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Scaling of whole-brain dynamics reproduced by high-order moments of turbulence indicators

Yonatan Sanz Perl ,1,2,3,4 Pablo Mininni ,5,6 Enzo Tagliazucchi,5,6,7 Morten L. Kringelbach,8,9,10,11 and Gustavo Deco 3,12,13

1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
2Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina

3Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
4Paris Brain Institute (ICM), Paris, France

5Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física,
Ciudad Universitaria, 1428 Buenos Aires, Argentina

6CONICET–Universidad de Buenos Aires, Instituto de Física Interdisciplinaria y Aplicada (INFINA),
Ciudad Universitaria, 1428 Buenos Aires, Argentina

7Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000 Santiago, Chile
8Department of Psychiatry, University of Oxford, Oxford, United Kingdom

9Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Århus, Denmark
10Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal

11Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
12Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain

13Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain

(Received 6 February 2023; accepted 10 July 2023; published 12 September 2023)

We investigate how brain activity can be supported by a turbulent regime based on the deviations of a
self-similar scaling of high-order structure functions within the phenomenological Kolmogorov’s theory. By
analyzing a large neuroimaging data set, we establish the relationship between scaling exponents and their
order, showing that brain activity has more than one invariant scale, and thus orders higher than 2 are needed to
accurately describe its underlying statistical properties. Furthermore, we build whole-brain models of coupled
oscillators to show that high-order information allows for a better description of the brain’s empirical information
transmission and reactivity.
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I. INTRODUCTION

The brain is an out-of-equilibrium system that is starting
to be better understood using appropriate tools from physics,
including complex systems [1], thermodynamics [2], and tur-
bulence theory [3]. In particular, during the past decade, the
brain as a complex system has been considered by some
authors to be near criticality [4–7]. Recently, it was shown
that the brain is a dynamical, neuronal system operating in
a turbulent regime [8], which facilitates the fast information
transfer across space-time essential for survival [9]. However,
turbulence systems deviate from perfect scale invariance, a
property that was not studied in the brain before. Note that
this is a defining property of turbulence. While many critical
systems (such as, e.g., critical phase transitions) are scale in-
variant, the fact that turbulence is an out-of-equilibrium forced
and dissipative system results in deviations from scale invari-
ance, which characterizes how excitations are transported and
dissipated. These deviations cannot be quantified with just one
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scaling law (or, equivalently, one critical exponent). Instead,
many critical exponents are needed to identify this behavior.

A key outstanding question is, thus, whether scaling laws
of higher-order structure functions akin to those found in
turbulence in fluid dynamics are also found in neuronal
dynamics. If so, this would provide fundamental informa-
tion about the nature of information transfer in the brain
and how it changes in disease or in altered states of con-
sciousness [10,11]. In turn, this could help more accurate
whole-brain models [12], which could have important trans-
lational consequences for providing more precise biomarkers
for neuropsychiatric disorders that may eventually lead to
better treatments [13].

Kolmogorov’s scaling theory for the inertial range in tur-
bulence makes a claim for the power-law scaling of the
second-order structure function

S2(r) = 〈�U (r)2〉 = 〈[u(x + r) − u(x)]2〉, (1)

where x and x + r are points in the fluid, and u is the compo-
nent of the fluid velocity along r. The range where the power-
law scaling holds (i.e., the inertial range) is bounded between
the dissipation and the integral scales of motion [14,15].
Deco and Kringelbach adapted Kolmogorov’s second-order
structure function (termed the “turbulent core” by the au-
thors) by defining u as the blood-oxygen-level-dependent
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(BOLD) signal and found an inertial range and its correspond-
ing power law in brain dynamics data [16]. Nevertheless, the
statistical properties of human brain dynamics in terms of
higher-order structure functions have not been investigated.
These functions are important as they provide information
on intermittency, fractality, and out-of-equilibrium dynamics
and are thus required to fully characterize turbulence in any
physical system. The extended Kolmogorov theory for higher
orders (p > 2) claims that the scaling results generalize to
structure functions of any order as

Sp(r) = 〈�U (r)p〉 = 〈[u(x + r) − u(x)]p〉, (2)

with p > 0, i.e., they present a power-law scaling with ex-
ponent ζ changing with the order as ζ (p) = p/3 [3]. This
corresponds to perfect (Gaussian) scale invariance. However,
extensive numerical and experimental investigations have
found deviations from Kolmogorov’s prediction, which are
due to intermittency (i.e., localized spatial inhomogeneities)
of the energy dissipation rate that cannot be treated as uni-
form [17]. In spite of these deviations, the existence of
universal scaling laws for higher-order structure functions
has been verified for a variety of different turbulent flows
[18–20].

