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A B S T R A C T   

Surviving and thriving in a complex world require intricate balancing of higher order brain functions with 
essential survival-related behaviours. Exactly how this is achieved is not fully understood but a large body of 
work has shown that different regions in the prefrontal cortex (PFC) play key roles for diverse cognitive and 
emotional tasks including emotion, control, response inhibition, mental set shifting and working memory. We 
hypothesised that the key regions are hierarchically organised and we developed a framework for discovering the 
driving brain regions at the top of the hierarchy, responsible for steering the brain dynamics of higher brain 
function. We fitted a time-dependent whole-brain model to the neuroimaging data from large-scale Human 
Connectome Project with over 1000 participants and computed the entropy production for rest and seven tasks 
(covering the main domains of cognition). This thermodynamics framework allowed us to identify the main 
common, unifying drivers steering the orchestration of brain dynamics during difficult tasks; located in key 
regions of the PFC (inferior frontal gyrus, lateral orbitofrontal cortex, rostral and caudal frontal cortex and rostral 
anterior cingulate cortex). Selectively lesioning these regions in the whole-brain model demonstrated their causal 
mechanistic importance. Overall, this shows the existence of a ‘ring’ of specific PFC regions ruling over the 
orchestration of higher brain function.   

1. Introduction 

The brain is hierarchically organised with information flow from 
distinct unimodal areas to orchestration by integrative transmodal areas 
collaborating to orchestrate optimal brain communication and compu-
tation (Mesulam, 1998). Surviving and thriving requires careful 
balancing of brain resources and it has been shown that the prefrontal 
cortex (PFC) is crucial for cognitive and emotional control, coordinating 
mental processes and actions in line with current goals and future plans 
(Friedman and Robbins, 2022; Fuster, 2015; Fuster, 2021; Haber et al., 
2022; Kolk and Rakic, 2022; Kringelbach, 2005; Menon and D’Esposito, 
2022). 

However, it is currently not clear if specific parts at the top of the 
brain hierarchy play a unifying role in directing the orchestration of 
brain dynamics necessary for carrying out the key necessary processes, 
including interference control, response inhibition, mental set shifting 
and working memory (Friedman and Robbins, 2022; Menon and 
D’Esposito, 2022). Similar to how Tolkien famously proposed in Lord of 
the Rings: Fellowship of the Ring (Chapter "The Shadow of the Past", p. 
50) that not all rings are created equal but that there is one ring to rule 
them all (Tolkien, 1954); here we investigate whether there could be one 
unifying network of brain regions responsible for the orchestration of 
task-driven brain dynamics? 

Prime candidates for such unifying brain regions can found within the 
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PFC which has been shown to play a role in the mediation of contin-
gencies of action across time, important for the temporal organisation of 
cognition and behaviour in what is generally known as “cognitive con-
trol” – or, in the clinical literature, “executive function” (Friedman and 
Robbins, 2022; Menon and D’Esposito, 2022). Even more generally, the 
PFC has been proposed to serve an integral role directing the ‘Percep-
tion-Action Cycle’, playing a decisive role in orchestrating a ‘ring’ through 
the environment, sensory feedback, and to the cortex, to action and back 
(Fuster, 2015). Within this framework, cognitive networks (called ‘cog-
nits’) are formed originally by Hebbian rules and serve not only memory 
but also attention, perception, language and intelligence (Fuster, 2003; 
Fuster, 2021). Importantly, the prefrontal cortex requires the intimate 
cooperation of the other cortical and subcortical participants in the 
perception-action cycle to create new actions (Fuster, 2021). The ‘ring’ in 
the Perception-Action Cycle is of course different from Tolkien’s meta-
phorical ring in that it runs through the full hierarchy, while Tolkien’s 
ring is only running through the top of the hierarchy, helping to orches-
trate the underlying activity in lower parts of the hierarchy. 

In parallel with these studies of the PFC, evidence has emerged from 
studies of spontaneous brain activity in the absence of task and stimu-
lation that the functional organisation of the underlying resting brain 
dynamics relies on a backbone network of brain regions, including, most 
importantly, the default mode network (Deco et al., 2022; Gusnard and 
Raichle, 2001; Margulies et al., 2016; Smallwood et al., 2021). On top of 
this resting state backbone, both resting state and cognition have been 
shown to be orchestrated by a larger global workspace of brain regions 
(Baars, 1989; Deco et al., 2021; Dehaene and Changeux, 2011; Dehaene 
et al., 1998). 

Here, reconciling these strands of evidence, we hypothesised that 
when the brain is performing higher order tasks, this requires a set of 
unifying, common brain regions temporarily overtaking and driving the 
global workspace at the top of the brain’s functional hierarchy. These 
unifying regions steers the orchestration necessary for survival and 
flourishing by forcing brain dynamics away from equilibrium and 
becoming, in the language of thermodynamics, more irreversible. 
Following Buzsaki (Buzsáki, 2019), we define hierarchy as the asym-
metry in the directionality of information flow, which is commonly 
referred to as ‘breaking the detailed balance’ in physics and systems 
biology. When the detailed balance is broken, i.e. when there is an in-
crease in the directionality of information flow, this results in hierar-
chical reorganisation. Importantly, this hierarchy is not always vertical 
in the sense that there is a top and bottom but could equally be hori-
zontal, which would be the case for a set of regions connected in a circle 
with information flowing clockwise around the circle. Still, however, 
there is hierarchical reorganisation when the directionality of the in-
formation flow is changed. This definition of thermodynamic hierarchy 
allows for the determination of asymmetry in space (given by the in-
formation flow interactions), which give rise to asymmetry in time 
(measured as the arrow of time, or irreversibility) (Deco et al., 2022). At 
different scales, this gives rise to different spatial and temporal hierar-
chies (Deco et al., 2019b; Golesorkhi et al., 2021; Kobeleva et al., 2021), 
consistent with other examples of proposed hierarchical organisation of 
brain states include core-periphery (Golesorkhi et al., 2021; Wolff et al., 
2022a; Wolff et al., 2022b), core synaptic hierarchy (Mesulam, 1998) 
and Global Workspace (Baars, 1989; Dehaene et al., 1998). 

Moving beyond traditional measures of activation and correlation 
task paradigms (Friedman and Robbins, 2022; Niendam et al., 2012; 
Roberts et al., 1998), here we developed the NODE (Novel whole-brain 
modelling of Ongoing Dynamics entropy production) framework for 
identifying unifying regions needed for brain dynamics to move away 
from equilibrium. Specifically, the NODE framework is designed to 
capture unifying drivers of task-driven brain dynamics by taking 
advantage of the key concept of symmetry-breaking taken from physics. 
The fluxes of transitions between different interacting networks are 
more driven towards non-equilibrium than rest, and thus more unbal-
anced as a result of symmetry-breaking (Lynn et al., 2021; Sanz Perl 

et al., 2021). Solving tasks thus requires the breaking of the detailed 
balance of the transitions between underlying states (Fasoli et al., 2016; 
Gnesotto et al., 2018; Kelso, 1995; Pillai and Jirsa, 2017). The NODE 
framework is model-based and therefore not only describes the level of 
non-equilibrium but also can be used to establish the causality of the 
time-dependency underlying the driving symmetry-breaking regions. 

