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Significance

 Explaining how structure of the 
brain gives rise to its emerging 
dynamics is a primary pursuit in 
neuroscience. We describe a 
fundamental anatomical 
constraint that emphasizes the 
key role of rare long-range (LR) 
connections in explaining 
functional organization of the 
brain in terms of spontaneous 
and task-evoked activity. 
Specifically, this constraint unifies 
brain geometry and local 
connectivity through the 
exponential distance rule while 
considering the LR exceptions to 
this local connectivity as derived 
from the structural connectome. 
In addition, when using this 
structural information, we show 
that the task-evoked brain 
activity is described by a low-
dimensional manifold of several 
modes, suggesting that less is 
more for the efficient information 
processing in the brain.
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A fundamental topological principle is that the container always shapes the content. In 
neuroscience, this translates into how the brain anatomy shapes brain dynamics. From 
neuroanatomy, the topology of the mammalian brain can be approximated by local 
connectivity, accurately described by an exponential distance rule (EDR). The compact, 
folded geometry of the cortex is shaped by this local connectivity, and the geometric 
harmonic modes can reconstruct much of the functional dynamics. However, this ignores 
the fundamental role of the rare long-range (LR) cortical connections, crucial for improv-
ing information processing in the mammalian brain, but not captured by local cortical 
folding and geometry. Here, we show the superiority of harmonic modes combining rare 
LR connectivity with EDR (EDR+LR) in capturing functional dynamics (specifically 
LR functional connectivity and task-evoked brain activity) compared to geometry and 
EDR representations. Importantly, the orchestration of dynamics is carried out by a 
more efficient manifold made up of a low number of fundamental EDR+LR modes. 
Our results show the importance of rare LR connectivity for capturing the complexity 
of functional brain activity through a low-dimensional manifold shaped by fundamental 
EDR+LR modes.

structure–function | brain connectivity | brain geometry | fMRI | harmonic decomposition

 How the underlying anatomy of the brain shapes functional dynamics is an unresolved 
question being studied from the perspective of network neuroscience ( 1 ), brain modeling 
( 2 ), graph signal theory ( 3 ), and neural field theories with different assumptions on the 
underlying anatomy ( 4 ,  5 ). Therefore, the choice of underlying anatomical features is of 
paramount importance in deriving the most simple and parsimonious description of the 
emerging spatiotemporal brain dynamics.

 In previous work on retrograde tract tracing in nonhuman primates, Kennedy et al. 
have shown that the brain white-matter wiring can be analytically approximated by the 
exponential distance rule (EDR) ( 6 ). This rule explains the local connectivity of the brain 
solely in terms of the Euclidean distance between points on the cortical surface. And so, 
it follows that the compact, folded geometry of the cortex with its many sulci and gyri is 
formed by this local connectivity. This corollary implies that the brain anatomical wiring 
and cortical geometry are the two sides of the same coin, and it makes sense to speak of 
them in agreement. Furthermore, this reflects theoretical work showing that the heat 
kernel (exponential) is the optimal solution for minimizing distance between neighboring 
points ( 7 ). Indeed, recent work has suggested that the cortical geometry alone (as a proxy 
for the underlying anatomical connectivity) can be considered as an important feature 
driving brain spatiotemporal activity ( 5 ,  8 ,  9 ).

 However, after deriving the EDR Henry Kennedy famously said; “I am not interested 
in the EDR itself but mainly the exceptions to the rule.” Indeed, Kennedy et al. have 
shown that in addition to the EDR, the brain possesses a small subset of rare long-range 
(LR) exceptions to the EDR of brain wiring ( 10 ,  11 ). Furthermore, new evidence using 
turbulence has demonstrated the fundamental role of the rare LR anatomical connections 
in shaping optimal brain information processing ( 12 ). Intuitively, brain cortical foldings 
defined according to the EDR are indeed the optimal way for brain wiring but they do 
not reflect the rare LR connections, i.e., it is, for example, impossible to fold anterior–
posterior brain regions in a meaningful way. Therefore, we suggest that the unique con-
tribution of these rare LR cortical connections’ changes disproportionately the topological 
structure of the brain wiring in such a way as to optimize the information processing of 
the brain. In this work, we test this hypothesis that EDR and LR exceptions are funda-
mental to the parsimonious description of the emerging spatiotemporal dynamics.

 In the natural world, a fundamental principle that governs the dynamics of a system 
constrained by its structure in numerous physical and biological phenomena is the D
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mathematical framework of harmonic modes. Standing wave pat-
terns manifest in many context such as in music with sound-induced 
vibrations of a guitar string, in physics with the electron wave 
function of a free particle described by the time-independent 
Schrödinger equation, or biology with patterns emerging within 
complex dynamical systems like reaction–diffusion model ( 13 ). 
The relevance of the mathematical formalism of this phenomenon 
is that it links in a single equation, the Helmholtz equation, the 
specific structure on which the spatiotemporal pattern emerges 
together with the temporal description in terms of oscillations and 
spatial description in terms of patterns of synchrony of the stand-
ing wave pattern itself.

