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                                      Functional Graph Alterations in Schizophrenia: 
A Result from a Global Anatomic Decoupling?

schizophrenia have been characterized using 
measures from graph theory. This method has 
shown clinical relevance by exposing signifi cant 
diff erences between patients and controls. In 
particular, the functional networks from people 
with schizophrenia were found to be less small-
world, more hierarchical, less clustered, more 
effi  cient and more robust. In addition, the prob-
ability of both low- and high-degree hubs was 
decreased in patients. Interestingly, most of these 
topological metrics were found to be correlated 
with a verbal fl uency score, suggesting a link 
between the properties of functional networks 
and the performance of cognitive integration.
  Several studies of brain connectivity have shown 
that functional connectivity depends strongly on 
the underlying anatomic structure   [ 19 ]  . But are 
the functional graph measures exclusively 
dependent on the static wiring diagram of the 
anatomic network? Is it necessary to have topo-
logical alterations in the anatomic network to 
give rise to the functional network reorganiza-
tion described in schizophrenia?

         Introduction
 ▼
   The cognitive and behavioural symptoms of peo-
ple with schizophrenia are hypothesized to 
involve a disruption of neuronal interactions 
resulting in dysfunctional cognitive integration 
  [ 1   ,  2 ]  . This hypothesis is supported by reports of 
abnormal temporal correlations of neural activ-
ity in the disease   [ 3      – 5 ]  , possibly related to defi -
cient synaptic plasticity   [ 6 ]  , dopaminergic   [ 7   ,  8 ]   
and cholinergic   [ 9   ,  10 ]   malfunctions, or even to a 
decrease in white matter anatomic connections 
  [ 11         – 14 ]  . Assessing functional connectivity 
between segregated brain regions in terms of 
temporal correlations between blood oxygena-
tion level dependent signals (BOLD) detected 
with functional MRI (fMRI), has revealed a topo-
logical organization of brain activity during rest, 
which is intrinsically related to the underlying 
anatomic structure   [ 15      – 17 ]  . These functional 
connections yield so-called resting-state func-
tional networks. In a recent study from Lynall 
and colleagues   [ 18 ]  , resting-state functional net-
works from healthy controls and people with 
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                                      Abstract
 ▼
    Introduction:     During rest, the brain exhibits 
slow hemodynamic fl uctuations ( < 0.1 Hz) that 
are correlated across spatially segregated brain 
regions, defi ning functional networks. Resting-
state functional networks of people with schizo-
phrenia were found to have graph properties that 
diff er from those of control subjects. Namely, 
functional graphs from patients exhibit reduced 
small-worldness, increased hierarchy, lower 
clustering, improved effi  ciency and greater 
robustness. Notably, most of these parameters 
correlate with patients’ cognitive performance.
    Methods:     To test if a brain-wide coupling defi -
cit could be at the origin of such network reor-
ganization, we use a model of resting-state 

