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Human interaction is often accompanied by synchronized bodily rhythms.
Such synchronization may emerge spontaneously as when a crowd’s
applause turns into a steady beat, be encouraged as in nursery rhymes, or
be intentional as in the case of playing music together. The latter has been
extensively studied using joint finger-tapping paradigms as a simplified
version of rhythmic interpersonal synchronization. A key finding is that
synchronization in such cases is multifaceted, with synchronized behaviour
resting upon different synchronization strategies such as mutual adaptation,
leading—following and leading-leading. However, there are multiple open
questions regarding the mechanism behind these strategies and how they
develop dynamically over time. Here, we propose a metastable attractor
model of self-other integration (MEAMSO). This model conceptualizes
dyadic rhythmic interpersonal synchronization as a process of integrating
and segregating signals of self and other. Perceived sounds are continuously
evaluated as either being attributed to self-produced or other-produced
actions. The model entails a metastable system with two particular attractor
states: one where an individual maintains two separate predictive models for
self- and other-produced actions, and the other where these two predictive
models integrate into one. The MEAMSO explains the three known synchro-
nization strategies and makes testable predictions about the dynamics of
interpersonal synchronization both in behaviour and the brain.

This article is part of the theme issue ‘Synchrony and rhythm interaction:
from the brain to behavioural ecology’.

1. Introduction

The ability to coordinate one’s movements with those of others is a critical aspect
of daily life. An everyday action such as shaking hands in greeting is a complex feat
of reciprocally anticipating and adjusting movements, yet we perform it with ease
and without apparent conscious effort [1]. One of the most fascinating aspects of
such adaptation is interpersonal synchronization, wherein periodic movements
exhibit phase and frequency locking between persons [2]. Such synchronization
often emerges spontaneously, as in the tendency towards synchronized walking,
or in a crowd’s applause converging on a steady rhythm [3,4]. However, in
many cases, interpersonal synchronization is necessary and intentional, for
instance in human bucket brigades [5]. The most salient example is perhaps
found in musical performance.

When musicians sing and play music together, each individual musician coor-
dinates their actions towards producing sounds which in concert with other
musicians creates the cohesive auditory patterns we identify as music [6]. A criti-
cal observation here is that a reactive approach is insufficient. To produce a
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synchronized rhythm with other musicians, any action produ-
cing a sound needs to be initiated well before the actual sound
is produced [7]. Hence, intentional rhythmic synchronization
must rely on processes of anticipation and prediction [8,9].

An often-overlooked aspect of such predictive processes is
the selection of which perceptual signal one should adapt to.
Any decent musician in an ensemble is capable of recognizing
whether another ensemble member is deviating from the
ensemble’s shared musical goal, and then swiftly perform an
on-the-fly judgement whether the deviating member should
be ignored, or adapted to. To do so, musicians continuously
monitor how the actions of others relate to self-produced
actions, as well as the combined action outcomes [10,11]. In
laboratory settings, this type of interpersonal synchronization
has predominantly been studied using joint finger-tapping
paradigms [10,12-14].

In joint finger tapping, two participants are asked to per-
form simple isochronous rhythms together, often initiated by
a few beats of a metronome, with instructions to maintain
tempo and synchronize. A key finding from the field is that
rhythmic interpersonal synchronization may be more than
just a linear transition from unsynchronized to synchronized
actions. Rather, different interpersonal strategies underlie
synchronization, such as mutual adaptation and leading-
following [10,12-14]. Note that here we use the term strategy
loosely, as the emergence and dynamics of dyad synchroniza-
tion behaviour is still a topic under active research. Mutual
adaptation occurs when bidirectionally or omnidirectionally
coupled dyad members continuously and reciprocally adapt
to each other tap-by-tap, and has been observed in both
musicians and non-musicians [10,12]. Leading—following
can occur either due to experimental restraints or emerge
from the interaction. For instance, in cases of unidirectional
coupling wherein dyad member 1 hears themselves, and
dyad member 2 hears dyad member 1, the dyad has to
adapt a leader—follower strategy to maintain synchronization
[12]. However, naturally emerging leader—-follower behaviour
has also been observed in bidirectionally coupled interactions
between non-musicians [13] and is routinely found in musical
interactions [15]. Common for all of these strategies is
that they are not necessarily differentiable based on
synchronization measures alone, but can instead be detected
by looking at the interaction between the signals of the
interacting members, i.e. using cross-correlation measures
between participants’ intertap intervals [12].