 Here, we used Laplacian decomposition of four different graph 
representations of the underlying anatomy to derive anatomical brain 
modes: EDR ( 6 ) and LR exceptions (EDR+LR), geometry-based 
modes (geometry), and EDR modes (EDR binary and EDR contin-
uous) ( Fig. 1 A –C  ). Our results show that EDR+LR achieves statis-
tically better reconstruction of LR functional connectivity (FC) 
compared to the other mode representations ( Fig. 1D  ). Furthermore, 
pertinent to time-critical information processing, we show that a small 
subset of modes achieves a disproportionately high reconstruction 
of task-activation (TA) brain maps. When this subset of modes is 
considered, EDR+LR achieves better reconstruction for the 47 
HCP tasks compared to the geometric mode representations, sug-
gesting that less is more for information processing in the brain 
( Fig. 1E  ).         

Results

EDR+LR Reconstructs FC LR Connectivity. To examine how EDR 
with LR exceptions can describe brain activity, we derived the 
EDR+LR harmonic modes from the EDR matrix fitted to the 
structural connectome with lambda of 0.162 and added the LR 
exceptions to the EDR defined in terms of three SD from a given 
Euclidean distance range larger than 40 mm. We constructed the 
normalized graph Laplacian and solved its eigenvalue problem 
(Fig. 1B). The eigenvectors of the solution represent the harmonic 
modes with the eigenvalues sorted in ascending order and reflecting 
the spatial frequency of the modes with lower modes representing 
lower spatial frequencies and higher modes representing higher 
spatial frequencies. Overall, the spatiotemporal activity can be 
perceived as a weighted contribution of these fundamental bases 
unfolding over the whole time recording for the spontaneous 
fMRI or as a weighted contribution of these fundamental bases 
reconstructing the task-based activations brain maps.

 One of the features of FC is the surprisingly high FC between 
distant regions ( 14 ). We first investigated to what extent the dif-
ferent anatomical representations reconstruct the LR connections. 
These were derived as an intersection of FC connections above 
0.5 FC correlations and Euclidean distance between the nodes 
above 40 mm ( Fig. 2A  ). We then reconstructed these connectivity 
profiles with an increasing number of modes (1 to 200) derived 
from the four representative graphs (geometry, EDR binary, EDR 
continuous, and EDR+LR) ( Fig. 2B  ). The modes are ordered 
sequentially according to their spatial wavelength represented by 
their eigenvalues (i.e., mode 1 has the longest spatial wavelength). 
For all four graphs, they monotonically decrease the reconstruc-
tion distance reaching on average 0.03 mse distance with about 
20 modes and by 100 modes reach on average 0.01 mse distance 
before plateauing close to 0.005 mse distance on average for the 
full 200 modes. One noteworthy aspect is that much of the dis-
tance reconstruction happens between 1 and 20 harmonics sug-
gesting that a small number of harmonics is responsible for most 
of the reconstruction. At 200 modes the EDR+LR outperforms 

the other spatial basis (geometry, EDR continuous, EDR binary, 
paired t  test P  < 10−4 ). To assess the uniqueness of the LR connec-
tions within the EDR graph, we created a null model where we 
shuffled the LR connections in the EDR+LR graph representation. 
As expected, the specific rare LR connectivity is important since 
the shuffled EDR+LR modes were unable to reconstruct the LR 
FC to the same extent as the EDR+LR (SI Appendix, Fig. S4 ). 
Furthermore, to assess whether the EDR+LR performance is due 
to the unique combination of EDR and LR connectivity, we com-
puted the reconstruction when using the structural connectome 
that implicitly contains the short-range and LR connectivity and 
LR connectivity exceptions. However, as expected, the structural 
connectome graph representation showed less reconstruction 
capacity in comparison to the other representations (SI Appendix, 
Fig. S5 ). Finally, to ensure robustness of the result, we carried out 
the analysis on an additional subset of 100 HCP participants 
reporting the same statistical significance between EDR+LR and 
geometry (SI Appendix, Fig. S11 ).          