activity where the coupling strength can be 
manipulated. For a range of coupling values, the 
simulated functional graphs obtained were char-
acterized using graph theory.
    Results:     For a coupling range, simulated graphs 
shared properties of healthy resting-state func-
tional graphs. On decreasing the coupling 
strength, the resultant functional graphs exhib-
ited a topological reorganization, in the same 
way as described in schizophrenia.
    Discussion:     This work shows how complex 
functional graph alterations reported in schizo-
phrenia can be accounted for by a decrease in the 
structural coupling strength. These results are 
corroborated by reports of lower white matter 
density in schizophrenia.
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  At the anatomic level, the pathology of schizophrenia has been 
related to a wide range of anatomic abnormalities, including 
ventricular enlargement, associated with anomalous neurode-
velopment or neurodegenerative alterations   [ 20 ]  . Importantly, 
schizophrenia is likely to be the result of both general and spe-
cifi c localized changes in both grey and white matter   [ 21   ,  22 ]  . 
However, a crucial missing point is to consider the impact of 
these anatomic changes on the emergence of functional network 
dynamics (e. g., during rest).
  Notably, several studies report correlations between the strength 
of anatomic connectivity, inferred from the degree of fractional 
anisotropy, and behavioural measures in schizophrenia 
  [ 11   ,  23   ,  24 ]  . In the present work, disrupted functional networks in 
schizophrenia are hypothesized to be related to a decreased cou-
pling between cortical regions. To validate this hypothesis we use 
a computational model to investigate the impact of a global 
decoupling in the properties of emergent functional networks. 
Note that this decoupling encompasses either anatomic white 
matter reduction or neuromodulator-based aff ected neurotrans-
mission. We model resting-state functional connectivity using a 
model of ongoing brain activity previously proposed by Cabral 
and colleagues   [ 25 ]  . The model consists of a network of gamma-
frequency oscillators, where each oscillator represents a given 
anatomic region. The coupling architecture was derived from the 
brain’s anatomic connectome. Importantly for this work, a global 
parameter scales the coupling strength between brain regions. 
The neuronal activity at each brain region was simulated and the 
signal transformed into a hemodynamic response to simulate a 
resting BOLD signal. From the simulated BOLD time-courses, 
functional graphs were constructed following the methodology 
from Lynall and colleagues   [ 18 ]   for a reliable comparison.
  The graph-theoretical measures of emergent functional graphs 
were found to vary with the coupling strength. For a range of cou-
pling strengths, simulated functional graphs had properties simi-
lar to those reported in healthy resting-state functional graphs. 
Moreover, on decreasing the coupling strength, simulated func-
tional graphs exhibit an increase in effi  ciency, hierarchy and 
robustness and a decrease in small-worldness, clustering and 
degree variance, in the same way as described in schizophrenia.
  Overall, these results show that the functional network altera-
tions underlying schizophrenia are not necessarily caused by an 
alteration in the static topology of the underling anatomic archi-
tecture. Indeed, as shown here, the same anatomic structure fol-
lowed by a global decrease in the connection weights can lead to 
the emergence of functional networks with distinct graph prop-
erties, which could be hypothetically related to either a white 
matter connectivity defi cit and/or to defi cient neurotransmis-
sion, as reported in schizophrenia. Moreover, these results go 
beyond schizophrenia, suggesting a link between anatomic 
decoupling and decreased cognitive integration.

    Methods
 ▼
    Anatomic brain network
  Anatomic brain networks were constructed using diff usion tensor 
imaging (DTI) from the brains of 21 healthy, normal participants (11 
males and 10 females, age: 22–45 years) scanned on the same Philips 
Achieva 1.5 Tesla MRI system   [ 26 ]  . Diff usion MRI was acquired by 
using a single-shot echo planar imaging-based sequence with cover-
age of the whole brain; repetition time (TR), 9 390 ms; echo time (TE), 
65 ms. DTI images utilized 32 optimal non-linear diff usion weighting 

directions (b = 1 200 s/mm 2 ) and 2 non-diff usion weighted volumes; 
reconstructed matrix = 128 × 128 × 45; reconstructed voxel size 
2.0 mm × 2.0 mm × 2.0 mm. We also acquired T 1 -weighted structural 
images.
  The automated anatomic labelling (AAL) template was used to 
parcellate the entire brain in native DTI space into 90 cortical 
and subcortical regions (45 for each hemisphere), where each 
region represents a node of the brain network   [ 27 ]  . The AAL 
masks were brought into MNI space by using Flirt (FSL, Oxford) 
  [ 28 ]   to co-register the b0 image in diff usion MRI space to the T 1 -
weighted structural image and then to the T 1  template of 
ICBM152 in MNI space   [ 29 ]  . Interpolation using the nearest-
neighbour method was used to ensure that discrete labelling 
values were preserved.
  We used the Fdt toolbox in FSL ( http://www.fmrib.ox.ac.uk/fsl/ , 
Oxford) to process the diff usion MRI in the standard way using 
the probtrackx algorithm   [ 30   ,  31 ]  . We calculated the connectiv-
ity probability from each seed region to the 89 other brain 
regions (using in-house Perl scripts). Connectivity probability 
was found by applying probabilistic tractography using a sam-
pling of 5 000 streamline fi bres per voxel. The connectivity pro-
bability from the seed voxel  i  to another voxel  j  was defi ned by 
the number of fi bres passing through voxel  j  divided by the total 
number of fi bres sampled from voxel  i    [ 31 ]  . This was then 
extended from the voxel level to the level of each region, i. e., in a 
seed brain region consisting of  n  voxels, 5 000 ×  n  fi bres were 
sampled. The connectivity probability from the seed region to a 
given region is the number of fi bres passing through a given 
region divided by 5 000 × n. The un-directional connectivity 
probability  P  ij  was estimated by averaging the probabilities from 
 i  to  j  and from  j  to  i , which are highly correlated across the brain 
for all subjects ( r  = 0.70,  p  < 10  − 50 ).
  We constructed a weighted network by defi ning a distance/
weight associated with each edge. Specifi cally, we computed 
 W  ij   = 1  −  P  ij  as the distance/weight between brain region  i  and  j , 
as used in previous literature   [ 32 ]  . Please note that the distance/
weight here does not correspond to a physical length. For each 
subject, a 90 × 90 symmetrically weighted cortical network was 
constructed, representing the anatomic organization of the 
ce rebral cortex. Networks were averaged across subjects and 
regions connected with less than 1 % of possible connections 
were considered to be disconnected.