While these synchronization strategies are well documen-
ted and prevalent in the tapping literature, there are multiple
open questions as to their emergence and nature. For instance,
to what extent are synchronization strategies dynamic, in the
sense that an interaction may conceivably continuously
swing between different strategies? Or, which parameters of
individual behaviour in an otherwise equally constrained
interaction contribute to the prevalence of one synchronization
strategy over another?

In previous research, individual differences such as
people’s preferred tapping rate have been shown to influence
synchronization, but their impact on the behaviour under-
lying synchronization remains unclear [16,17]. Similarly, the
dynamics of responses to perturbations in synchronization
tasks such as rate changes in the synchronization target
may impact synchronization strategies and has been shown
to depend on individual differences [18-21]. Interestingly, in
a drumming task, toddlers (2- and 3-year olds) were able to

spontaneously coordinate rhythmic interaction with a peer, [ 2 |

but only 4-year-old children exhibited continuous adaptability
of their drumming [22]. This age distinction clearly links to the
development of a cognitive self-other distinction as measured
by the classic false-belief test that typical 3-year olds fail but
typical 4-year olds pass [23]. These findings suggest that inter-
personal synchronization is influenced both by development
and individual differences, and crucially relies on the ability
to distinguish between the self and the other.

Over the last four decades, multiple researchers have pro-
posed models aiming to capture the underlying processes and
dynamics of sensorimotor synchronization, and recently
also for interpersonal synchronization [8,24-30]. Generally,
these models can be classified as information processing
event-based models or nonlinear coupled oscillator dynamic
models. Both approaches have shown promise, with a dual-
agent version of the adaptation and anticipation model
(ADAM) capturing leading—following and mutual adaptation
behaviour [31], and with our Kuramoto-oscillators model also
managing to account for leading-leading behaviour [24].
A third alternative also exists in the strong anticipation
hypothesis, wherein anticipatory behaviour in dynamical
systems is shown to emerge from time delays [30,32,33]. None-
theless, these models have not explicitly focused on the
underlying neural basis for how and why dyadic synchroniza-
tion strategies emerge. In this paper, we present a theoretical
model that explains how simple predictive brain dynamics
give rise to synchronization strategies. Furthermore, we
show how to use the model for deriving testable hypotheses
of dyadic synchronization behaviour.

In previous work, we, and others, have argued that intentional
interpersonal synchronization may be framed through mech-
anisms of self-other integration [2,24,34-40]. Specifically, we
have proposed that mutual adaptation occurs when two
dyad members both integrate the self and other, that
leading—following occurs when one of the two dyad members
(the follower) integrates the other while the other (the leader)
segregates, and that leading-leading occurs when both dyad
members are segregating between the self and other [24].
Here, self refers to actions performed by oneself and their
related consequences, whereas other refers to information
stemming from the person one is interacting with. This
argument is based on observations of overlapping
brain networks processing both perceived/observed and
performed actions, wherein action-perception loops that blur
the difference between self and other may emerge [34,41-44].
To explain how these processes account for not just synchroni-
zation, but also synchronization strategies, here we present a
model where self-other integration is conceptualized as a con-
tinuous process wherein action and perception are constantly
evaluated as either connected or unconnected.