Less Is More: EDR+LR Reconstructs Task Activations with Fewer 
Modes. Using the same approach, we further investigated how 
well the different bases reconstruct the task-evoked brain activity 
from 255 healthy HCP participants. We used the 47 task-based 
contrasts derived from 7 HCP tasks each representing a different 
task-activation brain map and reconstructed them for an increasing 
number of modes (mode 1 to 200). For the seven representative 
tasks, the different bases demonstrate a similar monotonic pattern 
with steep fall in reconstructed mse distance before a slowdown with 
a near plateau-like behavior around 200 modes and reconstructed 
mse distance values approximating 0.02 for most of the bases and 
tasks (Fig. 3 A, Top). To analyze the reconstruction pattern, we 
computed the TA mse contribution of a given mode when added 
to the reconstruction. This demonstrates that the apparent bulk 
of the reconstruction is being obtained from a relatively small 
number of modes 1 to 20 in comparison to the rest (Fig. 3 A, 
Bottom). This shows that reconstructing both spontaneous and 
task-evoked activity is represented in a very small space of 1 to 
20 modes, suggesting that both types of dynamics, spontaneous 
and task-evoked, lie in a lower-dimensional manifold. Focusing 
only on the first 20 modes, we examined how the 47 task-evoked 
activations maps are reconstructed in comparison to the geometric 
modes. On average EDR+LR compared to geometry shows the 
most accurate reconstruction across tasks up to 20 reconstructed 
modes (Fig. 3B). By construction, the modes span an orthogonal 
basis set in which the individual mode contributions are mapped 
to. To motivate the neatness and accuracy of reconstructing the 
task-activation maps with as little EDR+LR as possible, we visually 
demonstrate the reconstruction of relational tasks for 5, 10, 15, 
and 20 modes showing the indistinguishable similarity to the 
activation map itself (Fig. 3C). Moreover, it is not surprising that 
the EDR+LR basis, due to their unique topology, reconstructs 
with fewer modes more accurately the tasks as it can be appreciated 
in the motor tasks where more nuanced features are picked up in 
comparison to the geometric modes (Fig. 3D).

Discussion

 The unique mathematical formulation of harmonic modes links 
the description of how structure gives rise to the emerging spati-
otemporal activity of brain dynamics. We show that EDR+LR 
modes have the smallest reconstruction distance for an increasing 
number of modes when describing the FC LR connections of 
spontaneous fMRI activity. Furthermore, for the reconstruction 
of the seven activation task fMRI maps lower frequency modes D
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A

B

C

D E

Fig. 1.   The crucial role of LR connectivity for accurately describing whole-brain dynamics. (A) The functional dynamics measured with fMRI emerge from the 
underlying anatomical structural connectivity which can be represented as graphs. Here, we study the four main graph representations: 1) geometrical modes 
(5); 2) EDR (binarized); 3) EDR (continuous); and 4) EDR with LR exceptions (EDR+LR). (B) With regard to the graph representations, i) the different modes are 
derived from applying the Laplace decomposition on the graph representation by solving the eigenvalue problem. The different modes are in ascending spatial 
frequency. ii) These modes are used to reconstruct the fMRI activity by a linear combination of their contributions. iii) This is used to reconstruct the spontaneous 
fMRI activity, and particularly the functional LR connectivity exceptions (derived as high-correlation values, >0.5 correlation, and over a long Euclidean distance, >40 
mm, see Materials and Methods), as well as all the 47 task-activation brain maps. (C) The four different graph representations were constructed and decomposed 
into their associated modes. (D) Demonstrating the importance of LR connections, EDR+LR achieves a superior reconstruction of LR fMRI connectivity compared 
to geometric, EDR (binary), and EDR (continuous) graph representations. (E) Equally important, the EDR+LR needs fewer modes to reconstruct task data compared 
to the three other graph representations, demonstrating the importance of LR connectivity. Parts of the figure have been modified from work by Pang et al. (5).
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contribute disproportionately more toward the reconstruction 
error. We therefore reconstructed the error for the 47 HCP tasks 
benchmarked against the geometrical modes for the first 20 
modes. On average, EDR+LR showed the most accurate recon-
struction across tasks and number of reconstructed modes 1 to 
20. Our results demonstrate the importance of LR connectivity 
as a key feature of shaping brain functional activity both for the 
spontaneous and task-based fMRI. Moreover, functional brain 
activity is shown to be on a lower-dimensional manifold span by 
a subset of these fundamental modes with the most appropriate 
representation from the EDR+LR graph, suggesting that less is 
more for efficient information processing in the brain.

 In both spontaneous and task-based reconstruction cases, the 
EDR+LR demonstrates high reconstruction only with a subset of 
modes from its harmonic repertoire. Despite the overall better 
performance of the EDR+LR harmonic modes, it is remarkable 
that the other harmonic bases, geometric and EDR-based, per-
formed strongly as well. This excellence can be seen from the fact 
that all four reconstruction schemes are able to predict behavioral 
measures fluid intelligence and participant’s processing speed. The 
results show that this prediction is driven by the brain state 
(task-evoked over spontaneous fMRI) consistently across the four 
graph representations (SI Appendix, Figs. S6–S8 ). This reflects a 
fundamental insight where large-scale brain organization can be 
described as lying in a low-dimensional manifold. This in part can 
be explained by the brain’s coordinated cognition and behavior 
which cannot happen without integrative tendencies of its under-
lying dynamics. Indeed, brain dynamics operating in a reduced 
number of dimensions have been shown to predict more effectively 
the brain’s behavior ( 15 ). As such one can talk of brain activity as 
a flow on this low-dimensional manifold embedded in the space 
of these relatively few harmonic modes ( 16 ).