In technical terms, the NODE framework is time-dependent, 
extending whole-brain models to use sliding windows of fMRI data in 
order to estimate the time-varying global coupling parameter, G(t). This 
allowed us to measure the level of reversibility in generative space, i.e., 
whether the states of G(t) can be revisited by time-reversed global 
coupling, G(-t). We computed the entropy production (Hp) where high 
levels of Hp is an indication of non-equilibrium dynamics and found that 
this measure was lower in resting-state than in any of the seven tasks. 
The main brain regions steering the orchestration of cognition and 
behaviour can be identified by the intersection of unifying brain regions 
and networks across all seven HCP tasks. Specifically, we correlated Hp 
with the global brain connectivity (GBC) of each brain region across 
participants, and found that for the common drivers for tasks compared 
to rest are found in the PFC. Finally, as a major advantage of using a 
modelling framework, we directly tested the causal importance of these 
unifying, common regions steering task-driven brain dynamics by 
lesioning them. 

In summary, the NODE framework used on the large-scale HCP 
dataset allowed for the discovery of the unifying drivers of task-driven 
brain dynamics, found in a ring of PFC regions; temporarily rising up 
in the functional hierarchy to steer the orchestration of brain dynamics 
in task necessary for ensuring survival. 

2. Results 

The ideal testbed for our hypothesis is to use the large-scale Human 
Connectome Project with over 1000 healthy participants resting and 
performing a battery of tasks designed to cover as wide a range of 
cognition feasible within realistic time constraints (Barch et al., 2013). 
We quantified the effect of the different cognitive tasks by computing 
the associated entropy production using the NODE framework. This 
captures the different levels of non-equilibrium and consequently the 
irreversibility or arrow of time of brain dynamics. This is a promising 
new metric for capturing the non-equilibrium of brain states. The en-
tropy production is computed by using a whole-brain model, where the 
generative parameter was fitted in a time-varying way by fitting to 
time-windowed whole-brain activity across the whole time series (see 
Methods). Fig. 1 summarises the overall framework and specifically 
shows how the whole-brain model is using to fit the windowed brain 
dynamics over time. This allows for the computation of the entropy 
production in the time-evolving parameter space of the whole-brain 
model. Crucially, capturing the time-dependency of the brain signals 
is made possible by the linearisation of the whole-brain model at the 
edge of bifurcation. This allows for an analytic derivation of the 
windowed functional connectivity (see Methods for more details of this 
important technical innovation). 

The whole-brain model was fitted to sliding windows of the func-
tional empirical connectivity over the full timecourse of resting state and 
seven cognitive HCP tasks (see Methods). Specifically, the Hopf model 
was fitted to the FC for each sliding window (of 80 TRs) which is suf-
ficiently large to provide a reliable global coupling parameter G(t), 
which is the scaling of the underlying synaptic conductivity given by the 
anatomical connectivity of the whole-brain model. This sliding window 
is moved along full timecourses for each individual for their resting state 
and the seven tasks to produce a time-varying fitted G(t). Computa-
tionally, this is only possible using the Hopf linearisation with a swarm 
algorithm. It has been shown that the Hopf model provides the best fit to 
empirical when perched at the edge of the bifurcation (Deco et al., 
2017b), the linearisation of the Hopf model provides an equally excel-
lent fit of the empirical data. 
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We compute the joint transition probability in parameter space 
providing a direct estimate of the entropy production as the Kullback- 
Leibler distance between the forward and backward transition proba-
bilities (similar to the method introduced by Lynn and colleagues (Lynn 
et al., 2021)). In order to be able to estimate the full transition proba-
bility matrix, we concatenate the data from 10 participants, providing a 
robust estimation of the entropy production in parameter space, which is 
characterising the level of non-equilibrium describing the 
symmetry-breaking of the balance of internal fluxes and thus revealing 
the asymmetry in causal interactions. 

The key idea is to use this model-based estimate of entropy pro-
duction to estimate the generative brain regions driving the symmetry- 
breaking in each individual for each condition (resting and seven tasks) 
by correlating this with the corresponding global brain connectivity 
(GBC), which captures the functional coupling of each region with the 
rest of the brain (see Methods). Previous investigations have found GBC 
to be a highly informative measure of changes in neuropsychiatric dis-
orders (Cole et al., 2011; Yang et al., 2016), individual differences in 
cognition (Cole et al., 2014) and general resting state (Demirtas et al., 

2019). In order to discover the common, unifying brain regions driving 
cognition, we computed the intersection of comparing the driving brain 
regions in each task with rest. 

In other words, this intersection is allowing the discovery the 
generative sources of non-equilibrium inducing exogeneous dynamics 
on top of the endogenous dynamics. Fig. 2A shows a brief taxonomy of 
how brain states can be described in terms of weak to strong exogeneous 
and endogenous dynamics. As an example, goal-directed dynamics 
found in cognition results from a mixture of strong exogenous driving 
from the environment together with intrinsic dynamics, whereas more 
endogenous brain states as resting state, mind wandering, sleep and 
anaesthesia are less reliant of the external environment. 

Applying the NODE framework to the large-scale HCP dataset, allows 
us to estimate the unifying, common brain regions which are tempo-
rarily overtaking the top of the functional hierarchy and steering the 
ongoing orchestration by the global workspace. In Fig. 2B we specif-
ically hypothesise that these drivers will be found in the prefrontal 
cortex. 

Fig. 1. Discovering the common drivers of cognition. A) We invented a Time-dependent whole-brain modelling of Ongoing Dynamics entropy production (NODE) 
framework to allow us to discover the key brain regions and networks driving task-driven brain dynamics needed for survival. To this end, we analysed the large-scale 
Human Connectome Project with over 1000 participants engaged in resting and a battery of seven tasks designed to cover as wide a range of brain systems within 
realistic time constraints. We assessed this by fitting a time-dependent whole-brain model to the empirical data and estimating the reversibility by measuring the 
entropy production in the time-evolving parameter space of the whole-brain model. B) The whole-brain model links anatomical and functional information using a 
linearised Hopf model at the edge of bifurcation to fit windowed brain dynamics over time. The estimation of time-dependency is made possible by the linearisation 
of the whole-brain model and the analytic derivation of the windowed functional connectivity. C) The whole-brain model was fitted to sliding windows of the 
functional empirical connectivity over the full timecourse of resting state and seven tasks. This fitting produced a time-varying optimal global coupling parameter, 
G(t) for the model at each sliding window. D) In thermodynamics, the influence of the environment can be assessed through estimating the level of non-equilibrium 
by computing the production of entropy. In non-equilibrium, the balance is broken and revealing the asymmetry in causal interactions. To estimate this, consider a 
non-equilibrium system with two states A and B and the associated trajectories evolving during forward (A → B, black arrow) and backward (B → A, red arrow) 
processes. These forward and backward trajectories of the process can have different arrows of time. The difference in forward and time reversal of the backward 
trajectories corresponds to the level of irreversibility of the process. The second law of thermodynamics uses the entropy production to describe this arrow of time. If 
the entropy production is larger than zero, this corresponds to irreversibility of a non-equilibrium system. In contrast, if there is no entropy production, this is a 
reversible, equilibrium system. Here we estimated the entropy production in the generative parameter space of the whole-brain model. E) Specifically, we used the 
time-varying global coupling to infer the transition probability in parameter space which allows us to estimate the entropy production as the Kullback-Leibler 
distance between the forward and backward transition probabilities. F) For each individual, we also estimated the global brain connectivity (GBC) to capture the 
main drivers breaking the symmetry for rest and the seven tasks. G) Correlating these two measures across individuals allows us to infer the generative brain regions 
driving the entropy production. H) Comparing these driving brain regions in each task compared to rest and computing their intersection across the seven tasks, 
reveals the main driving brain regions for cognition. I) Beyond this finding, we used the NODE framework to lesion the common, unifying PFC regions in the time- 
dependent whole-brain model in cognitive tasks and in rest. This allowed for the confirmation of the causal, mechanistic nature of PFC regions in cognition. 
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Progress in Neurobiology 227 (2023) 102468