The foundational assumption of the metastable attractor
model of self-other integration (MEAMSO) is that the brain
maintains predictive cognitive models for the self, i.e. the
actions performed, and for the other, i.e. the perception of
actions performed by the person one is interacting with [45].
In joint finger tapping, the self-model initiates finger taps,
and then receives somatosensory and auditory feedback
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when their finger hits the tapping device. The other-model
relies on auditory feedback from the other dyad member’s
taps. If the dyad’s goal is only to synchronize, then each
dyad member needs to collectively minimize the difference
between event predictions formed by their self- and other-
model [2]. We propose that this process of integrating or
segregating between the self- and other-model is the result
of a continuous evaluation of percepts as either being attribu-
ted to the self or to the other; or, in other words, whether
perceptions are causally linked to actions. We hypothesize
that self-other integration and segregation act as attractors,
or transiently stable states, in the configuration of brain net-
work dynamics, underpinning synchronization strategies. By
metastable, we mean a system exhibiting stable states other
than the state of least energy, operationalized in the brain as
neural oscillations existing in a dynamic system which
switches between states due to both external perturbations
or internal fluctuations [46-50]. The goal of the MEAMSO is
therefore to formalize the qualities and dynamics of a dyadic
interaction resulting in the dyad members either being in a
state of self-other integration or segregation.

3. Mapping the dynamics of self—other
integration

The first step in mapping the dynamics of self-other integra-
tion in joint action is to understand how we are aware that an
action and its perceptual consequence are self-generated. In
the last two decades, it has become increasingly evident that
sensory predictions form a crucial part of determining the like-
lihood of an action and a concurrent perception being self-
generated [35]. In a seminal study from the late 90s, Fourneret
& Jeannerod [51] showed that participants are more aware of
intended movements rather than actual deviated movements,
but only up until a crucial threshold. In addition, people are
prone to confuse self-produced hand movements with those
performed by someone else given a high enough similarity
[52,53]. Within the framework of predictive coding, these
observations may be explained by predictions being formed
about the sensory consequences of an action, where only pre-
diction violations of a certain magnitude traverse high
enough in the prediction error hierarchy to reach conscious
appraisal [54]. It is also likely that top-down control modulates
these decisions, through imposing a certain leniency on the
conscious appraisal of a perceptual event deviating substan-
tially from the predicted sensory consequences [55]. For
instance, if only one isolated event is surprising in a series of
predictable events, the surprising event may be considered
just a lapse in attention [56].

An interesting avenue of exploring the latter component
can be found in amplified musical performance settings.
Here, musicians usually receive an amplified signal of their
instrument as a monitor signal, in order to be able to self-
monitor their performance and integrate with other musicians
[57]. Due to the inherent delays in both digital and analogue
audio equipment, and acoustic propagation delay, this signal
may deviate by multiple milliseconds from the original
output signal of the musical instrument. In these cases, perfor-
mers are consciously aware that the auditory perceptions they
hear are causally linked to their actions. Nonetheless, once the
delay is sufficiently large, the situation becomes disruptive for
the musicians and negatively impacts their performance [58].

Interestingly, the thresholds here appear to be both experience-
and instrument-specific, yet at a latency of between 10 to 15 ms
most musicians report performance issues [59]. This can be
interpreted as the edge of a time-window wherein self-
produced actions and perceptions are likely to be perceived
as causally linked.

The second step in mapping the dynamics of self-other
integration in joint action is understanding how perception,
in this case sound, is related to another person’s intentions
and goals. A core tenet in social neuroscience is the ability to
understand that others may hold mental states dissimilar to
oneself, and that people’s mental states form the basis of
their behaviour [60,61]. In joint action, this entails understand-
ing that the person we are interacting with may not hold the
same idea of the task, or even the same goal. Nonetheless,
experimental manipulation of underlying predictive models
in a polyrhythmic interpersonal synchronization task shows
that participants quickly harmonize their predictive models
leading to synchronized behaviour [10]. Interestingly, if one
considers two interacting brains wherein their respective sen-
sory input is the output of their interacting partner’s actions,
this forms a reciprocally coupled system wherein mutual pre-
diction, e.g. a harmonization of the predictive models, is
achieved as an emergent property of the coupling [45]. In
the MEAMSO we do not explicitly model a three-way separ-
ation of perception (i.e. perceiving something as linked to
the self, to the other, or as unrelated to both), nor does the
model explicitly model the combined joint action outcome,
such as when two musicians are playing a duet together
(wherein the music individually performed may differ in
both melody and rhythm) and hence requiring monitoring
of the shared goal [11,62]. Instead, we work on the premise
that if perceptions stemming from the other (in this case the
sound from their taps) cannot be causally attributed to one’s
own actions, they are instead sorted into the predictive
model of the other. While this is a simplification, it is also a
necessary step in order to reduce the number of comparisons
and calculations performed by the MEAMSO.