Here we study these out-of-equilibrium indicators in brain
dynamics, by investigating higher-order structure functions
within the inertial range determined from the second-order
moment [16]. We show that brain signals present more than
one invariant scale, and thus high orders are necessary to de-
scribe the statistics, i.e., second-order structure functions are
not sufficient for describing underlying statistical properties.
To this end we compute the power-law scaling ranges for
structure functions up to the eighth order, by considering u
as the BOLD signal in Eq. (2) for the empirical brain resting
from the 1003 Human Connectome Project (HCP) partici-
pants. The computation of scaling exponents using extended
self-similarity (ESS) [19] allows us to confirm the scaling. We
then examine the relationship between these exponents and
the order of the structure function to investigate the relevant
scales present in the system. The nontrivial dependence of the
exponents with the order confirms that the analogy with tur-
bulent systems includes important features such as deviations
from perfect scale invariance and intermittency. Finally, we
ask whether higher-order structure functions provide useful
information for whole-brain computational models built upon
simple local dynamical rules coupled according to empiri-
cal measurements of anatomical connectivity [21], i.e., white
matter tracts inferred from diffusion tensor imaging [22].
Typically, a parameter optimization procedure is conducted
to reproduce an empirical observable [23–25], perhaps the
most common being the functional connectivity, identified
with the second-order structure function. Implementing local
dynamics with Stuart-Landau oscillators and considering the
second-order structure function as an empirical target, we
examine the effect of including high-order structure functions
on the model performance and its capacity to reproduce infor-
mation processing properties found in empirical data such as
information cascades and fast reactiveness to external stimuli
[10,11,16].

II. EMPIRICAL HIGH-ORDER STRUCTURE FUNCTIONS
COMPUTED FROM RESTING-STATE FUNCTIONAL MRI

DATA SHOW POWER LAWS

First, we extracted and bandpass filtered (0.008–0.08 Hz)
the time series from the 1003 Human Connectome Project
(HCP) resting-state functional magnetic resonance imaging
(fMRI) recordings, each time series corresponding to the av-
erage of a parcel within the Schaefer 1000 parcellation. We
adapted the increment of velocity in fluid dynamics, �u(r),
by computing the difference between BOLD signals at pairs
of nodes separated by distance r ± �r, where �r equals one
bin of the spatial grid. To do so, we computed the distances
between the geometric centers corresponding to all parcels
and then averaged the BOLD signal across all pairs separated
by r ± �r. For each participant, we calculated the p-order
structure functions following Eq. (2) from p = 1 to p = 8,
and then we estimated within the inertial subrange (previ-
ously determined by the scaling of the second-order structure
function) the power-law scaling exponents corresponding to
each order. In Fig. 1(a) we present the structure functions
as a function of the distance in their brain r for each of the
1003 participants of the HCP data set (see Appendix A for
detailed explanation on the participants, data acquisition, and
preprocessing). We observed that the structure functions are
consistent across all participants, with odd structure functions
showing a mean around 0. Consequently, we considered only
the even functions within the inertial range, with r = 8.1 to
r = 33.8 mm [highlighted in Fig. 1(a)] to compute the scal-
ing exponent ζ (n), as is the standard practice in turbulence
studies [18,20]. We plotted in a log-log scale the even struc-
ture functions, fitted a power law within the inertial range
[Fig. 1(b)], and found the following spatial power-law scaling
exponents: ζ (2) = 0.38 ± 0.06, ζ (4) = 0.59 ± 0.09, ζ (6) =
0.57 ± 0.09, and ζ (8) = 0.44 ± 0.08, with regression coeffi-
cients of R2 = 0.97 and p < 0.001, R4 = 0.97 and p < 0.001,
R6 = 0.97 and p < 0.001, and R8 = 0.95 and p < 0.001, re-
spectively.