    Model of resting-state functional connectivity
  The dynamics of each node, representing a brain region, was 
modelled in a reduced way as a phase oscillator  θ n   with an 
intrinsic frequency  ω 0   in the gamma range (here  ω 0   = 40  Hz )   [ 25 ]  . 
The gamma-frequency oscillations represent the fi ring-rate 
oscillations emerging spontaneously from neural populations 
with a moderate level of synchrony, as described in a number of 
experimental and theoretical studies   [ 33         – 36 ]  . The interaction 
between regions was computed using the Kuramoto model of 
coupled oscillators with time delays   [ 37 ]  :

   d
dt

k C t t n Nn
np p np n

p

N

0
1

1sin( ( ) ( )), , , .   

 The time delays  τ np   correspond to the axonal conduction time 
(here  <  τ  >  = 20  ms ) and were defi ned as a function of the trans-
mission speed and the Euclidean distance between the centres 
of gravity of regions  n  and  p .
  Simulations of resting-state neuronal activity were run for 300 s 
( Δt  = 0.1 ms) for a range of coupling strengths ( k = 0,…,15 ). The 
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signal was then transformed into hemodynamic fl uctuations 
using the Balloon-Windkessel model   [ 25   ,  38 ]  . For each value of 
coupling strength, the functional connectivity matrix was com-
puted as correlation matrix of hemodynamic fl uctuations.
  The dynamics of the network was evaluated by the order param-
eter  R ( t ) given by the following equation:

   
R t

N
ei t

n

N
n( ) ( )1

1   
  R  measures phase uniformity and varies between 0 for a fully 
desynchronized – or incoherent – state and 1 for a fully synchro-
nized state. We characterized the network dynamics by the 
mean synchronization level R̅ and the standard deviation  σ  R  of 
the order parameter  R  over the simulated time interval.  σ  R  indi-
cates the degree of metastability of the network   [ 39 ]  .
  We applied principal component (PC) analysis to the covariance 
matrix of the simulated BOLD signal to obtain a measure of “glo-
bal integration”, calculated as the ratio of the fi rst eigenvalue to 
the sum of all the others:     [ 40 ]  .

  
I= 1 / j

j

N

2   

    Graph theoretical analysis of simulated functional 
networks
  The set of synthetic functional networks generated with the use 
of the computational model was characterized using graph the-
ory. To evaluate functional networks by means of graph theory, 
the correlation matrix of BOLD responses needs be binarized 
into a graph (G ij ), where correlations above a certain threshold 
are set to 1 and 0 otherwise. In order to compare the properties 
of simulated functional networks with the values reported by 
Lynall and colleagues   [ 18 ]  , we selected the same 72 AAL regions 
considered in that work, discarding the remaining 18 subcortical 
regions (     ●  ▶     Table S1  ), and applied the same thresholding tech-
nique to the correlation matrices. In more detail, from each func-
tional connectivity matrix, 14 binary graphs were derived by 
thresholding to connection densities ranging from 37 to 50 % 

with a 1 % increment. Each of these graphs was characterized 
using global graph measures and the values reported correspond 
to the average across the 14 graphs obtained from each single 
functional connectivity matrix. The following graph measures 
were considered (See  Supplementary Information  for details):

    Effi  ciency:     It is the inverse of the characteristic path length of 
a graph   [ 41 ]  . The lesser the number of paths linking any pair of 
nodes, the higher the effi  ciency of the graph.