4

2.1. Non-equilibrium in cognition and rest 

The NODE framework allowed us to fit a whole-brain model to the 
empirical brain dynamics of each individual data of in seven tasks (red; 
WM, SOCIAL, RELATIONAL, MOTOR, LANGUAGE, GAMBLING, 
EMOTION) and rest (blue; REST) from the large-scale HCP dataset. Fig. 3 
shows (in the first column on grey background) the significantly higher 
entropy production for each of the seven tasks compared to rest 
(p < 0.001). Importantly, the entropy production is estimated in the 
generative, one-dimensional space provided by the global coupling 
parameter G(t). This is convenient since the entropy production requires 
estimation of the transition probabilities and this is trivial in one 
dimension. In order to avoid any potential sources of bias and to be able 
to compare the levels of entropy production across conditions, we 
computed the entropy production in every participant in all conditions 
using the same minimum duration of the G(t), which is given by the 
duration of the shortest task, namely EMOTION with 176 TRs. 
Furthermore, we also use the same partition and range (see Methods). In 
order to make it possible to fully estimate the entropy production, we 
concatenated the data from 10 participants (see Methods). 

Further backing up this result, which is generated from the data of 
each individual, the second column of Fig. 3 shows an example of time- 
varying optimal global coupling parameter G(t) for an individual across 
seven tasks and resting state. The rest of the columns in Fig. 3 shows the 
group results across all HCP participants. Importantly, the time- 
dependent model is significantly better than a traditional stationary 
model as shown by results of fitting the models shown in the second, 
third and fourth column. 

Specifically, the third column shows the improvement of the level of 
fitting (as measured by the mean quadratic error of the G(t) FC over 
windows) by the whole-brain model (NS, orange) compared to a tradi-
tional whole-brain with a fixed global coupling (Fix, green) (see 
Methods). This is highly significant across eight conditions (p < 0.001). 

Similarly, the fourth column shows the level of fitting by comparing 
the quadratic error between the empirical FC and the simulated FC 
across the whole timecourse. Finally, the fifth column shows the same 

quadratic error but now by comparing the empirical and simulated GBC. 
This was highly significant across eight conditions (p < 0.001). 

The significant differences in entropy production between tasks and 
rest (provided by the high-quality fitting of the time-dependent model) 
confirms the hypothesis that there is more symmetry-breaking in 
cognition. As such, this poses the crucial key question, namely which 
brain regions are generating the changes in entropy and thus are the 
unifying, common regions driving cognition. 

2.2. Generative, unifying brain regions driving cognition 

In order to reveal the underlying drivers of cognitive computations 
we identified how each brain region contributes to the generation of 
overall entropy of each condition. In order to achieve this, for each 
participant we computed both the entropy production and the GBC for 
all conditions (tasks and rest). For a given condition, the GBC provides a 
value for each brain region in a given participant. Combining within a 
condition (across all participants), we correlated the entropy production 
and GBC to produce the contribution of each brain region to the overall 
entropy production. We then computed the difference between each of 
the seven tasks and rest, which produced the specific drivers for a given 
task (over and above what happens in rest). The first three columns of  
Fig. 4 show the results in terms of renderings of the generative brain 
regions driving the entropy production in task and rest and difference 
between them, respectively. 

Given that the seven tasks used here were designed to cover as wide a 
range of cognition feasible within reasonable time constraints, the dis-
covery of the common, unifying drivers of cognition is simply a matter of 
computing the intersection across the seven tasks (shown in fourth 
column of Fig. 4). Highly interestingly, as shown in the renderings, the 
findings reveal a set of exclusively prefrontal drivers, which included the 
IFG (pars orbitalis, opercularis and triangularis), lateral OFC, rostral and 
caudal frontal cortex and rostral anterior cingulate cortex. As can be 
seen from Fig. 4 and Table 1, different combinations of regions of the 
ring are driving the tasks, which is highly suggestive of specific roles of 
regions in cognitive domains. 

Fig. 2. Hierarchical changes in brain organisation between cognitive tasks and resting state. A) Brain states can be described as function of exogenous and 
endogenous driving of the underlying dynamics. Strong exogenous driving from the environment results in the goal-directed dynamics found in tasks. On the other 
hand, other brain states such as resting state, mind wandering, sleep and anaesthesia are less reliant of the external environment but with stronger endogenous 
driving. B) These states can be described in terms of changes to the functional hierarchy of orchestration. The spontaneous activity in resting state and task is 
supported by a global workspace of regions orchestrating the dynamics. Beyond the global workspace, we hypothesised that cognition depends on unifying, common 
brain regions in the prefrontal cortex (PFC) which are temporarily overtaking the top of the functional hierarchy and steering the orchestration by the 
global workspace. 
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2.3. Causal demonstration of importance of unifying drivers 

Another major advantage of using the NODE framework with an 
explicit whole-brain model of the brain dynamics of each participant is 
that this makes it possible to directly test the causal, mechanistic 
importance of brain regions for brain dynamics. Here we used this to 
demonstrate the causal role of the common, unifying PFC regions which 
during cognition temporarily overtake the orchestration of the brain 
dynamics at the top of the brain hierarchy. These regions drive the 
highest entropy production across rest and all tasks and thus are at the 

top of the hierarchy. In this sense, they are driving the non-equilibrium 
dynamics. Lesioning the coupling from these regions in the model leads 
to a significant decrease in the level of fitting of cognitive tasks 
compared to rest (Fig. 5). In other words, when lesioning the coupling of 
the unifying PFC regions at the top of the hierarchy compared to control 
regions at the bottom of the hierarchy, we found a significantly larger 
breakdown in dynamics for tasks compared to rest (p < 0.001, see third 
violin plot in panel Fig. 5D). 

We established the hierarchy for each condition by the correlation 
between the entropy production (coming from the time-varying global 

Fig. 3. Computing entropy production in cognitive tasks and rest. We fitted a time-dependent whole-brain model to the empirical brain dynamics of over 1000 HCP 
individuals in seven tasks and rest (rows). The first column (with grey background) shows the highly significant differences in entropy production between the seven 
cognitive tasks (red) and rest (blue) (p < 0.001). This is backed up by the excellent fit of the data. The second column shows an example of time-varying optimal 
global coupling parameter G(t) for an individual across seven tasks (WM, SOCIAL, RELATIONAL, MOTOR, LANGUAGE, GAMBLING, EMOTION) and resting state 
(REST). Please note that for estimating the entropy production, we did not use the full G(t) but only used the same duration for everything (see Methods). The 
following columns show the group results across all HCP participants. The third column shows the improvement of the level of fitting (as measured by the mean 
quadratic error of the FC over windows) by the whole-brain model (NS, orange) compared to a whole/brain with a fixed global coupling (Fix, green) (see Methods). 
This is highly significant across eight conditions (p < 0.001). The fourth column shows the level of fitting by the quadratic error between the empirical FC and the 
simulated FC across the whole timecourse. The fifth column shows the same but now comparing the empirical and simulated GBC. Again, we found that this was 
highly significant across eight conditions (p < 0.001). Overall, the increase in entropy production and, consequently, non-equilibrium in task compared to rest shows 
that the breaking of the detailed balance significantly increases in cognition. This opens up a key question of which brain regions and networks are driving the 
underlying cognitive computations in task. 