4. The metastable attractor model of self—other

integration modules

The MEAMSO (illustrated in figure 1) consists of three primary
interconnected modules: (i) instantaneous comparisons, (ii) cor-
relational comparisons and (iii) model selection. It takes two
time series as input. In our example joint finger-tapping task,
one of these time series represents the actions performed by
the model’s target person, and the other time series represents
the perceptions stemming from the tapping partner. Through-
out the description of the model, we refer to these as actions
and perceptions, respectively. The main outcome from the
model is a state indicating whether two time series are best
described by one predictive model (self-other integration), or
by two separate predictive models (self-other segregation). In
the following paragraphs, we describe key parts of the model.
A detailed overview including equations can be found in the
electronic supplementary material, appendix S1.

(a) Instantaneous comparisons
This module handles the more-or-less instantaneous compari-
son between two events occurring simultaneously or in rapid
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Figure 1. The MEAMSO. (a) An overview of the process that MEAMSO models, here illustrated for a joint finger-tapping task. MEAMSO assumes that a participant in
the task maintains two predictive models, one self-model governing the actions performed and an other-model governing the perceptions from the actions of the
other. Together these predictive models control the perception of sensations and predict upcoming sensations. We operationalize the MEAMSO in three modules: (b)
Instantaneous comparisons performed between events occuring close in time. We highlight two main comparisons here, one between the relative time of events,
and another between auditory features of the sounds of events. These comparisons both lead to a value indicating a likelihood of perceptions being linked to
actions. (¢) Correlational comparisons are performed over successive events, including a measure of similarity of tempo (measured by the intertap interval in
the case of an isochronous rhythm), a time-lagged similarity to account for simple delays between a tap and a resulting sound, as well as an accumulation
of previous instantaneous comparisons. (d) The two comparison modules are piped into a model selection wherein the corroboration for the current event
best being described by one model (a collapse of the predictive self- and other-model), or by two separate predictive models, is collected. The most likely current
state (integration or segregation) is fed through a hysteresis loop, which then determines the current state of brain dynamics best describing the stream of actions
and perceptions. (Online version in colour.)

succession. The first component is a comparison between the that two predictive models are active, one for self-produced
time of events, leading to a decision or likelihood of whether actions (the self-model) and one for other-produced actions
the two events are causally linked. Under the assumption (the other-model), this comparison is perceptually a measure
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of the asynchrony between the self-performed finger tap, and
the auditory perception of the other-performed finger tap. We
propose that there are two time-windows at play here, one
wherein there may exist a perceptual similarity, i.e. when the
asynchrony is low, and another time-window for medium
asynchronies were there may exist an attributional similarity,
i.e. where top-down processes actively attribute the asynchro-
nous event as being causally linked to the originating event.
Computationally we can describe this by calculating the differ-
ence in time between events, and passing the value through a
logistic function. As we can assume that a finger tap preceding
an auditory signal is more likely to be causally related than the
reverse chronology, we construct a transfer function taking
this into account by using a reversed logistic function for asyn-
chronies greater than 0, and a regular logistic function for
asynchronies less than 0. By applying a min-max normaliza-
tion to the input asynchrony, we can express this process
with the following two equations:

fmax abs(async) > fmax
2(abs(async) — tmin)

async, = PE—— —1 tmin < abs(async) < fmax
Emin abs(async) < tmin
(4.1)
# —1 async>0
15 chieme)
comp,,.. =< 0 async =0 (4.2)
2 —1 async<0

1+ e~ k2(async,)

Here, async is the time between events from the point of view of
the finger tap, which is scaled to a value between —1 and +1,
where t,,,,« indicates a cut-off point in milliseconds representing
the maximum length of the time-window wherein action and
perception may be linked, and t,;, is equal to 0. Dependent
on the sign of the async, this goes through a logistic function,
where k; is the steepness of the curve for positive asynchronies,
and k; for negative asynchronies. Their respective values are
likely individual, and influenced by experience and expertise
[63]. We can then construct a function where when compyime
approaches 1, we assume that action and perception are cau-
sally linked, and when it approaches —1, we assume they are
not linked.

