred direction of infor-

mation flow (Lobier et al., 2014). PTE is a measure of the causal

influence of a source signal on a target signal, which we calcu-

lated between all brain regions in the network of interest per

trial, following the procedure described in Hillebrand et al., 2016.

To obtain a measure of preferred directionality, the directed PTE

(dPTE), we normalized the PTE using the following equation:

dPTEn1,n2 =
PTEn1,n2

PTEn1,n2+PTEn2,n1
. Here, n1 and n2 are two brain regions,

and PTE is the phase transfer entropy between them. The value

of dPTEn1,n2 ranges from 0 to 1, and when the preferred direc-

tion of information flow goes from brain region n1 to n2, it is

bounded 0.5 < dPTEn1,n2 ≤ 1. On the other hand, if information

preferentially flows from brain region n2 to n1, it is bounded

0 ≤ dPTEn1,n2 < 0.5. We averaged the dPTE matrix for each

participant and then calculated the mean dPTE per brain region

in a network of interest. To statistically quantify differences in

within-network information flow between the two groups of

participants, we used a permutation-based t-test with 10 000

permutations for each brain region, with FDR correction.

Results

We found significantly different between-group occurrence

probabilities for one of the PL states in the alpha frequency

range (PL state 3, P =0.0031, α =0.0038, see Figure 3A). This

state is characterized by a predominantly right-lateralized

temporoparietal network, consisting of 13 brain regions. This

network exhibits contributions from, amongst others, the right

temporoparietal junction, right supramarginal gyrus, right

auditory cortex, right somatosensory cortex and right middle

temporal cortex and thus covers important structures related

to action and perception (Zatorre et al., 2007). The leading–

leading group was significantly less likely to exhibit this PL state

compared to the mutual adaptation group (5.12% (s.d.=1.35) vs

6.64% (s.d.=0.9), respectively).

The within-network analysis indicated that four regions

exhibited significant difference in directionality of information

flow: right somatosensory cortex (rSSC, P =0.0416), right

precuneus (rPCUN, P =0.004), right supramarginal gyrus (rSMG,

P =0.0389) and right middle temporal cortex (rMTC, P =0.0416).

In the mutual adaptation group, the rSSC, rSMG and rMTC

were predominantly transmitting information, whereas in

the leading–leading group, these regions were predominantly

receiving information. For the mutual adaptation group, the

rPCUN was predominantly sending information, whereas in

the leading–leading group, it was predominantly receiving

information. These values are summarized in Table 1. The

preferred direction of information flow for the regions in the

network is illustrated on a cortical surface in Figure 4A, and the

individual connections from each of the significant regions are

illustrated for both groups in Figure 4B.
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Fig. 3. (A) shows the PL state determined to be significantly different in occurrence probability between the group of participants exhibiting the leading–leading strategy

and the group of participants using the mutual adaptation strategy. In 1, the network nodes and connections are shown, and 2 shows the occurrence probability in

percent for this state. L/L indicates leading–leading and MA indicates mutual adaptation. In 3, the PL state eigenvector is shown, with red indicating regions forming

the brain network.

Table 1. Mean dPTE for the significantly different brain regions

Region rSSC rPCUN rSMG rMTC

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

1: Leading–leading 0.5029 0.0027 0.4976 0.0023 0.5010 0.0015 0.5020 0.0027

2: Mutual adaptation 0.4995 0.0026 0.5018 0.0017 0.4975 0.0030 0.4986 0.0028

Discussion

This study is one of the first to investigate dynamical functional

connectivity differentiating interpersonal interaction strategies

in joint action. We found that the dyads exhibiting the mutual

adaptation strategy and those exhibiting the leading–leading

strategy differed both in their occurrence probability of a

transient right-lateralized temporoparietal brain network and

in the activity within this network. This network’s primary

contributors include auditory areas, motor regions, the right

supramarginal gyrus and the right temporoparietal junction,

as illustrated in Figure 3A. The network hence covers regions

crucial for both action and perception (Zatorre et al., 2007;

Burunat et al., 2017).We found that the mutual adaptation group

was characterized by having a higher occurrence probability

of this network as compared to leading–leading group. When

analysing the information flowwithin the network,we find a key

difference in the direction of information flow in the
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Fig. 4. Information flow within the PL state 3 network. In (A), the information flow within this network for both synchronization strategies, as calculated with dPTE,

is shown. Here, the dPTE is centred to 0, so that a positive value indicates that a brain region is predominantly sending information (shown in red) and a negative

value indicates that it is predominantly receiving information (shown in blue). On the right is the contrast, calculated as Group 1 minus Group 2, with negative values

in blue and positive values in red. In (B), we illustrate the network connections, considering the four regions (rSSC, rPCUN, rSMG and rMTC, shown on the top) which

were significantly different in their mean dPTE between the two groups. A red line indicates information outflow, and a blue line indicates information inflow. For the

four significantly different regions, we plot their relation to the remaining nine regions in the network, here shown in the staggered bottom row. In addition, we also

illustrate the information flow between the four significantly different regions on the top, which are then symmetric due to the nature of dPTE.