G. Deco et al.                                                                                                                                                                                                                                    



Progress in Neurobiology 227 (2023) 102468

6

coupling) and the GBC (across all participants). We determined the 
intersection across the seven tasks to reveal the common, unifying re-
gions of the PFC (as described above and in Fig. 4). The regions used for 
the lesioning of the coupling were taken as the top five regions in this 
intersection, while the regions for the control lesions were taken as the 
bottom five regions of the intersection of the lowest hierarchy (see 
Methods). 

For each participant in each condition (seven cognitive tasks and 
rest), we computed the generative results of running the previously best- 
fit whole-brain model but now with and without lesioning of the 
coupling of the PFC and control regions (see Methods). The fitting of 
each of these models were given by the error between the simulated and 
empirical GBC. This allowed us to see the effect of lesioning in cognitive 
tasks compared to rest. Fig. 5D shows the significant worsening 
(p < 0.001) of the whole-brain modelling in cognitive task (shown in 
red) compared to rest (shown in yellow) when lesioning the coupling 
from the PFC. The violinplot shows the differences of the GBC fitting for 
lesioned vs non-lesioned in task (as the mean over all tasks) and for the 
resting condition. The worsening effects of lesioning the PFC are 
significantly larger for cognitive task than for rest. 

In contrast, the second violinplot shows that lesioning the coupling 
from the control regions in task and rest results in a much weaker dif-
ferentiation between task and rest. This effect is quantified in the third 
violinplot which shows the significant differential effects in task versus 
rest of lesioning the coupling of the PFC (shown in blue) and control 
(p < 0.001, shown in green). The results demonstrate that eliminating 
the coupling of the unifying PFC drivers has a major, significant effect on 
cognition compared to resting. 

3. Discussion 

Here, we have provided new insights and evidence for a common, 
unifying set of exclusively prefrontal drivers (included the IFG, pars 
orbitalis, opercularis and triangularis, lateral OFC, rostral and caudal 
frontal cortices and rostral anterior cingulate cortex), which – analogous 
to Tolkien’s ‘one ring to rule them all’ and to the top part of Fuster’s ring 
of the Perception-Action cycle – temporarily take over the orchestration 
of task-driven brain dynamics ensuring survival. 

This important finding was made possible by the development of a 
causal mechanistic NODE framework based on whole-brain modelling 

Fig. 4. Revealing the underlying drivers of cognitive computations. The leftmost three columns show renderings of the generative brain regions driving the entropy 
production. The first column renders for each task the level of correlation between GBC and entropy production across participants (indicated by the colour bar). The 
second column renders this for resting state, while the third column renders the difference between each task and rest. The rightmost panels show the result of 
computing the different levels of intersection across the seven tasks, which revealed the drivers of cognitive computations. Highly interestingly, the renderings show a 
set of exclusively prefrontal drivers in the ‘ring’, which included the IFG (pars orbitalis, opercularis and triangularis), lateral OFC, rostral and caudal frontal cortices 
and rostral anterior cingulate cortex (for a full list, see Table 1). The colourbar shows the number of top regions considered for the intersection, i.e., the IFG (par 
orbitalis) in dark red is present in the top 5 for each task, while the rostral middle frontal cortex is present in the top 30. Notably, different combinations of regions of 
the ring are primarily driving the tasks, suggestive of specific roles of regions in cognitive domains. 
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allowing for the estimation of entropy production. A measure of entropy 
production was computed for each participant in each condition (tasks 
and rest) and is fundamental for characterising how different regions of 
the system are driving the system away from equilibrium. In turn, this 
allowed us to identify the driving regions for the seven tasks of the large- 
scale HCP neuroimaging data, covering the breadth of cognitive do-
mains. Importantly, the intersection of the driving regions across all 
tasks revealed the common, unifying driving regions. Subsequently 
lesioning these unifying regions in the time-dependent whole-brain 
modelling of each task showed that this significantly affected each of 
tasks more than the resting condition. Overall, this demonstrates the 
causal, mechanistic importance of a ‘ring’ of common, unifying PFC 
regions. 

The role of distinct unifying PFC regions adds to the important 
emerging literature on the hierarchical organisation of brain dynamics. 
In the absence of cognitive task and stimulation, spontaneous brain 
dynamics in resting state relies, most importantly, on activity in the 
default mode network (DMN) (Deco et al., 2022; Gusnard and Raichle, 
2001; Margulies et al., 2016; Smallwood et al., 2021). In addition to this 
resting state, it has been shown that performing cognitive tasks requires 
the orchestration by a larger global workspace of brain regions, which 
includes part of the DMN (Baars, 1989; Deco et al., 2021; Dehaene and 
Changeux, 2011; Dehaene et al., 1998). Here, using the NODE frame-
work we were able to go beyond this stationary description of brain 
dynamics to discover that the necessary driving of computation requires 

the rise of a ring of diverse PFC regions temporarily steering the 
orchestration normally carried out by the global workspace. 

The present findings of a common ring of PFC regions, orchestrating 
the necessary computation for cognition, also reveals functional speci-
ficity for different cognitive domains. As an example, the task probing 
emotional processing engages key regions of the PFC including the 
orbitofrontal cortex, IFG and the middle frontal cortex, which are well 
known regions identified both by neuropsychology and neuroimaging 
(Friedman and Robbins, 2022; Menon and D’Esposito, 2022). Interest-
ingly, in this case, there are also many other regions engaged in 
orchestrating the complexity of emotional processing. This is in contrast 
to the much simpler gambling task used, where a smaller subset of re-
gions is orchestrating the cognitive demands, including well-known 
regions notably such as the OFC, the IFG and rostral middle frontal 
cortex (Friedman and Robbins, 2022; Kringelbach, 2005; Menon and 
D’Esposito, 2022). Again, this fits the existing neuropsychological and 
neuroimaging literature (Kringelbach, 2005). 

Nevertheless, it should be noted that the brain is a highly complex 
non-equilibrium system and functional deficit can arise from lesions 
from anywhere in the hierarchical set of regions, not only the top driving 
regions. This view is compatible with neurocognitive models suggesting 
that the PFC only serves a processing role in cognitive tasks, but that the 
necessary and critical stores - including semantic memory and language 
’representations’ - are stored in temporal cortex (Bressler, 2008; Bressler 
and Menon, 2010). 