The second component is a comparison between auditory
features. In a normal musical interaction, musicians are inti-
mately familiar with the sounds of their own instrument.
This relies on experience and learning where one builds a
cognitive template of what perceptions match the actions
performed on an instrument and consists of multiple acoustic
features such as the frequency spectrum and envelope
(known as timbre). There exist multiple perceptual models
for how we identify and classify individual sounds from a
combined sound source, which could be integrated into the
MEAMSO [64-67]. Due to the complexity of this comparison,
we set its value to zero for this iteration of our model, indicat-
ing that the comparison does not influence the later decisions
made by the model.

We know from multiple joint finger-tapping studies that the
intertap intervals (the time between successive taps) of the
dyads rarely reach a high positive correlation value at lag 0
(regular correlation) [10,12-14]. Instead, positive correlation

values are found at both lag +1 and lag —1 for the mutual [ 5 |

adaptation strategy, at either lag +1 or lag -1 for the
leading—following strategy, or with weak positive values on
all lags in the leading-leading strategy. Yet, and especially in
mutual adaptation, even with alternating auditory feedback
from their own tapping, participants still report a sense of
agency over their perceptual feedback [68,69]. Hence, it is
likely that a correlational similarity between perceptions and
actions may, at a certain threshold, contribute evidence
towards perceiving a causal relationship between the two.
For instance, if considering the intertap intervals we presume
that a constant event-lagged similarity may instil a likelihood
of ascribing a causal relationship between actions and percep-
tions. As an example, we can consider a slow increase in
tempo, an accelerando. Here, the intertap interval is decreased
for each subsequent tap usually in a nonlinear manner. We
assume that this behaviour may contribute to a sensation of
causal links between action and perception, even if the
changes are lagged one event behind the current action.
To capture this, we calculate a cross-correlation at lag —1
and lag 0 between the intertap intervals of own actions
versus others’ actions, and select the highest correlation
value. As this calculation necessitates a certain number of
events before it becomes informative, we start the calcula-
tion only when there are four intertap intervals available
(at event number five) and implement a sliding window
wherein only the last eight events are included, hence building
up the stability of the calculation as the length of the
interaction increase.

As previously discussed, while the musicians will com-
plain of the latency, they are capable of recognizing and
performing with the perceptions of their actions being
delayed by a certain time period. This is a time-lagged simi-
larity, and we deem it likely that even a certain jitter in the
time-lagged perception is acceptable in terms of causally
relating the perception to the action. This calculation involves
estimating the mean asynchrony between an action and a
perception event, and its variability. If the variability is low,
indicating a stationary latency, this calculation contributes
towards linking action and perception.

The last correlational comparison included in the
MEAMSO is an n-back instantaneous comparison. Here, we
assume that a weighted average of previous comparisons is
held, to decrease the influence of erroneous instantaneous
comparisons. Here, we use a Bayesian average, which is
updated by the four previous instantaneous comparisons, as
shown in the following equation: ¥ = Cm + Y 1, x;/C +n,
with a prior m, and a constant C [70]. This is equal to padding
the average with C datapoints of m. For every update of the
calculation, we update the prior to be equal to its current
output, thus creating a smoothed weighted average. Notably,
the correlational comparisons described above assume that
the rhythm performed is isochronous and would not function
for complex rhythms, or rhythms with a high degree of
syncopation. To do so one would need to implement an expec-
tation template that accounts for multiple event types, due to
the finding that perturbations to individual events within a
complex rhythm differentially affects perception [71]. A prom-
ising approach to building such an expectation template can
be found in the recently developed Phase Inference from
Point Process Event Timing framework, which could serve
as a filter prior to the correlational comparisons described
above [72].
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Figure 2. Application of the MEAMSO on tapping data. Here, we create an example
and leading—following interaction. By looking at cross-correlation coefficients we can
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state 2
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interaction by combining joint finger-tapping data from a mutual adaptation
see how the interaction shifts. We run the MEAMSO from both participant’s