III. EXTENDED SELF-SIMILARITY VALIDATES
THE INERTIAL RANGE FOR HIGHER-ORDER

STRUCTURE FUNCTIONS

We leveraged the extended self-similarity approach pro-
posed by Benzi and colleagues to validate the inertial range
in turbulent flows, defined by the scaling of the second-order
structure function and allowing better estimation of the other
scaling exponents [19]. Figure 2(a) shows in log-log scale
the relationship between high-order structure functions from
3 to 8 and the second-order structure function. We were able
to estimate the odd scaling exponents through ESS, includ-
ing the corresponding structure functions, by considering the
absolute value of the increment, a practice also often used
in the study of turbulence [18]. We investigated the conver-
gence of the accumulated moments of the different orders in
our data following the work of Gotoh and colleagues [26].
We found that the odd moments were less converged than
the even orders and that in both cases the convergence de-
graded as a function of the increasing order. In particular,
we found that the seventh order did not properly converge
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FIG. 1. High-order structure functions and their spatial power scaling laws. (a) We computed the structure functions from 1 to 8 by
replacing the longitudinal component of the fluid velocity in Eq. (2) by the BOLD signal from fMRI recordings of 1003 healthy participants.
We highlight even structure functions in the inertial subrange. (b) We found the spatial power-law scaling of even structure functions S(r) as a
function of log(r) within the inertial subrange.

and that it violated Holder’s inequalities. As a consequence,
we decided to exclude this order from the analysis. Also, the
eighth order did not properly converge although it respected
Holder’s inequalities. Thus, we considered that the value that
we obtained corresponds to a lower bound of the scaling
exponent (see Appendix B). After this consideration, and
following ESS, we computed the scaling exponents for high-
order structure functions by fitting the linear relation between
the logarithm of the structure functions and the logarithm
of the second-order structure function. We thus obtained the
following power-law exponents: ζ (3) = 0.56 ± 0.12, ζ (4) =
0.59 ± 0.09, ζ (5) = 0.52 ± 0.11, ζ (6) = 0.57 ± 0.09, and
ζ (8) = 0.43 ± 0.09, with regression coefficients of R3 = 0.96
and p < 0.001, R4 = 1 and p < 0.001, R5 = 0.97 and p <

0.001, R6 = 1 and p < 0.001, and R8 = 0.98 and p < 0.001,
respectively. In Fig. 2(b) we show that the scaling exponents
computed directly from the structure functions against dis-
tance (r) (green circles) and the ESS computed ones (blue
triangles) present a high level of agreement.

IV. MULTIFRACTALITY ON WHOLE BRAIN DYNAMICS
BASED ON fMRI RECORDINGS OF HEALTHY

PARTICIPANTS

We investigated the scale invariance of brain dynamics
through the relationship between the scaling exponents
and the corresponding order shown in Fig. 2(b). Notably,
the exponents could be linearly organized up to order 4
as a signature of one-scale invariance. Nevertheless, for
higher orders a change in slope was observed, and at least one

different scale could be identified. This could be interpreted as
evidence that the system presents at least a bifractal structure,
as in the case of fluids following the Burgers equation, where
the intermittency is associated with large-scale singularities
resulting from a broken statistical symmetry of the disordered
system [27]. We then investigated the distribution of the
first-order structure function, S1(r), at different scales
within the inertial range (i.e., the probability distribution
function of the BOLD spatial fluctuations). We found that,
while for small scales the distributions were not Gaussian,
as the scale r increased the distributions of S1(r) tended
monotonically towards Gaussian distributions [Fig. 2(c)].
Thus, the fluctuations were not perfectly self-similar (in
which case all normalized distributions for different r should
have collapsed to the same shape), and the analysis further
confirmed the presence of deviations of the scaling exponents
characteristic of turbulencelike phenomena.