somatosensory cortex, precuneus, supramarginal gyrus and

middle temporal cortex. During mutual adaptation, the right

somatosensory cortex receives information from the right

auditory cortex, whereas this relationship is reversed in

leading–leading, possibly indicating that the auditory perception

to a lesser degree influences somatosensory perception in

the leading–leading group. In mutual adaptation the right

supramarginal gyrus acts as a receiving hub, whereas in

leading–leading it predominantly transmits information, in

particular to the right temporoparietal junction and the right

inferior parietal cortex. The strongest difference is found in the

right precuneus, which during leading–leading predominantly

receives information, whereas it transmits information to

multiple regions duringmutual adaptation.One should note that

the spatial resolution in our source-resolved EEG signal is limited

and further studies are necessary to clarify our findings in regard

to accurate locations. Nonetheless, our results suggest that

mutual adaptation and leading–leading are differentiated by

information flow within a transient action–perception-related

functional brain network.

While the mechanisms underlying interpersonal synchro-

nization share many similarities with physically coupled sys-

tems, the key difference is that coupling between humans is

mediated via perceptual links (Koban et al., 2017). In addition,

research indicates that merely perceiving the action of oth-

ers is not sufficient for synchronization to occur, but rather,

active attending is necessary (Richardson et al., 2007). Hence,

this necessitates recruitment of brain processes underlying both

action and perception during interpersonal synchronization.

Further support for our findings comes from previous

work employing neurophysiological measures to investigate

differences in synchronization andnon-synchronized behaviour.

In the previous EEG research, Tognoli et al. reported two

oscillatory components termed the phi complex located above

the right centroparietal cortex, a proposed measure of external

influence on actions in dyadic synchronized behaviour (Tognoli

et al., 2007). While these components were identified by their

amplitude and were restricted to a narrow frequency band,

their overlapping location with the network observed here is

of interest. Similar findings looking at inter-brain measures

report increased neural synchronization in centroparietal

regions, and in particular the right parietal region, similar in

topology to the network observed in our dataset (Dumas et al.,

2010, 2019). This suggests involvement of parietal structures

in synchronized behaviour, in addition to the regions and

networks involved in perceiving and producing the actions

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/advance-article-abstract/doi/10.1093/scan/nsaa056/5825511 by guest on 29 M

ay 2020



O. A. Heggli et al. 9

necessary for synchronization to occur. The network identified

in our study displays a similar topology with these previous

findings, suggesting that the difference in synchronization

strategies is embedded within a brain network involved in

general synchronization behaviour.

A recent theory has proposed that unintentional synchro-

nized behaviour emerges from individual brains collectively

striving for computational efficiency (Koban et al., 2017). A

mechanism for this is proposed to be the processes linked to

self–other integration. Or, in other words, how the actions of the

other are integrated or segregated with the actions produced by

the self (Novembre et al., 2016). During explicit interpersonal

synchronization with bidirectional auditory coupling, such

as in our joint finger-tapping experiment, this relates to the

degree which one attributes the auditory feedback coming from

the other person’s tapping to one’s own finger taps. Mutual

adaptation, within this framework, may be a result of both

participants attempting to reduce the difference between their

own and the other’s action (their auditory perception).When the

difference between action and perception becomes sufficiently

small, the participants no longer need to classify what they

hear as unrelated to what they do, and thus mutual adaptation

emerges, wherein the tap-by-tap adjustments are likely not

consciously processed. This process is hypothesized to lead to

synchronized neural representations of self and other (Koban

et al., 2017). In this framework, synchronization strategies can be

described as resulting from the individual within the dyad either

classifying the auditory feedback from the other as causally

linked to the actions performed by the self or as distinct. In

the case of the latter, where both dyad members segregate the

auditory information from the other and the action produced by

the self, a leading–leading interaction occurs (Heggli et al.,2019a).

Hence, in a pure leading–leading interaction, there should be

no directional information flow between the actions produced

by one dyad member and those from the other dyad member.

This would also entail that neural representations of self and

other would not be synchronized. The network identified in

this work is a prime candidate for such a self–other integrating

network, as it contains regions linked to functions of segregation

and integration of self and other, such as the temporoparietal

junction, supramarginal gyrus and precuneus, as well as action–

perception-related regions (Farrer and Frith, 2002; Decety and

Lamm, 2007; Lamm et al., 2007; Schilbach et al., 2013; Fairhurst

et al., 2014; Plaze et al., 2015; Hoffmann et al., 2016; Bolis et al.,

2017; Abe et al., 2019).