perspective and plot the weighted best fit and the outcome brain state from the model. The model is initated in state 2 (segregation of self/other). For dyad
member 1 (P1), the leader, we can see the state switch shortly after the transition to leading—following, indicating a separation between self-performed actions
and the sounds perceived from the other. For dyad member 2 (P2), the follower, we see that the state rapidly switches to state 1 (integration of self/other) and
remains there throughout the interaction. In the last panel, we illustrate the brain dynamics associated with the two states. (Online version in colour.)

(c) Model selection

All the above-mentioned processes are constructed to produce a
numeric output ranging from —1 to 1, with values approaching
—1 indicating that actions and perceptions are not causally
linked, and values approaching 1 indicating a causal link
between actions and perceptions. We can then sum all values
greater than 0 as a measure of fit for self-other integration, and
all values less than 0 for self-other segregation. By using a soft-
max normalization on the absolute measures of fit followed by
an argmax to determine whether the fit is best for integration
or segregation, we get an integer representing the best fitting
state for the current event. This integer is then inserted into the
same type of Bayesian averaging as described in the previous
paragraph, and the rounded value of the averaged number is
taken to indicate the current network configuration of the
brain, with the value 1 representing integration and the value
2 representing segregation. Together, this causes a hysteresis
loop wherein switching from one configuration necessitates
both comparison modules to yield evidence for the other con-
figuration over multiple events before a switch occurs,
dependent on the parameter values chosen for the Bayesian
averaging (for an example see electronic supplementary
material, figure S1). In addition, depending on the parameters

chosen for the comparison, we can bias the model so that main-
taining segregation becomes a metastable state reflecting the
increased cognitive cost of holding two predictive models.

(d) Implementation

To exemplify how MEAMSO can be used on behavioural data,
we implemented a minimal version of the model in MATLAB
(code is available at github.com/OleAd/MEAMSO). Here we
first created an example joint finger-tapping trial exhibiting a
transition in synchronization strategy, by combining a section
of mutual adaptation tapping with a section of leading-
following tapping froma previous study as illustrated in figure 2
[12]. To show the change in synchronization strategy, we calcu-
lated cross-correlations in non-overlapping windows of 15 taps
(figure 2). We then ran the behavioural data through the
MEAMSO, both from the perspective of dyad member 1 and
dyad member 2 (figure 2). For dyad member 1, we see that
the brain state output from the model starts at state 2 (segre-
gation of self and other), before quickly transitioning to
state 1 (integration of self and other). It remains in state 1
until a few taps into the leading—following section, wherein
dyad member 1 becomes the leading participant. It then
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switches to brain state 2, indicating that the perceptions are no
longer causally integrated with the actions. Towards the end of
the trial, it rapidly switches, before settling back to state 1. For
dyad member 2, the brain state output starts in state 2 and
rapidly settles in state 1 throughout the trial, indicating inte-
gration of self and other. As dyad member 2 is the follower in
this interaction, this is the expected behaviour of the model.

5. What does the metastable attractor model of
self-other integration explain, and what does
it predict?

The main purpose of our conceptual model is to collate,

develop, test and extend theory [73]. With MEAMSO, we

show how synchronization strategies can be framed from a cog-
nitive viewpoint, and in the following paragraphs, we describe
how the MEAMSO explains the emergence of dyadic synchro-

nization strategies and highlight some key predictions from
the model.

(a) Dyadic synchronization strategies

The MEAMSO posits that there exist two metastable attractors
in terms of brain dynamics during dyadic interpersonal
synchronization, with one state indicative of self-other inte-
gration (maintaining the same predictive model for action and
perception) and the other indicative of self-other segregation
(maintaining two separate predictive models for action and
perception). We can calculate the number of possible unique
group combinations of these states by using the formula
states = (n +s — 1)!/n!(s — 1)!, where n is the number of par-
ticipants in a group, and s is the number of individual states.
In our case, where s = 2, the formula reduces to states=n+1,
for n > 1. When considering a dyad, there then exist three
possible combinations, which map onto the three known syn-
chronization strategies in dyadic interaction: leading-leading,
leading—following and mutual adaptation (illustrated in
figure 3). Leading-leading may occur when both participants
separate self from the other and hence do not use information
from the other to influence their own actions. Leading-
following necessitates that the leader separates the other’s
actions from their own actions, whereas the follower integrates
(by adapting their tapping based on the preceding tap from the
leader). In mutual adaptation, both participants integrate self
and other, so that each other’s actions reciprocally influence
upcoming actions.