V. WHOLE-BRAIN MODEL

We implemented a whole-brain model based on nonlinear
Stuart-Landau oscillators coupled by the structural connectiv-
ity (SC), which can be globally scaled by a coupling strength
parameter (G). The coupled dynamics are given by
dx j

dt
= (

a − x2
j − y2

j

)
x j − ω jy j + G

∑
i

SCi j (xi − x j ) + βη j,

dy j

dt
= (

a − x2
j − y2

j

)
y j + ω jx j + G

∑
i

SCi j (yi − y j ) + βη j,

(3)
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FIG. 2. Multifractility on whole brain dynamics. (a) Extended self-similarity confirms the inertial range for higher-order structure
functions. We investigated the selected inertial range by computing the extended self-similarity based on studying the higher-order structure
functions as a function of that of order 2. We found that the fit of the ESS is excellent for the odd structure functions, providing evidence that
the selected inertial range is suitable to assess the spatial scaling properties at the different orders considered. (b) We computed scaling power
laws based on high-order structure functions. We obtained the exponents of the even structure functions through the direct computation of the
log-log linear fitting (green circles) and also through ESS (blue triangles). We found a high level of agreement between both measures, which
confirms inertial range scaling. Interestingly, the exponents can be organized linearly up to order 4 and then the slope changes and the exponent
saturates. This is compatible with at least a bifractal structure with two characterstic scales. (c) We investigated the distribution of the structure
function of order 1 [S1(r)] at different scales within the inertial range. We found that, whereas the scale increases, the distributions of S1(r)
tend monotonically to a Gaussian distribution, indicating small scale fluctuations are less common.

where x j is the dynamical variable that simulates the fMRI
signal of the region j, ω j is the corresponding empirical
frequency, and SCi j represents the symmetrical coupling ma-
trix that weights the connectivity between regions i and j,
(Appendix C contains a detailed explanation of the model,
and how the the structural connectivity matrix is obtained
is detailed in Appendix A). In the model, ν j stands for an
additive Gaussian noise to node j with amplitude β. We fixed
the bifurcation parameter equally for all brain regions close
to the bifurcation point (a = −0.02), and we explored G from
0 to 3 in 0.1 steps to find the optimal working point of the
model in two scenarios: only considering the second-order
structure function, and including information from higher-
order structure functions. Notably, the second-order structure
function is, essentially, the functional connectivity (probably
the empirical observable most frequently reproduced in the
whole-brain modeling literature [23,28]), while the inclusion
of higher-order information is one of the important aspects
of this work. We computed the fitting of the model as the
Euclidean difference between the empirical and simulated
second-order structure functions within the inertial range, as
done previously [9–11,16]. The fitting of the higher-order
functions was computed as the distance between the empirical
and simulated scaling exponents for the even functions. Note
that for this analysis, we only considered the even exponents,
based on the fact that we could compute them directly from
the structure function (see Fig. 1) and the previous conver-
gence analysis (see Appendix B). Each optimal working point
was determined as the value of G that minimizes the fitting
function in each case. Appendix C contains more details of
the fitting for each model.

We simulated 100 trials with the optimal working point
for the second order (G02op = 1.26) and 100 trials for the
optimal working point for higher orders (GHOop = 1.44). We
found statistically significant differences when fitting the
model to the second-order structure function in both work-
ing points (Wilcoxon signed-rank test p = 0.049 and effect
size rank-biserial correlation = 0.14) [see Fig. 3(a)]. We then
assessed which model more faithfully reproduced the infor-
mation transmission properties of the empirical data in terms
of an information cascade measure. This measure was intro-
duced in previous works to quantify information transmission
across scales in terms of the correlation between the local
level of synchronization (see Refs. [9,10]). We found that
the information cascades obtained when considering GHOop

were higher compared to those obtained when considering
G02op (Wilcoxon signed-rank test p < 0.001, rank-biserial
correlation = 0.35) and also closer to the empirical values
(G02op compared with empirical: Wilcoxon rank-sum test p <

0.001, effect size computed by the rank-biserial correlation =
0.18; GHOop compared with empirical: Wilcoxon rank-sum test
p = 0.005, rank-biserial correlation = 0.08) [see Fig. 3(b)].