There is a large literature on the PFC, showing that this is a highly 
heterogenous structure with many regions having their own cytoarchi-
tectonic, microstructural and neurochemical, properties (Fuster, 2015). 
The so-called ‘cognits’ are found in the constituent elements of the ring 
of the Perception-Action cycle. In addition, the function of a specific PFC 
region is dependent on its connectivity (Passingham et al., 2002), where 
each PFC region has a unique ‘connectivity fingerprint’ (Shirer et al., 
2012). This connectivity with regions outside and inside the PFC brings 
about larger networks serving to lead the orchestration of other 
large-scale networks. This means that the PFC must be central for 
organising adaptive goal-directed behaviours in a hierarchical manner. 
Fuster has convincingly demonstrated that the PFC is at the highest level 
of the cortical hierarchy dedicated to the representation and execution 
of actions (Fuster, 2015). This orchestrates and integrates lower, sensory 
and motor parts of the cortical hierarchy and suggests that progressively 
higher regions such as the PFC, of later phylogenetic and ontogenetic 
development, can support functions that are progressively more 
integrative. 

3.1. Discovering the importance of non-equilibrium brain dynamics 

Most neuroimaging research has assumed that the brain is in equi-
librium, which is convenient for simplifying the methodology used 
studying brain dynamics. This has yielded many great insights but like 
with all technologies, this can also hide important features of the data. A 
classic example comes from physics where Newtonian laws describe the 
mechanics of the celestial bodies but where relativity and quantum 
mechanics have revealed deeper underlying laws of physics. Similarly, 
thermodynamics are not only fundamental to the discovery of both 
relativity and quantum mechanics but has also proven very useful for 
revealing new insights into biological non-equilibrium systems 
(Schrödinger, 1944). The biological brain is clearly a non-equilibrium 
system and researchers have started using time-dependent methods 
that can better capture its full dynamics (Lynn et al., 2021; Sanz Perl 
et al., 2021). 

Here, we built a framework that can model the non-equilibrium 
nature of brain signals, which provided the main advantage of being 
able to directly compute the entropy production as a measure of non- 
equilibrium. This provides the potential for identifying the brain re-
gions which are in a symmetry-breaking way driving the system away 
from equilibrium. In other words, this symmetry-breaking counteracts 

Table 1 
The top of the table shows the ten driving regions across tasks resulting from 
intersection, while the bottom part of the table lists the top four regions specific 
for each of the seven tasks. As can be seen, different tasks are driven by similar 
but different regions, suggestive of different drivers for different cognitive 
domains.  

Intersection across all tasks 

Inferior frontal gyrus (IFG) pars orbitalis (R) 
Lateral orbitofrontal cortex (L) 
Rostral middle frontal cortex (L) 
Rostral anterior cingulate cortex (R) 
IFG pars triangularis R) 
Rostral anterior cingulate cortex (L) 
IFG pars opercularis (R) 
IFG pars triangularis (L) 
Caudal middle frontal cortex (L) 
Rostral middle frontal cortex (R) 

Task Top four driving regions of the ring  
WM Inferior frontal gyrus (IFG) pars orbitalis (R) 

Rostral middle frontal cortex (R) 
Rostral middle frontal cortex (L) 
Lateral orbitofrontal cortex (L)  

Social Rostral anterior cingulate cortex (R) 
Rostral anterior cingulate cortex (L) 
Inferior frontal gyrus (IFG) pars orbitalis (R) 
Rostral middle frontal cortex (R)  

Relational Rostral anterior cingulate cortex (L) 
Inferior frontal gyrus (IFG) pars orbitalis (R) 
Rostral anterior cingulate cortex (R) 
Lateral orbitofrontal cortex (L)  

Motor Lateral orbitofrontal cortex (L) 
Inferior frontal gyrus (IFG) pars orbitalis (R) 
Rostral middle frontal cortex (L) 
Rostral middle frontal cortex (R)  

Language Rostral anterior cingulate cortex (R) 
Rostral anterior cingulate cortex (L) 
Lateral orbitofrontal cortex (L) 
Inferior frontal gyrus (IFG) pars orbitalis (R)  

Gambling Rostral anterior cingulate cortex (R) 
Rostral anterior cingulate cortex (L) 
Inferior frontal gyrus (IFG) pars orbitalis (R) 
Rostral middle frontal cortex (L)  

Emotion Rostral middle frontal cortex (L) 
Rostral anterior cingulate cortex (R) 
Inferior frontal gyrus (IFG) pars orbitalis (R) 
Rostral middle frontal cortex (R)   
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the vanishing of fluxes of transitions between different states in a system 
with detailed balance. This is important since a system with detailed 
balance will cease to produce entropy and the dynamics will become 
reversible in time. Therefore, a robust measure of entropy production is 
essential to working out the causal drivers breaking the detailed balance 
of the system. 

Recently, non-equilibrium dynamics has become an important topic 
of research where the estimation of entropy production typically comes 
from dimensionality-reduced empirical neuroimaging signals. This was 
used to identify the non-equilibrium dynamics of important brain states 
such as wakefulness, anaesthesia and sleep (Sanz Perl et al., 2021) as 
well as identifying the difference between cognition and rest (Lynn 
et al., 2021). 

Here, we took a different approach, namely building a model to fit 
the non-equilibrium data. Specifically, we fitted a whole-brain model to 
the empirical data and estimated the entropy production in the gener-
ative model space given by these changes over time by a global coupling 
parameter. This time-varying, one-dimensional parameter was used in 
conjunction with the estimation on the large-scale HCP data to provide a 
very robust estimate of entropy production in cognitive tasks and rest. 

Using our new non-equilibrium framework allowed us to discover a 
key feature of the PFC, which has hitherto remained hidden, namely the 
existence of a common, unifying PFC regions temporarily overtaking the 
steering of the brain dynamics in order to solve time-critical tasks. 

3.2. Challenges and opportunities for cognition 

The findings of a ‘ring’ of common, unifying PFC regions raise 
important questions with regards to other species. It has long been 
recognised that the prefrontal cortex in humans has undergone a rapid 
expansion compared to other primates and mammals (Jerison, 1997; 
Kolk and Rakic, 2022). This has clearly served humanity well in terms of 
ability of solving difficult cognitive problems and has been argued to be 
one of the main hallmarks of what makes us human (Fuster, 2015). 

The original cell recording results show that memory neurons are 
equally present in frontal, parietal and temporal association cortex and 
that both PFC and posterior memory cells are necessary for memory. 
This raises the question of the mechanism that allow prefrontal regions 
to become drivers and members of the ruling ‘one ring’. One putative 
mechanism could be the fact that the posterior cells are modality spe-
cific, whether to visual, auditory or tactile stimuli, whereas the PFC 
memory cells show cross modality properties and that this allows for a 
higher position in the hierarchy and thus reveals their place in the ring. 

The findings presented here also directly questions whether this is 
caused by the general expansion of PFC or simply by the functional 
organisation of this ‘ring’ of unifying regions. To test the latter, the 
methods developed here could be used in other species to identify 
whether similar hierarchical PFC drivers are present. In fact, it also poses 
the question if the unifying regions play a causal role in general intel-
ligence both in humans and across species. Again, this is now possible to 
quantify. 