    Clustering:     It indicates the probability of 2 nodes that are cou-
pled to a third region, being also coupled to one another, forming 
triangles.

    Hierarchy:     It evaluates the relationship between the number 
of connections in one node (node degree) and its clustering 
degree   [ 42   ,  43 ]  . The hierarchy is higher if nodes with more con-
nections (hubs) are also poorly clustered.

    Small-worldness:     A network is small world if high clustering 
degree coexists with high effi  ciency   [ 44 ]  .

    Robustness to attacks:     It indicates the network’s resilience in 
keeping connectedness when nodes are removed either ran-
domly (random attack) or sorted in descending degree (targeted 
attack).

    Degree distribution parameters:     The degree of a node is sim-
ply given by the number of connections it maintains with other 
nodes. The degree distribution was characterized by its variance 
and by 2 parameters, the power exponent  α  and the lower expo-
nential degree cut-off   d  c , found to optimally fi t the distribution 
to a gamma function ( P ( d ) =  Nd  α−1 exp(−  d / d  c ))   [ 18 ]  . Degree distri-
bution measures were estimated only for graphs with 37 % con-
nection cost.
  Graph measures were evaluated using the Brain Connectivity 
Toolbox   [ 45 ]   and the MatlabBGL Toolbox (Gleich, 2006).

    Fig. 1    Anatomic brain network derived from DTI.  a  The connectivity matrix indicates the average number of fi bres detected between any pair of regions 
defi ned according to the AAL parcellation across the 21 normal subjects (see      ●  ▶     Table S1   for the names of the regions).  b  Representation of the network, 
where nodes (red) are located at the centre of each region and the thickness of the links is proportional to the number of fi bres detected between nodes.  
c  Histogram of the number of fi bres per pairwise connection and  d  node degree histogram both averaged across participants. 
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       Results
 ▼
    Properties of the anatomic network
  The 21 anatomic networks obtained from 21 healthy partici-
pants (11 males and 10 females, age: 22–45 years) have an aver-
age connection density of 32 %. Each connection (link) is 
composed by around 208 fi bres. However, between some pairs 
of brain regions, up to 3000 fi bres have been detected (see the 
histogram in      ●  ▶     Fig. 1c  ). From the degree distribution shown 
in      ●  ▶     Fig. 1d  , we can see that each region is connected to an aver-
age of 25 other regions and this distribution is quite homogene-
ous (bell-shaped).
   In addition, the anatomic networks were characterized by 
means of graph theory (     ●  ▶     Table 1  ). Anatomic networks were 
found to be “small-world” (small-worldness  > 1), which means 
that networks are not only effi  cient (short average path length) 
but also highly clustered when compared with an equivalent 
random graph. In addition, the networks have a positive hierar-
chy, meaning that high degree nodes – or hubs – are the less 
clustered and vice versa. Furthermore, networks were found to 
be robust to either random or targeted attack (r ≈ 1), maintaining 
strong connectedness as nodes are removed either randomly or 
by descending node degree.

       Dynamics of simulated spontaneous activity as a 
function of the coupling strength
  The dynamics of simulated brain activity varies as a function of 
the coupling strength. As observed in      ●  ▶     Fig. 2a  , for weak cou-
plings, the phases are almost completely desynchronized, and 
the order parameter is close to zero. As the coupling increases, 
regions become more and more synchronized with each other. 