We then evaluated the model responses to external per-
turbations when set up in both optimal working points. We
modeled the external perturbation by randomly changing
the local bifurcation parameter of each region in the range
[−0.02 : 0]. Note that this perturbation is carefully defined
to keep the dynamical scenario in the subcritical regime
of each oscillator [29]. We quantified the response to the
in silico perturbation by measuring the susceptibility and
information-encoding capabilities. To quantify the suscepti-
bility, we adapted the proposal of Daido, who defines the
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FIG. 3. Higher-order information improves model capabilities.
We found for each case the optimal working point as the value of G
that minimizes the fitting function in each case. We found statistical
difference between both working points by comparing the fitting of
the models (a). We found that the information cascade obtained when
the brain is modeled with GHOop is closer to the empirical, while the
information cascade modeled with G02op is significantly lower (b).
We quantified the responses when models are perturbed through the
susceptibility and the information-encoding capability. We found that
both measures are significantly higher in 50 trials of the perturbation
when the model includes the information of higher-order structure
functions. *** means p < 0.001; * means p < 0.05 and p > 0.01
Wilcoxon rank-sum test.

susceptibility of a large population of coupled oscillators as
the variation of the Kuramoto order parameter under external
perturbation [30]. The information-encoding capability mea-
sures the ability of the system to encode external inputs; in
this sense, it can be related to complexity measures such as
Lempel-Ziv [31] (see Appendix D for a detailed explanation,
and see Refs. [9,10,16]). We show in Figs. 3(c) and 3(d)
the computation of susceptibility and information-encoding
capability when the model is perturbed 100 times for each
optimal working point (G02op and GHOop ). We found that,
when the model is built using higher-order information, both
measures increase compared with the second-order working
point (susceptibility: Wilcoxon signed-rank test p = 0.02,
rank-biserial correlation = 0.23; information-encoding capa-
bility: Wilcoxon signed-rank test p = 0.005, rank-biserial
correlation = 0.28). These results provide insight into the rel-
evance of the higher-order structure function information to
improve the models performance.

VI. DISCUSSION

We have shown that the whole brain dynamics can be
reproduced by scaling laws akin to those in Kolmogorov’s
phenomenological scaling theory for an inertial range in

turbulence. We extended previous results, which only con-
sidered second-order structure functions, to higher-order
structure functions, and we noticed that the relationship be-
tween the order (p) and the scaling exponents [ζ (p)] depart
from linear dependence [e.g., ζ (p) = p/3 in Kolmogorov’s
case]. This result suggests that the brain dynamics can display
at least a bifractal structure. The behavior is reminiscent of
the case of fluids following the Burgers equation, where the
departure from monofractality and saturation of the scaling
exponents is associated with large-scale intermittency in a
disordered system [27]. This observation is also aligned with
findings of multifractality in brain dynamics. Moreover, our
analysis shows that including higher-order statistics indicators
in whole-brain models of coupled oscillators allows for a
better description of information transmission and reactivity.
In particular, we showed that the inclusion of higher-order
information narrows the configuration of whole-brain models
and allows them to reproduce more faithfully important brain
functions such as information processing and brain respon-
siveness.

It is important to note that this work does not propose
a one-to-one mapping between the physical variables of a
turbulent system and brain activity measurements, and one
should be careful when conceptualizing brain dynamics as
a system that exhibits turbulence in a classic physical way.
Instead, what the results show is that the mathematical formal-
ism developed to capture the phenomenology of turbulence
can also be used to represent important aspects of whole-brain
dynamics.