Fig. 5. Causal mechanistic demonstration of the unifying role of the prefrontal cortex (PFC) in cognition. A) The NODE framework allows for the identification of the 
main drivers in the seven cognitive tasks compared to rest, which showed almost exclusively PFC involvement. B) The intersection across the seven tasks revealed the 
common, unifying regions of the PFC, which during cognition temporarily overtake the orchestration of the brain dynamics at the top of the brain hierarchy. C) In 
order to demonstrate the causal mechanistic role of these common, unifying PFC drivers (shown in blue) for temporarily orchestrating the global workspace (shown 
in red), we lesioned the whole-brain model of each participant in each condition (seven cognitive tasks and resting) by disconnecting the unifying PFC regions. As a 
control, we also lesioned regions at bottom of the hierarchy established by the correlation between the entropy production (coming from the time-varying global 
coupling) and the GBC (across all participants). D) The effects of the lesions clearly show the causal mechanistic role of the common, unifying PFC drivers. The first 
violin plot shows the significant worsening (p < 0.001) of the whole-brain modelling in task (shown in red) compared to rest (shown in yellow) when lesioning the 
coupling from the top five PFC regions at the top of the hierarchy. In contrast, the second violinplot shows the effect is much weaker when lesioning the coupling 
from the bottom five regions of the hierarchy in task and rest. This difference (between lesioning the top five regions in the hierarchy compared to the bottom five 
regions) is quantified in the third violinplot which shows the significant difference (p < 0.001) of the effect of lesioning in task versus rest of lesioning the coupling of 
the PFC (shown in blue) and control (shown in green). Overall, the NODE framework allowed us to demonstrate that eliminating the coupling of the unifying PFC 
drivers has a major, significant effect on the computation involved in cognition compared to resting. This confirms the causal, mechanistic role of the common, 
unifying PFC drivers in cognition. 
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Beyond such cross-species comparisons, it is highly likely that the 
breakdown of the ‘ring’ of unifying PFC regions could play a major role 
in the development of neuropsychiatric disorders. It would be of great 
interest to investigate this breakdown across the lifespan, from devel-
opment and different neuropsychiatric disorders to the aging brain. 
Especially given that the model-based approach developed here offers 
the potential for identifying regions needed to force the system back to a 
healthy state (Deco et al., 2019a). 

Overall, the existence of a unifying PFC system offers a way to rec-
onciliate the large literature on cognitive control and the PFC. As such it 
could a fertile framework for deepening our understanding of the 
functional orchestration of brain dynamics in cognition in health and 
disease. 

4. Star methods 

4.1. Neuroimaging data acquisition, preprocessing and timeseries 
extraction 

4.1.1. Ethics 
The Washington University–University of Minnesota (WU-Minn 

HCP) Consortium obtained full informed consent from all participants, 
and research procedures and ethical guidelines were followed in 
accordance with Washington University institutional review board 
approval (Mapping the Human Connectome: Structure, Function, and 
Heritability; IRB # 201204036). 

4.1.2. Participants 
The data set used for this investigation was selected from the March 

2017 public data release from the Human Connectome Project (HCP) 
where we chose a sample of 1003 participants, all of whom have resting 
state data. For the seven tasks, HCP provides the following numbers of 
participants: WM= 999; SOCIAL= 996; MOTOR= 996; LANGUAGE=
997; GAMBLING= 1000; EMOTION= 992; RELATIONAL= 989. We 
also validated the framework in the 45 participants with retest data. No 
statistical methods were used to pre-determine sample sizes but our 
sample sizes are similar to those reported in previous publications using 
the full HCP dataset. 

4.1.3. Neuroimaging acquisition for fMRI HCP 
The 1003 HCP participants were scanned on a 3-T connectome-Skyra 

scanner (Siemens). We used one resting state fMRI acquisition of 
approximately 15 min acquired on the same day, with eyes open with 
relaxed fixation on a projected bright cross-hair on a dark background as 
well as data from the seven tasks. The HCP website (http://www. 
humanconnectome.org/) provides the full details of participants, the 
acquisition protocol and preprocessing of the data for both resting state 
and the seven tasks. Below we have briefly summarised these. 

4.1.4. Neuroimaging acquisition for dMRI HCP 
We obtained multi-shell diffusion-weighted imaging data from 32 

participants from the HCP database who were scanned for a full 89 min. 
The acquisition parameters are described in details on the HCP website 
(Setsompop et al., 2013). 

4.1.5. The HCP task battery of seven tasks 
The HCP task battery consists of seven tasks: working memory, 

motor, gambling, language, social, emotional, relational, which are 
described in details on the HCP website (Barch et al., 2013). HCP states 
that the tasks were designed to cover a broad range of human cognitive 
abilities in seven major domains that sample the diversity of neural 
systems 1) visual, motion, somatosensory, and motor systems, 2) 
working memory, decision-making and cognitive control systems; 3) 
category-specific representations; 4) language processing; 5) relational 
processing; 6) social cognition; and 7) emotion processing. In addition to 
resting state scans, all 1003 HCP participants performed all tasks in two 

separate sessions (first session: working memory, gambling and motor; 
second session: language, social cognition, relational processing and 
emotion processing). 

The paper of Barch and colleagues provides all the details of the 
seventasks. Specifically the paper includes a Table 4, which summarises 
allthe main parameters for each task (Barch et al., 2013). Importantly, 
this paper also provides a thorough description of each task and the 
rationale of why it was included. 

4.2. Neuroimaging structural connectivity and extraction of functional 
timeseries 

4.2.1. Parcellations 
All neuroimaging data was processed using two standard cortical 

parcellations with added subcortical regions. We used coarser-scale 
parcellation, we used the Mindboggle-modified Desikan-Killiany par-
cellation (Desikan et al., 2006) with a total of 62 cortical regions (31 
regions per hemisphere) (Klein and Tourville, 2012). 

4.3. Generating structural connectivity matrices from dMRI 

In order to be as precise as possible for the model fitting, we esti-
mated the structural connectivity matrix from the HCP dMRI datasets. 
We have previously shown that best estimate is provided by the Special 
HCP dMRI, which uses excellent protocols taking 89 min for each of 32 
HCP participants at the MGH centre. The dMRI dataset was preprocessed 
and made available as part of the freely available Lead-DBS software 
package (http://www.lead-dbs.org/). 

The precise preprocessing is described in details in Horn and col-
leagues (Horn et al., 2017), but briefly, the data was processed using a 
generalized q-sampling imaging algorithm implemented in DSI studio 
(http://dsi-studio.labsolver.org). Segmentation of the T2-weighted 
anatomical images produced a white-matter mask and co-registering 
the images to the b0 image of the diffusion data using SPM12. In each 
HCP participant, 200,000 fibres were sampled within the white-matter 
mask. Fibres were transformed into MNI space using Lead-DBS (Horn 
and Blankenburg, 2016). The methods used the algorithms for 
false-positive fibres shown to be optimal in recent open challenges 
(Maier-Hein et al., 2017; Schilling et al., 2019). The risk of false positive 
tractography was reduced in several ways. Most importantly, this used 
the tracking method achieving the highest (92%) valid connection score 
among 96 methods submitted from 20 different research groups in a 
recent open competition (Maier-Hein et al., 2017). We subsequently 
used the standardized methods in Lead-DBS to produce the structural 
connectomes for the DK62 parcellation used in the time-dependent 
whole-brain Hopf model (see below). 