In the region between incoherence and synchrony ( 0 < k < 10 ), 
the metastability index is high (     ●  ▶     Fig. 2b  ), indicating that the 
network is in a non-stationary regime, where the order param-
eter fl uctuates in time due to meta-stable synchronized clusters. 
As described in Cabral et al.   [ 25 ]  , the metastability is important 
to generate low frequency fl uctuations in brain activity. How-
ever, above a certain coupling value (i. e., k > 13) the neuronal 
oscillations become too synchronized and the metastability 
index is brought down to zero. In that case, slow fl uctuations 
disappear. This explains why, above this critical coupling value, 
functional networks become less globally integrated and less 
globally correlated (     ●  ▶     Fig. 2c, d  ). Furthermore, we report the 
correlation between anatomic connectivity (AC) and simulated 
BOLD functional connectivity (FC). As expected, it is in the 
region of metastability that the functional networks are shaped 
by the underlying anatomic structure   [ 25 ]  .

     Graph-theoretical properties of emergent functional 
networks
  The topological organization of synthetic functional networks 
was found to vary as a function of the coupling strength 
(     ●  ▶     Fig. 3  ). Some parameters from graph theory, namely the 
average clustering, the small-worldness and the variance of the 
degree distribution, were found to decrease as the coupling 
weights became weaker, while others such as the hierarchy, the 
global effi  ciency and the robustness increased as the regions 
became more disconnected. These alterations mean that, when 
the connectivity between brain regions is defi cient, the emer-
gent patterns of functional connectivity tend to be slightly ran-
domized, with less clustered structure and fewer low- and 
high-degree nodes.
   If the coupling is too weak, the spontaneous dynamics is in an 
incoherent regime and the functional connectivity strength is 
low (     ●  ▶     Fig. 2a, d  ). The resulting functional networks share prop-
erties of random networks. As shown in      ●  ▶     Fig. 3  , for low  k  the 
small-world index is close to 1 which means that the clustering 
coeffi  cient and the effi  ciency of the networks are similar to 
those of comparable random graphs. The fact that these net-
works exhibit a higher effi  ciency is related to the increase of ran-
dom connections, which consequently decrease the average 
shortest path length. In addition, since highly connected nodes 
(or hubs) are less probable in random networks, it is expected 

  Table 1    Properties of the anatomic network (mean ± 1 standard deviation 
across 21 subjects). 

  Connection 
density ( %):  

  32.7 ± 4.6    Small-worldness:    1.96 ± 0.20  

  Fibres/
connection:  

  208 ± 17    Hierarchy:    0.139 ± 0.016  

  Global 
effi  ciency:  

  0.65 ± 0.03    Robustness 
(random):  

  0.993 ± 0.008  

  Average 
clustering:  

  0.64 ± 0.02    Robustness 
(targeted):  

  0.9244 ± 0.02  

    Fig. 2    Dynamics of simulated spontaneous activity as a function of the 
coupling strength k.  a  The mean synchrony degree varies from desyn-
chrony ( <  R  >  ≈ 0) to full synchrony ( < R >  ≈ 1). In  b  the standard deviation 
of the order parameter indicates the metastability of the system is higher 
in the intermediate region between desynchrony and synchrony.  c  The 
variance of the fi rst PC also increases with the coupling strength, meaning 

that the BOLD signals become more globally integrated.  d  The functional 
connectivity strength, measured as the average correlation between 
simulated BOLD signals, increases together with the global integration.
 e  The correlation between the anatomical and the functional connectivity 
is increased in the metastability region (AC = anatomic connectivity and 
FC = functional connectivity). 
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that degree distributions become narrower and bell-shaped. 
These networks, however, are more robust to attacks, either ran-
dom or targeted, because the probability of hitting a hub when 
removing a node is decreased. Please note that a higher robust-
ness or a higher effi  ciency are general properties of random net-
works, and are not by themselves advantageous for an optimal 
cognitive integration. Therefore, these values are expected to be 
lower in the functional organization of resting-state brain activ-
ity from healthy controls.
  As the coupling weights are increased in the model, the organi-
zational properties of the resulting synthetic networks evolve 
towards values characteristic of functional networks from 
healthy brains (reported as green dashed horizontal lines). The 
simulated graphs exhibit higher small-worldness, the clustering 
coeffi  cient increases and the degree distribution is wider with 
higher probability of high degree hubs. Interestingly, the organi-
zational properties of functional graphs from people with schiz-
ophrenia (red dashed horizontal lines) are generally found 
in-between graphs from healthy people and more random 
graphs, suggesting a subtle randomization of functional net-
works in schizophrenia. Results show that this randomization 
can be induced by a global decrease in the coupling between 
brain regions, while the static topological properties of the ana-
tomic network remain unchanged.