Turbulence is an example of an out-of-equilibrium system
that displays universal scaling behavior. Recent studies have
considered the possibility that the scale invariance observed
in turbulence is the result of the existence of a critical point
at infinite Reynolds number [32] or have found evidence of
critical points at finite Reynolds numbers as other control
parameters are changed [33,34]. Also, the dissipative scales
in turbulent flows have been found to be compatible, under
some conditions, with self-organized criticality [35]. How-
ever, and as previously mentioned, it is important to note that
perfect self-similarity in turbulence is broken as a result of
a a phenomenon known as intermittency. This phenomenon,
which is quantified by the nontrivial dependence of the scaling
exponents with their order, by measurements of multifractal-
ity, or equivalently, by deviations from Gaussian statistics, is
associated to the forced-dissipative out-of-equilibrium nature
of the system. In other words, it is caused by the irreversibility
of turbulence and by the existence of a nonzero flux of energy
across scales [3,33]. Our proposed framework can be used to
distinguish in brain dynamics measurements between critical-
ity as found in equilibrium systems (which are, in most cases,
scale invariant) and out-of-equilibrium systems (which, as in
the paradigmatic case of turbulence, display deviations from
scale invariance associated with their forced and dissipative
nature).

The extension of Kolmogorov’s theory in fluids to higher-
order structure functions, and the deviations from perfect
self-similarity, has been extensively challenged by experi-
ments and numerical investigations based on the rate of energy
dissipation being intermittent, i.e., spatially inhomogeneous,
and thus that it cannot be treated as a constant [17,36,37].
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Our results can, therefore, be interpreted as signatures that the
turbulentlike regime of brain dynamics also presents intermit-
tency or multifractality. Another possible interpretation is that
the existence of such power laws does not demonstrate the
existence of turbulence in the brain (understanding turbulence
as a general out-of-equilibrium multiscale nonlinear process).
However, for many natural systems the existence of universal
scaling laws for different orders of the statistical moments,
and the usage of turbulence indicators to characterize them,
has been extensively verified and used as a way to characterize
nonequilibrium dynamics [18–20]. It is worth noting that, in
recordings of brain activity data, several studies have also
found power laws in the context of criticality [4–6,38], which
also could be consistent with such a class of processes. Studies
of the famous sandpile model proposed by Bak et al. [39] to
capture the behavior of self-organized criticality have shown
that the moments of wave size differences present similar
scaling to those holding for velocity structure functions in
fluid turbulence [8]. The results presented here push this study
to include many different statistical orders, allowing for simul-
taneous characterization of scale invariance as well as of the
deviations from this behavior.
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APPENDIX A: NEUROIMAGING PROCESSING
AND PARTICIPANT DESCRIPTION

1. Neuroimaging participants

The data set used for this investigation was selected from
the March 2017 public data release from the Human Con-
nectome Project (HCP) where we chose a sample of 1000
participants in resting state. The full informed consent from
all participants was obtained by The Washington University–
University of Minnesota (WU–Minn HCP) Consortium and
research procedures and ethical guidelines were followed in
accordance with Washington University institutional review
board approval.

2. Brain parcellations

We used a parcellation created by Schaefer and colleagues,
which is a publicly available population atlas of cerebral cor-
tical parcellation based on estimation from a large data set
(n = 1489) [40]. Here, we used here the Schaefer parcellation
with 1000 areas and we computed the Euclidean distances
from the MNI152 volumetric space. The time series were
extracted using the HCP surface space version.

3. Neuroimaging acquisition for fMRI

The HCP website [41] provides the full details of partici-
pants, the acquisition protocol of the data for the resting state.

We used one resting state fMRI acquisition of approximately
15 min acquired on the same day of 1003 HCP participants
scanned on a 3-T connectome-Skyra scanner (Siemens).

4. Preprocessing and extraction of functional
time series in fMRI resting data

The preprocessing of the HCP resting state is described
in details on the HCP website. In short, the data are prepro-
cessed using the HCP pipeline which is using standardized
methods using FSL (FMRIB Software Library), FREESURFER,
and the CONNECTOME WORKBENCH software [42,43]. This
preprocessing included correction for spatial and gradient
distortions and head motion, intensity normalization and
bias field removal, registration to the T1-weighted structural
image, transformation to the 2-mm Montreal Neurological
Institute (MNI) space, and using the FIX artifact removal pro-
cedure [43]. The head motion parameters were regressed out
and structured artifacts were removed by ICA + FIX process-
ing (independent component analysis followed by FMRIB’s
ICA-based X-noiseifier [44]). Preprocessed time series of
all grayordinates are in HCP CIFTI grayordinates’ standard
space and available in the surface-based CIFTI file for each
participant for the resting state.