(b) Group synchronization dynamics

Following the equation for the number of states listed above,
MEAMSO would predict that the number of possible synchro-
nization strategies is always n + 1 where n is the number of
interacting people. As our model is based on dyadic inter-
action, it will likely not capture all the intricacies present in
group synchronization dynamics. In particular, as a group of
interacting persons reach intermediate size, such as in the
Human Firefly experiment, rich and diverse synchronization
dynamics emerges [25,74]. In addition, the topology of feed-
back influences the group’s synchronization behaviour
[75,76]. Given our model’s predictions for dyadic synchroniza-
tion strategies, we would hypothesize that as the size of the
group grows so does the instability of the strategies, meaning
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Figure 3. The emergence and selection of synchronization strategies. (a) The
configuration of self-other integration/segregation for pairs of participants,
and (b) the corresponding synchronization strategy. We propose that
leading—leading occurs when both dyad members hold two separate predic-
tive models through self-other segregation. In leading—following, one dyad
member integrates and the other separates. In mutual adaptation, both dyad
members integrate, which when viewing the dyad as a whole collapses the
dyad members’ predictive models into one shared model. (Online version
in colour.)

that there may be fewer viable and stable synchronization
strategies for large groups. There are two main factors leading
us to this conclusion. First, a leader may have many followers,
but a follower can only follow one leader. This means that cer-
tain constellations (e.g. two leaders and one follower) are
unlikely to produce a stable synchronized interaction.
Second, there is likely a limit to the size of a group when indi-
viduals can no longer be individually monitored, and instead
a measure of the group’s performance as a whole, or sub-
groups within the group, needs to be monitored [77]. This
limit is likely dependent on the individuals’ ability to perform
auditory stream segregation, a complex ability that depends
on multiple characteristics of the sounds being heard
[78-80]. In addition, a recent study with 16 violinists perform-
ing a simple melody together, perturbed by the introduction of
auditory delays between the violinists, showed that the musi-
cians were able to rapidly ignore conflicting signals [76]. In our
model, one way of incorporating this ability would be to add
an attention weight to signals in groups of more than two,
such that a signal that is kept segregated over a certain
period of time is discarded from the computation until
changes in the signal necessitate a re-evaluation. One way to
explore this would be to design experiments wherein experi-
enced groups of musicians perform joint finger tapping with
designated roles (e.g. leader and follower) to evaluate the stab-
ility of interactions, and to investigate groups of musicians and
non-musicians to evaluate how signals are weighted in a
group interaction.

() Synchronization strategies are dynamic

MEAMSO predicts that synchronization strategies are
dynamic, yet that they are transiently stable. By this, we
mean that the strategy may change during an interaction, for
instance switching between a leading—following strategy to a
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mutual adaptation strategy. This would occur if there is a
sudden change in comparison calculations indicating that
the current state is no longer supported by perceptual evi-
dence. Yet, due to the hysteresis inherent in the MEAMSO
calculations, such change would need to surpass a critical
threshold before a re-evaluation of the best fitting state is per-
formed. In addition, if the brain tends towards computational
efficiency, one would predict mutual adaptation to be more
frequent and stable than the other synchronization strategies.
This is due to both interacting brains only needing to maintain
one predictive model of the task, which has been proposed to
be more computationally efficient [2].