     Discussion
 ▼
   Overall, the results reported herein show that the graph properties 
of functional networks derived by the model are sensitive to the 
coupling strength. Notably, a small decrease in the global coupling 
strength can give rise to the same type of network reorganization 
as found in the functional graphs of people with schizophrenia 
with respect to controls   [ 18 ]  . Despite its simplicity, the model adds 

a new perspective from dynamic systems to explain the functional 
network alterations found in schizophrenia.
  Functional graphs obtained at lower coupling are more random, 
as indicated, for example, by a lower small-world index or a 
higher robustness. This randomization, hypothetically led by a 
slight brain-wide disconnection, has an impact on the capacity 
of information integration of functional networks. Indeed, as 
described in Lynall et al.   [ 18 ]  , this type of topological organiza-
tion of functional networks has shown a negative correlation 
with the verbal fl uency from participants.
  The decoupling hypothesis presented herein implies that neural 
transmission is aff ected in the disease. This disrupted coupling 
between regions could be due to either axonal or synaptic mech-
anisms, supported on one side by reports of signifi cant decreased 
anatomic connectivity in patients relative to controls   [ 11         – 14 ]   or 
by fi ndings of damage occurring at the synaptic level, associated 
to a defi cient modulation of synaptic plasticity   [ 46   ,  47 ]   and/or 
dopaminergic   [ 7   ,  8 ]  , cholinergic   [ 9   ,  10 ]  , or glutamatergic   [ 48 ]   
malfunctions in schizophrenia. Importantly, the mechanisms 
leading to a decreased coupling strength are not necessarily 
exclusive and could coexist   [ 47 ]  . In addition, for generalization, 
we assumed a widespread decrease in coupling across the whole 
brain. However, these results could be extended in the future to 
include the hypothesis of localized changes in the anatomic 
structure   [ 21   ,  22 ]  .
  In the model, synthetic functional networks acquire the shape of 
the human resting-state functional networks when the dynam-
ics is meta-stable, which means that the system is neither fully 
synchronized nor totally desynchronized, but partially synchro-
nized states occur sporadically in time. In this meta-stable state, 
fl uctuations in the order parameter give rise to positive correla-
tions at low frequencies among regions. In a previous work from 
our group   [ 25 ]  , this meta-stable regime was proposed to be at 
the origin of healthy resting-state fMRI functional connectivity.

    Fig. 3    Properties of simulated functional networks as a function of the 
coupling strength  k.  in this fi gure we report a number of measures from 
graph-theory (black dots) for coupling strength values ranging from 0 to 
10 (above that value networks become too correlated, with consequent 
loss of realism). The measures vary as a function of  k : solid lines show 
the fi t to fourth order polynomial functions. For reference, the measures 

reported experimentally for resting-state functional graphs from healthy 
controls and schizophrenia patients   [ 18 ]   are indicated as green dashed 
lines and red dotdashed lines, correspondingly. The blue arrows indicate 
the decrease or increase of the respective graph-theoretical measure-
ments as the coupling is decreased, emulating the passage from health to 
schizophrenia. 
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  The degree distribution is given as the probability distribution 
of node degrees over the whole network   [ 50 ]  .

    Effi  ciency
 ▼
   The global effi  ciency of a graph  E(G)  is estimated by calculating 
inverse of the mean shortest path length:

  
E

N lijj i
=

− ≠
∑1
1

1

  where  l  ij  is the shortest path length between node  i  and node  j  in 
 G    [ 41 ]  .  E(G)  attains its maximal value, 1, for a fully connected 
graph.