We used a custom-made MATLAB script using the ft-read-
cifti function (FIELDTRIP toolbox [45] to extract the average
time series of all the grayordinates in each region of the
Schaefer parcellation, which are defined in the HCP CIFTI
grayordinates’ standard space. Furthermore, the BOLD time
series were transformed to phase space by filtering the signals
in the range between 0.008 and 0.08 Hz and the lowpass cutoff
to filter the physiological noise, which tends to dominate the
higher frequencies [46].

5. Structural connectivity using diffusion MRI

To obtain the structural connectivity we use the HCP
database which contains diffusion spectrum and T2-weighted
imaging data from 32 participants (acquisition parameters are
described in detail on the HCP website). Briefly, the data were
processed using a generalized q-sampling imaging algorithm
implemented in DSI studio [47]. The white-matter mask is
produced by the segmentation of the T2-weighted anatomical
images. The co-register of the images to the b0 image of
the diffusion data was carried out using Statistical Parametric
Mapping tool (SPM) [48]. In each HCP participant, 200 000
fibers were sampled within the white-matter mask. Fibers
were transformed into MNI space using LEAD-DBS [49]. We
used the standardized methods in LEAD-DBS to produce the
structural connectomes for Schaefer 1000 parcellation [40]
where the connectivity has been normalized to a maximum of
0.2. The freely available LEAD-DBS software package [50] pro-
vides the preprocessing that we implemented and is described
in detail in Horn and colleagues [51].

APPENDIX B: CONVERGENCE OF THE
ACCUMULATED MOMENTS

We have analyzed the convergence of the different ac-
cumulated moments following the work of Gotoh and
colleagues [26]. We displayed the convergence of the orders
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FIG. 4. Convergence of the accumulated moments for various
separations.

2 to 8 accumulated moments Cn (n = 2 to 8) for various
separations rp = 22 + 2p, p = 1, 2, 3, 4, 5, and 6. Curves are
for p = 1, . . . , 6 and all values are within the inertial range
(see Fig. 4). In Fig. 4, the insets in the odd orders are the
accumulated moments computed with the absolute value.

APPENDIX C: WHOLE-BRAIN MODEL
FITTING PROCEDURE

1. Second-order and higher-order structure
functions model fitting

The second-order structure function [S2(r)] is defined as
the N×r matrix of S2(r) = 〈�U (r)2〉 = 〈[u(x + r) − u(x)]2〉,
where u is the BOLD signal and r is the distance between
brain regions (N). We computed the empirical S2(r) for each
human participant and for each simulated trial (the total
number of trials matched the number of participants) and
computed the Euclidean distance within the inertial range:

Sfitt
O2(r) =

√√√√ B∑
k=A

N∑
n=1

(
Semp

2 − Smod
2

)2
, (C1)

where A and B are the lower and upper limits of the considered
inertial range.

On the other hand, the higher-order structure functions
were computed as Sp(r) = 〈�U (r)p〉 = 〈[u(x + r) − u(x)]p〉,
for p = 1 to p = 8. We computed the empirical Sp(r) for each
human participant and extracted the spatial scaling power law
for each even order. We replicated the same computation for
the model signals and then compared the empirical and mod-
eled scaling exponents. We quantified the fitting by computing

Sfitt
HO(r) =

√√√√ 8∑
i=2

(
ζ

emp
i − ζ mod

i

)2
. (C2)

We explored the coupling strength parameters from 0 to 3
in 0.1 steps to find the optimal working point of the model
when fitting the second-order structure function and when the
higher-order structure functions were considered. We com-
puted the fitting of the model as the Euclidean difference
between the empirical and simulated second-order structure
function within the inertial range. The higher-orders’ fitting
was computed as the distance between the even empirical

FIG. 5. Whole-brain model fitting to second-order structure
function and higher-order structure functions.

scaling exponents and those obtained with the model. We
found for each case the optimal working point as the value
of G that minimizes the fitting function in each case (Fig. 5).

