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Nonequilibrium brain dynamics as a signature of consciousness
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The cognitive functions of human and nonhuman primates rely on the dynamic interplay of distributed neural
assemblies. As such, it seems unlikely that cognition can be supported by macroscopic brain dynamics at the
proximity of equilibrium. We confirmed this hypothesis by investigating electrocorticography data from non-
human primates undergoing different states of unconsciousness (sleep, and anesthesia with propofol, ketamine,
and ketamine plus medetomidine), and functional magnetic resonance imaging data from humans, both during
deep sleep and under propofol anesthesia. Systematically, all states of reduced consciousness unfolded at higher
proximity to equilibrium compared to conscious wakefulness, as demonstrated by the computation of entropy
production and the curl of probability flux in phase space. Our results establish nonequilibrium macroscopic
brain dynamics as a robust signature of consciousness, opening the way for the characterization of cognition and
awareness using tools from statistical mechanics.
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I. INTRODUCTION

One of the defining features of living matter is the
scale-dependent violation of thermodynamic equilibrium [1].
Inanimate matter frequently displays nonequilibrium dynam-
ics, resulting from externally applied fields. In contrast,
departures from equilibrium in living matter can also arise
due to endogenous causes, such as complex chains of enzy-
matic reactions [2] driving mesoscopic mechanical processes
[3]. Another characteristic of nonequilibrium dynamics in liv-
ing matter is their dependence with the spatial and temporal
grain; for instance, cells and larger biological structures might
appear to be at equilibrium, while being sustained by nonequi-
librium processes at the molecular scale [4].

Systems at thermodynamic equilibrium obey detailed
balance, i.e., there are no net probability fluxes in the con-
figuration space of the system, indicating reversible dynamics
with null entropy production rate. Since the vector field rep-
resenting the probability flux in configuration space becomes
purely rotational for steady nonequilibrium systems, the devi-
ation from equilibrium can be quantified using the curl of this
field [5], which quantifies the degree of local circulation of
the probability flux. This notion of equilibrium exists only in
reference to a certain configuration space, which might reflect,
in turn, a particular choice of spatiotemporal grain.

Models of nonequilibrium brain dynamics have been
extensively studied in the literature in the contexts of associa-
tive learning (i.e., Hopfield networks) and decision making,

among others [6]. The phase space of excitable systems
includes the important particular case of scale-free critical
behavior [7]. In general, it is agreed that neural dynamics are
an intrinsically nonequilibrium phenomenon; however, this
is less clear for macroscopic brain dynamics [8]. A recently
proposed framework to quantify entropy production from neu-
ral data acquired at a macroscopic scale [functional magnetic
resonance imaging (fMRI) recordings] showed that dynamics
within a reduced two-dimensional (2D) configuration space
do not obey a detailed balance, and that the extent of its
violation (and thus the degree of entropy production) is task-
dependent [9].

In spite of these advances, the relationship between con-
scious states and nonequilibrium dynamics remains to be
elucidated. It seems unlikely that the dynamic nature of
consciousness and cognition can be sustained by a system
without strong deviations from thermodynamic equilibrium
at some spatial and temporal scales. Thus, brain states as-
sociated with unconsciousness could obey detailed balance
at the large scale, while simultaneously being supported by
nonequilibrium homeostatic processes at the cellular scale.
This possibility is consistent with the characterization of un-
consciousness as a state of low entropy and complexity by
means of several metrics applied to large-scale brain dynam-
ics [10–14]. We investigated electrocorticography (ECoG)
recordings acquired during different states of consciousness.
Compared to fMRI, this modality is better suited for the esti-
mation of transition probabilities in configuration space, given
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FIG. 1. Principal components of nonhuman primate ECoG sig-
nals. (a) Sample ECoG array electrode locations. (b) Temporal
evolution of the three main modes of ECoG activity for an awake
monkey obtained using PCA. (c) Time series of panel (b) projected
on the three-dimensional configuration space (the color gradient rep-
resents the temporal evolution along the trajectory). (d) Explained
variance as a function of retained principal components, plotted for
all states of consciousness.

that higher temporal resolution results in better sampling of
transition probabilities. We also investigated fMRI recordings
by fitting semi-empirical whole-brain models to data from
states of reduced consciousness, using them to produce syn-
thetic time series with arbitrarily high temporal resolution.

II. ELECTROCORTICOGRAPHY DATA

A. Data processing and dimensionality reduction

We first considered publicly available ECoG data of nonhu-
man primates [128 channels from electrodes located as shown
in Fig. 1(a)] during wakefulness and deep sleep (two animals,
21 sessions including eight of wakefulness), and under the
effects of the following anaesthetic drugs: propofol (PF; two
animals, four sessions of wakefulness, four of anaesthesia,
four of recovery), ketamine (KT; two animals, four sessions
of wakefulness, four of anaesthesia, four of recovery), and
ketamine plus medetomidine (KT + MD; four animals, 11
sessions of wake, 11 sessions of anaesthesia, and ten sessions
of recovery). All sessions were recorded with eyes closed.
Time series were notch filtered to remove the power line
frequency and its first harmonics (50 Hz, 100 Hz, 150 Hz)
and then band-pass filtered between 1 and 500 Hz. Filtered
signals were downsampled from 1 kHz to 256 Hz using lin-
ear interpolation and were standardized into z-scores prior to
application of PCA. For more information on this data please
see Ref. [15].