4.3.1. Preprocessing and extraction of functional timeseries in fMRI resting 
state and task data 

The preprocessing of the HCP resting state and task datasets is 
described in details on the HCP website. Briefly, the data is preprocessed 
using the HCP pipeline which is using standardized methods using FSL 
(FMRIB Software Library), FreeSurfer, and the Connectome Workbench 
software (Glasser et al., 2013; Smith et al., 2013). This standard pre-
processing included correction for spatial and gradient distortions and 
head motion, intensity normalization and bias field removal, registra-
tion to the T1 weighted structural image, transformation to the 2 mm 
Montreal Neurological Institute (MNI) space, and using the FIX artefact 
removal procedure (Navarro Schroder et al., 2015; Smith et al., 2013). 
The head motion parameters were regressed out and structured artefacts 
were removed by ICA+FIX processing (Independent Component Anal-
ysis followed by FMRIB’s ICA-based X-noiseifier (Griffanti et al., 2014; 
Salimi-Khorshidi et al., 2014)). Preprocessed timeseries of all grayor-
dinates are in HCP CIFTI grayordinates standard space and available in 
the surface-based CIFTI file for each participants for resting state and 
each of the seven tasks. 
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We used a custom-made Matlab script using the ft_read_cifti function 
(Fieldtrip toolbox (Oostenveld et al., 2011)) to extract the average 
timeseries of all the grayordinates in each region of the DK62 parcella-
tions, which are defined in the HCP CIFTI grayordinates standard space. 
The BOLD timeseries were filtered using a second-order Butterworth 
filter in the range of 0.008–0.08 Hz. 

HCP provides resting state data for 1003 participants, all of whom 
also carried out the seven tasks. For various reasons, however, some 
sessions were discarded, hence HCP provides task data only for a subset 
of these participants: WM = 999; SOCIAL= 996; MOTOR= 996; 
LANGUAGE= 997; GAMBLING= 1000; EMOTION= 992; RELATIO 
NAL= 989. 

4.4. Neuroimaging analysis tools and methods 

4.4.1. Whole-brain model 
The link between anatomical structure and functional dynamics, 

introduced more than a decade ago is at the heart of whole-brain 
network models (Deco et al., 2013; Deco and Kringelbach, 2014). 
Typically, the anatomy is represented by the structural connectivity (SC) 
of an individual or average brain, measured in vivo by diffusion MRI 
(dMRI) combined with probabilistic tractography. The spatial resolution 
is in the order of 1–2 mm, but with ultra-high field MRI resolutions 
0.4 mm can be reached. The structural connectome denotes the 
wire-diagram of the connections between cortical regions as ascertained 
from dMRI tractography. The functional global dynamics result from the 
mutual interactions of local node dynamics coupled through the un-
derlying empirical anatomical SC matrix. Whole-brain models aim to 
balance between complexity and realism in order to describe the most 
important features of the brain in vivo (Breakspear, 2017). The most 
successful whole-brain computational models have taken their lead from 
statistical physics where it has been shown that macroscopic physical 
systems obey laws that are independent of their mesoscopic constitu-
ents. The emerging collective macroscopic behaviour of brain models 
has been shown to depend only weakly on individual neuron behaviour. 
This theoretical framework has been successful in explaining the pattern 
of inter-regional activity correlation measured with fMRI, so called 
resting-state-networks. Recent developments have shown that 
whole-brain models are able to describe not only static FC (averaged 
over all time points), but also dynamical measurements like the tem-
poral structure of the activity fluctuations, the so-called functional 
connectivity dynamics (FCD) (Deco et al., 2017b; Hansen et al., 2015). 

Here we extend the Hopf whole-brain model to be able to fit the time- 
dependent fMRI BOLD data. As per usual, the model consists of coupled 
dynamical units (ROIs or nodes) representing the 62 cortical brain areas 
from the DK62 parcellation (Deco et al., 2017b). The local dynamics of 
each brain region is described by the normal form of a supercritical Hopf 
bifurcation, also known as the Stuart-Landau Oscillator, which is the 
canonical model for studying the transition from noisy to oscillatory 
dynamics (Kuznetsov, 1998). Coupled together with the brain network 
architecture, the complex interactions between Hopf oscillators have 
been shown to reproduce significant features of brain dynamics 
observed in electrophysiology (Freyer et al., 2011; Freyer et al., 2012), 
MEG (Deco et al., 2017a) and fMRI (Deco et al., 2019a; Kringelbach 
et al., 2020). 

4.4.2. Local dynamics Stuart-Landau oscillators 
Specifically, the local dynamics of an isolated node j are described by 

the following complex-valued equation, representing the normal form of 
a supercritical Hopf bifurcation (Stuart-Landau oscillator): 

dzj

dt
=

(
aj + iωj

)
zj −

⃒
⃒zj
⃒
⃒2zj + ηj (1)  

Where zj = xj + iyj, ηj is additive Gaussian noise, ωj is the intrinsic node 
frequency, and aj is the node’s bifurcation parameter. For aj > 0, the 

local dynamics settle into a stable limit cycle, producing self-sustained 
oscillations with frequency ωj/(2π). For aj < 0, the local dynamics 
present a stable spiral point, producing damped or noisy oscillations in 
the absence or presence of noise, respectively. The fMRI signals were 
modelled by the real part of the state variables, i.e., xj = Real

(
zj
)
. 

4.4.3. Whole-brain network dynamics 
The whole-brain dynamics were obtained by coupling the local dy-

namics of N = 62 Hopf oscillators interconnected through the anatom-
ical connectivity C: 

dzj

dt
=

(
aj + iωj

)
zj −

⃒
⃒zj
⃒
⃒2zj +G

∑N

k=1
Cjk

(
zk − zj

)
+ ηj (2)  

where G represents a global coupling scaling the structural connectivity 
C. This model can be interpreted as an extension of the Kuramoto model 
to the case in which both the phase and the amplitude of the oscillators 
are allowed to vary. In particular, the choice of the coupling function 
(
zk − zj

)
promotes phase synchronization between coupled nodes (as can 

be seen by writing the system in polar coordinates). 
Usually, the fitting between the whole-brain model and the empirical 

data is carried out by estimating the optimal global coupling G fitting the 
FC or FCD for the full timeseries. Here, however, we wanted to estimate 
the entropy production in order to discover the underlying drivers (see 
introduction). We therefore decided to do this in the generative space of 
a whole-brain model given the low dimensionality which allows for the 
estimation of the probability transitions used for estimating entropy 
production. This required us to estimate the time-dependency of the 
empirical data, i.e. the changes over time of the global coupling G. In 
other words, the entropy production will characterise the level of irre-
versibility in G(t), which allows for a precise quantification of the 
symmetry-breaking. 

In order to achieve this, we estimated the best global coupling, G(t), 
parameter for whole-brain model fitting a sliding window (size: 80 TR) 
at time t for each participant for each condition, with a subsequent 
shifting of the window by 1 TR. This is computationally very expensive 
so we optimised the algorithm by using linearised version of the Hopf 
model (at the bifurcation) and used the swarm algorithm (as imple-
mented in MATLAB). The linearisation of the Hopf model allows us to 
generate an analytical solution of the FC that can be used for optimi-
sation in a very efficient way as follows. 

4.4.4. Linearisation of the Hopf model 
First, we estimate the functional correlations of the whole-brain 

network using a linear noise approximation (LNA). The dynamical sys-
tem (2) can be re-written in vector form as: 

dz
dt

= (a − GS+ iω)⨀z − (z⨀z)z+GCz+ η (3)  

where z = [z1,…, zN]
T, a = [a1,…, aN]

T, ω = [ω1,…,ωN]
T , while S =

[S1,…, SN]
T is a vector containing the strength of each node, i.e., Si =

∑
jCij, and η = [η1,…, ηN]

T represents a vector of uncorrelated noise. The 

superscript []Trepresents the transpose, i.e. these are column vectors, ⨀ 
is the Hadamard element-wise product, and z is the complex conjugate of 
z. 