APPENDIX D: MATHEMATICAL DEFINITION
OF INFORMATION TRANSMISSION METRICS

The amplitude turbulence Rλ(�x, t ) is defined as the modu-
lus of the Kuramoto local order parameter for a given brain
area as a function of time:

Rλ(�x, t )eiθλ(�x,t ) = k
∫ ∞

−∞
d�x′Gλ(�x − �x′)eiφ(�x′,t ), (D1)

where Gλ is the local weighting kernel Gλ(�x) = e−λ|�x, λ is the
spatial scaling, θ (�x, t ) are the phases of the spatiotemporal
data, and k is the normalization factor [

∫ ∞
−∞ d�x′Gλ(�x − �x′)]−1.

The empirical instantaneous phases were computed by apply-
ing the Hilbert transform to the narrowband of 0.008–0.08 Hz
filtered BOLD signals individually. This frequency range
was chosen because, when mapped to the gray matter, this
frequency band was shown to contain more reliable and func-
tionally relevant information compared to other frequency
bands and to be less affected by noise.

Thus, Rλ defines local levels of synchronization at a given
scale, λ, as a function of space, �x, and time, t . This measure
captures what we call brain vortex space, Rλ, over time, in-
spired by the rotational vortices found in fluid dynamics, but
of course, not identical.

1. Information cascade

The information cascade is based on the information cas-
cade flow that indicates how the information travels from a
given scale (λ) to a lower scale (λ − �λ, where �λ is a scale
step) in consecutive time steps (t and t + �t). In this sense,
the information cascade flow measures the information trans-
fer across scales computed as the time correlation between the
Kuramoto local order parameter in two consecutive scales and
times:

F (λ) = 〈corrt [Rλ(�x, t + �t ), Rλ−�λ(�x, t )]〉�x, (D2)

where the brackets 〈 〉�x denote averages across space. Then,
the information cascade is obtained by averaging the informa-
tion cascade flow across scales λ, which captures the whole
behavior of the information processing across scales.

033183-7



YONATAN SANZ PERL et al. PHYSICAL REVIEW RESEARCH 5, 033183 (2023)

2. Susceptibility

We computed the sensitivity of the perturbations on the
spatiotemporal dynamics by extending the definition of pre-
vious work, which determines the susceptibility in a system
of coupled oscillators based on the response of the Kuramoto
order parameter [30]. The Hopf model was perturbed for each
G by randomly changing the local bifurcation parameter (a)
in the range [−0.02 : 0]. The sensitivity of the perturbations
on the spatiotemporal dynamics was calculated by measuring
the modulus of the local Kuramoto order parameter as

χ = 〈〈〈
R̃(m)

n (�x, t )
〉
t − 〈

R(m)
n (�x, t )

〉
t

〉
trials

〉
�x, (D3)

where R̃(m)
n (�x, t ) corresponds to the perturbed case; R(m)

n (�x, t )
corresponds to the unperturbed case; and 〈 〉t , 〈 〉trials, and
〈 〉�x correspond to the average across time, trials, and space,
respectively.

3. Information-encoding capability

The information-encoding capability measures the ability
of the system to encode external inputs, and as such is more
closely related to complexity measures such as Lempel-Ziv or
the automatic complexity evaluator, and synchrony coalition
entropy (used and defined in Ref. [3]). The information capa-
bility I was defined as the standard deviation across trials of
the difference between the perturbed R̃(m)

n (�x, t ) and the unper-
turbed R(m)

n (�x, t ) mean of the modulus of the local Kuramoto
order parameter across time t , averaged across all brain areas
n as

I = 〈〈(〈
R̃(m)

n (�x, t )
〉
t − 〈

R(m)
n (�x, t )

〉
t

)2〉
trials

− 〈(〈
R̃(m)

n (�x, t )
〉
t − 〈

R(m)
n (�x, t )

〉
t

)〉2
trials

〉
�x (D4)

where the brackets 〈 〉t , 〈 〉trials, and 〈 〉�x denote the aver-
ages defined as above.
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