We note that experiments conducted in humans suggest
that a certain degree of consciousness can be sustained during

ketamine-induced anesthesia [16] and slow-wave sleep [17].
Given the combined difficulty of obtaining subjective reports
from the animals and inferring the quality of conscious con-
tent from average brain dynamics, we assumed that their state
of unresponsiveness was characterized by absent (or at least
less complex) subjective experience.

Sample results obtained after dimensionality reduction are
shown in Fig. 1(b) as the temporal evolution of the first three
modes obtained applying PCA to ECoG of an awake animal.
Figure 1(c) shows the projection of these time series on the
space defined by the three principal modes, with temporal
evolution represented by a color gradient from blue scales
(earlier times) to yellow scales (later times). The percentage
of the explained variance versus the number of components is
shown in Fig. 1(d).

B. Detailed balance and entropy production

Next, we assessed the violation of detailed balance by
dividing the two-dimensional space spanned by the two main
modes of ECoG activity into 10 × 10 regular grids from −2 to
2 standard deviations from the mean [3,9]. Each recording was
be described as a sequence of states xi visited over time, each
corresponding to a different cell in the grid. We estimated the
entropy production as a measure of equilibrium or nonequilib-
rium behavior by associating to each brain state a matrix Pi j ,
which contains the probability of transitioning from state xi at
time t to x j at time t + 1. Finally, we calculated the entropy
production as S = ∑

i j Pi j log( Pi j

Pji
) [9,18].

Figure 2(a) presents the average probability density (i.e.,
probability of visiting each cell during the recording) and the
probability flux in configuration space for wakefulness, sleep,
and their subtraction (wake-sleep). This flux is represented
by arrows scaled according to the transition probabilities Pi j .
Figure 2(b) (upper panel) shows that entropy production is
minimal during states of reduced consciousness (sleep, KT,
PF, KT + MD) compared to wakefulness. Figure 2(b) (bot-
tom panel) shows that the curl of the probability flux was
significantly reduced for all states of unconsciousness, with
the exception of PF.

C. Changes in grid size

We repeated the procedure for grids with different num-
bers of cells, from N = 62 to N = 202 cells, and computed
entropy production for each grid size. Figure 3 shows the
results obtained for sleep, KT, PF, and KT + MD, as well as
for the corresponding control conditions. Entropy production
presented a minimum value from N = 102 to 122 cells and
then increased monotonically. Significant differences were
observed for most grid sizes.

D. Second-order transition probabilities

The calculation of entropy production by means of
probability flux in configuration space assumes Markovian
dynamics [18], representing a potential limitation of our
analyses. To assess the potential impact of this limitation,
we included a second-order term in the computation of the
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FIG. 2. Nonequilibrium entropy production is a signature of con-
scious states. (a) 2D configuration space defined by the two main
ECoG modes (converted to z-scores) for sleep, awake, and their
subtraction. Color indicates the probability of finding the state of the
system within each cell in the grid. (b) Top: entropy production per
state and condition. Bottom: Curl of the probability flux per state
and condition.*p < 0.05, Wilcoxon’s test, Bonferroni corrected for
multiple comparisons.

transition probabilities, i.e., Pi, j,k [9]. The results preserved all
significant differences shown in Fig. 2.

E. Entropy production versus spectral content

We compared the entropy production with the spectral
power in different bands (1–5 Hz, 5–12 Hz, 12–30 Hz, 30–
60 Hz), the last of these being an empirical metric that is
frequently used to assess (un)consciousness [19]. Figure 4
presents scatterplots of the entropy production versus the
spectral content of all experimental sessions for each condi-
tion and each frequency band (indicated by symbol type and
color). We did not observe significant correlations that could
be interpreted as redundant information between the spectral
content and entropy production (all correlation coefficients

FIG. 3. Entropy production for different grid sizes. Each panel
presents entropy production as a function of the square root of the
number of cells for a given condition (sleep, PF, KT, KT + MD).
*p < 0.05 before vs. on, **p < 0.05 after vs. on, ***p < 0.05 after
and before vs. on, Wilcoxon’s test, Bonferroni corrected for multiple
comparisons.

and the associated p values are included in the Supplementary
Material [20]).