To empirically test this prediction, one could design a
paradigm wherein an adaptive virtual tapping partner gradu-
ally introduces perturbations in the interaction. Here, we
would predict that small, isolated, perturbations would not
disrupt a mutual adaptation interaction, but larger and
sustained perturbations would switch the interaction to a
leading—following synchronization strategy. The inherent meta-
stability in the MEAMSO would also point towards it being
easier to go from leading—following to mutual adaptation,
than the other way around. Here, there is also an opportunity
for incorporating the MEAMSO with our Kuramoto-based
coupled oscillators model [24]. In the Kuramoto-based model,
the coupling strengths that govern the behaviour of the model
were fixed throughout the interaction. By using the MEAMSO
to dynamically update the coupling strengths throughout a
simulated tapping trial, we can formalize predictions on the
stability of synchronization strategies.

(d) Similar sounds are more likely to lead to self—other
integration

The instantaneous comparison between auditory features
is a technical and cognitively complex component of the
MEAMSO, whose inner workings we have not explored in
detail in this paper. Nonetheless, the ability to match an
action with a predicted auditory perception is an interesting
aspect of the model. Here, the model predicts that a precise
predictive model of action-related auditory feedback will
increase the likelihood of self-other segregation. This may
entail that dyads of musicians, who through training develop
fine-tuned predictive models due to their instrument-specific
expertise [81-83], are more likely than the general public to
exhibit leading—following and leading-leading behaviour.
Another prediction would be that self-other integration
should be increased in interactions where participants are
unsure about the auditory feedback from their actions. A
possible example of this can be found in multiple musical set-
tings, such as ritual music and group singing, which promote
group cohesion and facilitate prosocial behaviour [84,85].
Here, the auditory output produced by individuals is often
highly similar or embedded in the group’s auditory output.
We would predict this contributes to self-other integration,
and perhaps to the sense of belonging and meaningfulness
sometimes attributed to group singing [86].

6. The metastable attractor model of self-other

integration in the brain

The output from MEAMSO is a state indicating whether self-
other integration or segregation is currently taking place and

should be identifiable on a neural level. One of the proposed [ 8 |

neural mechanisms involved in self-other integration is
the alignment of neural self/other representations [2]. This
view finds support in recent research on interacting mice
wherein populations of neurons in the dorsomedial prefron-
tal cortex selectively encode self-related and other-related
behaviour [87]. Notably, this activity may underlie the inter-
brain synchronization reported between interacting people.
Nonetheless, human social interaction inherently relies on
many complex cognitive tasks, as evident by the diverse
brain regions involved in social tasks [44,60]. In a controlled
experimental setting, such as with a joint finger-tapping
task, some of this variability is constrained by placing
limits on the actions performed and on the perceptual
feedback (often just simple transient sounds are used)
[10,12,14]. Hence, tightly controlled joint action paradigms
offer a promising avenue towards identifying the neural
correlates of self-other integration and segregation.

In previous work, we used a data-driven approach to
identify a functional brain network selectively associated
with mutual adaptation and leading-leading synchronization
strategies [88]. Mutually adapting participants exhibited a
higher occurrence of synchronized activity within this net-
work, perhaps representing the proposed synchronization
between self- and other representations in the brain. Infor-
mation flow within this network, measured with directed
phase transfer entropy, indicated a key role of the right precu-
neus and its connections to the supramarginal gyrus,
auditory cortex and temporoparietal junction. As such, coher-
ent activity within this network and between its key regions
may be a candidate for a neural correlate of the MEAMSO'’s
output, an avenue we intend to pursue in future work.

7. Summary

In this paper, we have introduced the MEAMSO. This event-
based model proposes an interconnected set of mechanisms
describing how self-other integration occurs in dyadic
interaction, and how this process gives rise to metastable
synchronization strategies. We use a minimal implementa-
tion of the MEAMSO to illustrate how the model could
capture the dyadic imbalance in a transition between
mutual adaptation and leading—following. The MEAMSO
is therefore a model which can encompass dynamic shifts
in synchronization strategies over time. Furthermore,
MEAMSO can be used to formulate key predictions on the
dynamics of rhythmic interpersonal synchronization and to
point to neural mechanisms underlying interpersonal
synchronization. It is our hope that the MEAMSO will
prove useful in approximating the complexity of rhythmic
interpersonal synchronization.
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