The question then becomes why phased locking activity in

this network is present in both synchronization strategies. We

believe there are two likely interpretations. First,mutual adapta-

tion is a strong attractor state in interpersonal synchronization,

but it is not the only attractor state. This is shown in our

behavioural results, wherein a stable synchronized interaction

is maintained in the leading–leading group, and in other studies

reporting a leading–following interaction (Fairhurst et al., 2014;

Konvalinka et al., 2014; Gebauer et al., 2016). However, mutual

adaptation is likely the strongest attractor state due to the

brain’s inherent tendency towards reducing computational com-

plexity (Koban et al., 2017). It is well known that musical practice

and expertise have the ability to shape brain functioning, evident

even on low-level responses such as the mismatch negativity

(Vuust et al., 2005, 2011). The group of musicians exhibiting

the leading–leading strategy in this study were distinguishable

based on their primary instrument, as they consisted primarily

of drummers (Heggli et al., 2019b). Drummers are often expected

to be the main timekeeper (Matthews et al., 2016; Smith, 2016).

Hence, they need to separate their own actions from those of

the other musicians in order to consciously decide whether they

should adapt to their rhythmic patterns or not. It may then be

that the reduced occurrence probability of the network found

in this study reflects the drummers’ ability to avoid falling into

mutual adaptation.

The second explanation stems from the LEiDA analysiswhich

relies on the leading eigenvector for a given time window to

identify recurrent phase-locking states. This means that there

likely is meaningful synchronized activity within the network

we identified atmore timewindows than identified by the LEiDA

analysis, albeit not at a strength where it gets picked up by the

leading eigenvector. To address the latter, our within-network

information flow analysis identified nodes in the network that

differed in their directionality of information flow between the

two groups.

We found four brain regions within the network that

significantly differed in terms of their mean dPTE value between

the two synchronization strategies, as summarized in Table 1.

Of particular interest is the role of the right precuneus, which

exhibits the largest difference between the two groups. In

mutual adaptation the right precuneus predominantly transmits

information, and in particular to the supramarginal gyrus,

auditory cortex, and temporoparietal junction. This relationship

is reversed in leading–leading, as illustrated in Figure 4. The

precuneus has been proposed to serve an integrator of external

and self-generated information, with fMRI studies showing

increased activity when we consider a perceived action as

linked to another agent (Farrer and Frith, 2002; Cavanna and

Trimble, 2006; Chaminade et al., 2012; Fairhurst et al., 2014; Crafa

et al., 2020). While EEG-based connectivity measures cannot be

directly linked to activity-based measures such as the BOLD

response used in fMRI, it is nonetheless highly intriguing that the

precuneus substantially changes its information flow between

the two synchronization strategies.

In leading–leading the precuneus only transmits information

to the right inferior parietal cortex, whereas in mutual adap-

tation it exhibits a more varied connectivity pattern. In the

leading–leading group, we see information transfer from the

somatosensory cortex to the precuneus and from the supra-

marginal gyrus to the precuneus. Whereas in mutual adapta-

tion the precuneus transmits information to the supramarginal

gyrus and receives information from the somatosensory cortex.

A likely interpretation is that the precuneus through its role

in integrating external and self-related information acts as a

network synchronization moderator. For instance, if the audi-

tory information stemming from the other is considered to be

causally related to the actions produced by the self, then the

precuneus allows information flow throughout the rest net-

work leading to synchronized activity. This view is supported

by resting state research indicating connectivity between the

dorsal–anterior precuneus and somatomotor regions and the

superior temporal gyrus (Zhang and Chiang-shan, 2012). Hence,

we would propose the right precuneus is a likely candidate

for the self–other integration/segregation underlying synchro-

nization strategies. We hypothesize that in cases where the

precuneus switches from a receiving to a transmitting function,

onewould observe increased synchronized behaviour within the

right-lateralized network we identified in this study, and vice

versa.

Notably, one of the main limitations of our study is the sam-

ple size, particularly of our leading–leading group (consisting of

six participants). The reason for this is that this is an emergent

strategy and that it only seems to emerge within dyads of
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drummers, who are difficult to recruit. Follow-up studies should

explicitly address differences in brain networks during dissim-

ilar interpersonal strategies by investigating pairs of drummers

vs pairs of other musicians.

In sum, our findings indicate that the difference between

synchronization strategies is embedded in a transient action–

perception network. We find that mutual adaptation and lead-

ing–leading can be distinguished by the occurrence probabil-

ity of phase-locking within this network and propose that the

right precuneus plays a critical role in determining the within-

network dynamics. For future studies, it would be highly inter-

esting to see whether the brain network identified here reflects

dynamic changes in interpersonal synchronization strategies

during an interaction. These findings are consistent with the

theory that dyadic synchronization strategies depend on self–

other integration and point future research towards investigat-

ing the right precuneus’ role in this process.
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