    Average Clustering
 ▼
   The average clustering of a graph  C(G)  indicates the tendency of 
its nodes to cluster together and is given by the average of the 
nodes clustering coeffi  cients  C  i  .  For undirected graphs,  C  i  is the 
ratio of the number of edges between the neighbors of a node 
and the total number of possible edges between these neigh-
bors. Noting  Vi  the subset of nodes connected to node  i , the clus-
tering coeffi  cient was calculated as follows:

  
C

d d
Ai

i i
jk

j k V k ji

=
− ∈ ≠

∑1
1( ) , ,

  Although we have shown that a weak decoupling could be at the 
origin of altered resting state functional networks in schizophre-
nia, the origin of this decoupling still needs to be validated. 
Indeed, whether reduced functional connectivity between corti-
cal regions results from a defi cient synaptic neurotransmission 
  [ 8      – 10 ]   or from an reduction in anatomic white matter connec-
tivity   [ 11         – 14 ]   remains an open issue.
  Future work will be directed in order to study the organization 
of resting-state functional networks in other mental illnesses 
beyond schizophrenia, such as Alzheimer’s disease, where a sub-
tle randomization of resting-state patterns has also been 
reported   [ 49 ]  .
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  Appendix
 ▼
    Functional Graph Alterations in Schizophrenia: A Result from 
a Global Anatomic Decoupling? 

  J. Cabral ,  M. L. Kringelbach, G. Deco

    Generating Graphs from Correlation Matrices
 ▼
   Correlation matrices have values ranging between −1 and 1. To 
study these weighted matrices by means of graph theory, they 
need to be binarized. This means that the correlation matrix is 
transformed into a matrix G with only zeros and ones, i.e., G ij  = 1 
when the correlation between node j to node i is higher than a 
certain threshold, and G ij  = 0 otherwise. Note that the same cor-
relation matrix can be transformed into distinct binary graphs, 
depending on the threshold defi ned. In Supplementary (     ●  ▶     Fig. 
S1  ), we show how the same functional connectivity matrix 
(obtained from correlating the BOLD signals from all 90 regions) 
can give distinct binary graphs, depending on the connection 
density desired  .

        Degree
 ▼
   The degree of a node in a graph is defi ned as the number of 
edges connecting that node to the network using.

d Ai ij
j

= ∑

    Fig. S1    Thresholding functional connectivity (FC) matrices into graphs with distinct connection densities. Here we use an FC matrix obtained from simula-
tions with  k = 0.8.  
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    Small-Worldness
 ▼
   A graph  G  is considered small-world if its average clustering 
coeffi  cient  C(G)  is signifi cantly higher than for a comparable ran-
dom graph  R  but the mean shortest path length is approximately 
the same as in a comparable random graph   [ 44   ,  51 ]  . Since the 
mean shortest path length can be estimated as the inverse of 
global effi  ciency   [ 41 ]  , small-worldness  σ  was formulated as fol-
lows   [ 32 ]  :

  
�=

C G E G
C R E R

( ) ( )
( ) ( )

  The more  σ  is higher than 1, the more the graph is considered to 
be small-world.

    Robustness
 ▼
   Robustness indicates the network’s resilience to the removal of 
nodes. When a node is removed, either randomly (random 
attack) or in order of higher degree (targeted attack), the net-
work can fragment into 2 or more independent subgraphs. To 
estimate the robustness of a network, each time a node was 
removed from the network, we recalculated the size of the larg-
est connected component,  s . Plotting the size  s(n)  vs. the number 
of nodes removed,  n , the robustness parameter is defi ned as the 
area under this curve   [ 52 ]  . More robust networks retain a larger 
connected component even when a large proportion of nodes 
have been eliminated. To take into account the size of the net-
work, we normalized this value by  N(N − 1)/2 , so that the maxi-
mum robustness is 1.

    Hierarchy
 ▼
   The hierarchy coeffi  cient  β  is the (positive) exponent of the 
power-law relationship between the clustering  C  i  and the degree 
 d  i  of the nodes in the network such that  C ~ d  −β    [ 42   ,  43 ]  .  β  was 
estimated using the least-squares nonlinear fi tting function 
from Matlab ® . The more the hierarchy coeffi  cient is high, the 
more network hubs – defi ned so for having a large degree – have 
low clustering, meaning that they are more connected to nodes 
poorly connected to each other.    
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