We studied the linear fluctuations around the fixed point z = 0, 
which is the solution of dz

dt = 0. In the linearized system the higher-order 
terms (z⨀z)z are discarded. Using the real and imaginary parts of the 
state variables, the evolution of the linear fluctuations δu uses the 
following Langevin stochastic linear equation: 

d
dt

δu = Jδu+ η (4)  

where the 2N-dimensional vector δu = [δx, δy]T =
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[δx1,…, δxN, δy1,…, δyN]
T contains the fluctuations of real and imagi-

nary parts. The 2N × 2N matrix J is the Jacobian matrix of the system 
evaluated at the fixed point. The Jacobian matrix can be written as a 
block matrix: 

J =

[
Jxx Jxy
Jyx Jyy

]

(5)  

where Jxx, Jxy, Jyx, Jyy are N × N matrices given as: Jxx = Jyy 

= diag(a − S)+C and Jxy = − Jyx = diag(ω), where diag(v) is the di-
agonal matrix whose diagonal is the vector v. The linearization is only 
valid if z = 0 is a stable solution of the system, i.e., if all eigenvalues of J 
have negative real part. The motion equation of the covariance matrix K 
= 〈δuδuT〉 (where the superscript T denotes the transpose operator) can 
be derived by using the linear approximation. This can be done by 
writing Eq. (4) as dδu = Aδudt + dW, where dW is an 2N-dimensional 
Wiener process with covariance 〈dWdWT〉 = Qdt. Using Itô’s stochastic 
calculus, we get d

(
δuδuT) = d(δu)δuT + δud

(
δuT) + d(δu)d

(
δuT). 

Noting that 〈δudWT〉 = 0, taking the expectations and keeping terms in 
first order of the differential dt, we obtain: 

dK
dt

= J K +K JT +Q (6)  

where the covariance matrix of the noise Q is diagonal for uncorrelated 
noise. Hence, the stationary covariances (for which dK

dt = 0) can be ob-
tained by solving the algebraic equation J K + KJT + Q = 0. This is a 
Lyapunov equation that can be solved using the eigen-decomposition of 
the Jacobian matrix (Deco et al., 2014). To solve it numerically, we used 
the Matlab function lyap.m. We obtained the simulated functional con-
nectivity FCsim from the first N rows and columns of the covariance K 
corresponding to the real part of the dynamics which is precisely used to 
model the BOLD fMRI signal. 

4.4.5. Computing fitting error 
For each sliding window we compute the error of the swarm opti-

misation for G(t), e(t), which minimises the mean quadratic difference 
computed over only the upper diagonal of the empirical and simulated 
functional connectivity matrices, FCemp and FCsim, respectively: 

e(t) = 〈
∑

j>i
|FCemp(i, j) − FCsim(i, j)|2〉 (7)  

4.4.6. Entropy production 
We estimated the entropy production as a measure of non- 

equilibrium by computing the probability of transitioning in genera-
tive space G(t). The entropy production is a measure of the reversibility 
and is defined as follows 

HP =
∑

r,s
Prslog

(
Prs

Psr

)

(8)  

where Prs is the probability of transition of G between states r at time t to 
s at time t+1. This computes the joint transition probabilities Prs =

Prob[G(t − 1) = r,G(t) = s], similar to Lynn and colleagues (Lynn et al., 
2021). Importantly, this is different from using the conditional transi-
tion probabilities. The time evolution of G can be used to describe a 
sequence of states i visited over time, each corresponding to a different 
cell in a grid. The grid defining the states cover the range 0–1.67 (which 
is the range where empirical values of G are distributed) and was par-
titioned into different n cells. Please note that to avoid any potential 
sources of bias and to be able to compare the levels of entropy pro-
duction across conditions, we used the same grid and computed the 
entropy production in every participant in all conditions using the same 
minimum duration of the G(t), given by the duration of EMOTION which 
is the shortest task with 176 TRs. For estimating the entropy production, 

we concatenated the data in groups of 10 participants, yielding a total of 
1760 TRs. In order to select the optimal n, we systematically investi-
gated n in the range between 100 and 200 to find the maximal difference 
in HP over all participants and conditions, which yielded a grid with 
n = 170. As shown in Fig S1 (right column), increasing the sampling 
(using a different grid with n = 100 and concatenating larger groups of 
50 participants) produces similar rankings. Please note that the actual 
Hp values will of course change with different grid size and sampling but 
the key aspect here is the comparison between rest and tasks. Thus, the 
most important parameter is to use the same grid size and sampling 
across all eight conditions. 

4.4.7. Inferring generative brain regions driving entropy production 
For each participant in each condition, we inferred the generative 

brain regions driving the entropy production by correlating the entropy 
production (Eq. (8)) with the global brain connectivity (GBC), given by 
this equation 

GBCi =
1
N

∑N

j=1
FCij (9) 

The driving strength of brain region i for each condition, cond, is 
given by 

Di(cond) = corr(HP,GBCi) (10) 

Thus, in order to discover the specific driving regions for each 
cognitive task, we subtract from each of the seven tasks the resting 
condition, where task is (WM, SOCIAL, MOTOR, LANGUAGE, 
GAMBLING, EMOTION, RELATIONAL): 

TDi(task) = Di(task) − Di(rest) (11) 

The common, unifying regions are then given by the intersection of 
the top driving regions (given by Eq. (11)) across the seven tasks. Spe-
cifically, the intersection of the top regions across the seven tasks is 
revealed by computing the intersection of the top 30, then top 25, down 
to the top 5 regions. The different levels of intersection are shown in 
Fig. 4 by the colouring. I.e. for example light orange corresponds to the 
intersection of the top 30 regions, while, for example, dark red corre-
sponds to the intersection of the top 5 regions across the seven tasks. 

4.4.8. Lesioning procedure testing causal role of PFC in cognition 
Discovering the causal, mechanistic role of the common, unifying 

PFC in cognition was made possible by lesioning the coupling of these 
regions in the whole-brain model and comparing the worsening of the 
level of fitting in terms of the GBC. The error in fitting the GBC with the 
model is given by 

eGBC(t) =
1
N
∑

i
|GBCi(emp) − GBCi(sim) |

2 (12)  

Where emp denotes the empirical data, while sim denotes the simulated 
data from a whole-brain model where we used the previously obtained 
G(t) (for each participant and each condition) and generated the simu-
lated timeseries according to 

dzj

dt
=

(
aj + iωj

)
zj −

⃒
⃒zj
⃒
⃒2zj +G(t)

∑N

k=1
Cjk

(
zk − zj

)
+ ηj (13) 

The lesioning of the model was done in the following way, where for 
a given region, we set the columns and rows in the structural connec-
tivity matrix C to zeros, i.e. this region was disconnected. 

As described in the main text, in order to control for the lesioning of 
the PFC, we used a similar procedure used to identify the intersection of 
the top driving regions, to select the bottom regions. In both cases, we 
wanted to show the causal impact of the lesioning and chose a suffi-
ciently small lesion of five regions (merely 8% of the DK62 parcellation). 
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