III. MAGNETIC RESONANCE IMAGING DATA

A. Model-based data augmentation

For the purpose of fMRI data augmentation, we im-
plemented computational models linking together multiple
sources of empirical data by means of coupled local

FIG. 4. Comparison between entropy production and spectral
content of all sessions and conditions for frequency bands 1–5 Hz, 5–
12 Hz, 12–30 Hz, 30–60 Hz, indicated with different symbol shapes
and colours (both standardized to z-scores by subtracting the mean
and dividing by the standard deviation). No significant correlations
between these variables were found.
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dynamics with different qualitative behaviors [21]. Our model
incorporates empirical estimates of the large-scale structural
connectivity of the brain obtained using diffusion tensor
imaging (DTI), a noninvasive methodology to estimate axon
bundles from water diffusion anisotropies. We computed an
observable based on the large-scale functional connectivity
of the brain, i.e., the linear correlation between all pairs
of fMRI time series extracted from 90 predefined regions
of interest spanning the whole cortical and subcortical gray
matter (correlation matrix) [22]. Finally, we constructed mod-
els with heterogeneous local parameters whose variation is
constrained by anatomical priors that represent boundaries
between brain regions associated with specific functional
systems [resting state networks (RSN)]. These RSN-specific
parameters were optimized to maximize the similarity be-
tween the empirical and the simulated correlation matrices
[23].

We outline this model in Fig. 5(a) (for further details see
the Supplementary Information [20]). Local dynamics present
dynamical criticality when the regional parameter a undergoes
a bifurcation from stable fixed point dynamics (a < 0) to
oscillatory behavior (a > 0) according to a Hopf bifurcation;
these dynamics are coupled by the structural connectivity net-
work inferred from DTI data, and scaled by a global coupling
parameter (G). As shown in Ref. [23] this scaling factor G
and the local bifurcation parameters corresponding to each
anatomical prior (i.e., a value for each RSN) can be optimized
to reproduce the functional connectivity measured during dif-
ferent states of consciousness.

B. Entropy production

We applied this optimization procedure to reproduce the
empirical observables for wakefulness, for all human nonrapid
eye movement (NREM) sleep stages (N1, N2, N3), and for
propofol-induced sedation and loss of consciousness. We then
used the optimal parameters to enhance the BOLD signal
lengths of each subject (n = 15) up to 30 000 samples for each
region of interest [24], allowing us to estimate entropy produc-
tion as done with the ECoG data (Fig. 2). Figure 5(a) (bottom)
presents the three main modes extracted from the simulated
BOLD time series using PCA for parameters correspond-
ing to wakefulness. Figure 5(b) presents entropy production
and curl of probability flux estimated from the time series
corresponding to all sleep stages and depths of propofol se-
dation. We found that N2 and N3 sleep (the deepest stages
of NREM sleep) presented dynamics significantly closer to
detailed balance than conscious wakefulness; we found the
same for propofol sedation and loss of consciousness, but not
for early (N1) sleep.

IV. CONCLUSION

Most of the leading theories agree that consciousness and
cognition emerge from the coordinated and dynamic inter-
play of distributed brain activity. For example, the global
workspace theory posits that consciousness is equivalent to
the nonlinear and flexible percolation of sensory information
throughout an anatomical connectivity backbone [25]. The
dynamic core hypothesis by Edelman and Tononi identifies

FIG. 5. Model-based fMRI data enhancement to assess nonequi-
librium dynamics in the human brain. (a) Top: A whole-brain
semi-empirical model presenting dynamical criticality (local Hopf
bifurcation) fitted to the empirical functional connectivity of dif-
ferent sleep stages, using structural connectivity (DTI) to couple
the local dynamics, and different RSN as priors to constraint the
independent variation of local bifurcation parameters. Bottom: The
temporal evolution of the three principal modes obtained using PCA
over the simulated time series. (b) Entropy production (left) and flux
curl (right) computed from the model fitted to empirical fMRI data
obtained during wakefulness and three progressively deeper stages of
human sleep (top), as well as wakefulness and two levels of propofol-
induced loss of consciousness (bottom). *p < 0.05, Wilcoxon’s test,
Bonferroni corrected for multiple comparisons.

consciousness with an integrated dynamic process capable of
achieving an enormous number of configurations [26]. How
does the neural collective self-organize to fulfill the dynamic
requirements of these theories? Our work shows that nonequi-
librium brain dynamics is a general feature of conscious
states. In turn, this type of dynamics can be achieved through
different mechanisms, such as statistical [27–29] and dynamic
criticality [30]. We note that the notion of consciousness as a
unidimensional construct has been criticized [31]. We propose
that our characterization captures the general complexity of
ongoing conscious content, as could be operationalized, for
instance, by objective analysis of verbal reports upon awaken-
ing.

014411-4



NONEQUILIBRIUM BRAIN DYNAMICS AS A SIGNATURE … PHYSICAL REVIEW E 104, 014411 (2021)

Importantly, we established the independence between
nonequilibrium entropy production and spectral features that
are frequently used to characterize unconscious states. This
observation is relevant since some of the general anaesthetic
we investigated (e.g., ketamine [32]) fail to induce the type
of low frequency and complexity oscillations that are indica-
tive of reduced consciousness, suggesting that our metrics
could be more general. However, these differences in spec-
tral content could also be consistent with the presence of
ongoing conscious mentation [16], a possibility that should
be evaluated by applying our developments to experiments in
humans.

In summary, we demonstrated a link between a very gen-
eral property of the brain as a macroscopic physical system
and the emergence of consciousness. Future studies should
refine our conclusions, attempting to converge towards the
relationship between dynamics and computation in neural tis-
sue, one of the most challenging and long-standing problems
in the field.
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