 One of the fundamental considerations is what type of brain’s 
dynamics we wish to reconstruct. Unlike the traditional approach 
where the whole static FC is reconstructed ( 5 ), we focused on recon-
structing the most salient features of the brain’s spontaneous fMRI 
activity, namely the functionally strong LR connections. Our work 
underscores the cardinal role of LR connectivity in cognitive pro-
cessing and advocates for prioritizing the reconstruction of excep-
tional connections over exhaustive coverage of the entire FC matrix. 

With similar logic, we did not regress out the global signal from the 
spontaneous fMRI as we consider the global and fluctuating fMRI 
activity an important feature of emergent network effects of inter-
acting nonlinear regional dynamics ( 17 ). As expected, when we 
computed the analysis, applying global signal regression, the recon-
struction of EDR+LR and geometry were statistically nonsignificant 
(SI Appendix, Fig. S9 ). Moving beyond, it is important to consider 
temporally evolving descriptions of brain dynamics as recent work 
has demonstrated the relevance of dynamics in understanding brain 
function and its related pathologies ( 18 ). Also, many whole-brain 
modeling techniques have been suggesting the need to consider 
further descriptors of brain activity that goes beyond the static FC 
description ( 19 ). Ultimately, as recently suggested by the spatiotem-
poral neuroscience of Northoff et al. ( 20 ,  21 ), the brain’s dynamic 
spatiotemporal organization might reveal the link between the neu-
ronal and mental features to elucidate concepts such as conscious-
ness, self, and time speed perception.

 Flexible human cognition and behavior reflect a highly dynamic 
balance of functional integration and segregation. This in turn is 
supported by the rich topology of the structural connectome ( 22 ). 
A growing body of literature has shown that these dynamics are 
poised at the edge of criticality, a dynamic regime with LR spatial 
and temporal correlations in which information can be optimally 
processed ( 19 ). This is consistent with a novel computational 
framework by Jaeger et al. ( 23 ), suggesting that an understanding 
of computing comes from an understanding of the structuring of 
processes, rather than how classical models of computing systems 
describe the processing of structures. They also stress how this can 
come via an understanding of modeling physical computing sys-
tems bottom–up, which is the main aim of the investigation here, 
where the topology of the computing system, here the brain, 
shapes the near-critical dynamics of the system. In the brain, the 
rare LR structural connections are some of the key anatomical 
features supporting time-critical information processing. Their 
spatially specific location has been linked to the emergence of 
known resting-state networks and are important for task-based 
processing ( 12 ). We therefore hypothesize that evolutionary pres-
sures are likely to have refined EDR connectivity with LR excep-
tions enabling more complex cognitive functions. This hypothesis 
should be investigated in future cross-species studies.

A B C

Fig. 2.   Better reconstructions of brain dynamics are found with EDR and rare LR exceptions in the graph representation. (A) One of the most important features 
of cortical dynamics are LR functional connections (defined by high correlation values, >0.5 correlation, and Euclidean distance, >40 mm). (B) The reconstruction 
of FC LR connections for an increasing number of modes (1 to 200) for the four representative graph representations. The individual lines show the average 
across all 255 HCP participants. (C) EDR+LR is significantly better than the other graph representations when using a reconstruction with 200 modes as shown 
by the average result for the distance values across all the 255 HCP subjects (Bonferroni-corrected two-tailed paired t test, EDR+LR and geometry P < 0.0005, 
EDR+LR and EDR continuous P < 10−4, EDR+LR and EDR binary P < 10−4, and EDR continuous and geometry n.s., * P < 0.05, ** P < 0.01, and *** P < 0.001).
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 In this work, we derived both EDR binary and EDR continu-
ous harmonic modes. These reflect different methodological con-
siderations when calculating the Laplacian eigenmaps ( 7 ). We have 
applied the continuous form of the graph Laplacian on the EDR 

(EDR continuous) showing that this simple change improves the 
reconstruction accuracy by about 0.0025 distance to the binarized 
version (EDR binary) making it practically on the same footing 
as the geometric bases (EDR continuous and geometry are not 

0.5

A

C

D

B

Fig. 3.   EDR+LR uses fewest harmonic modes to reconstruct task activity. (A) For each of the four graph representations (Top panel) the reconstruction of seven 
representative task- activation maps is shown in terms of normalized mse distance (distance normalized by the max of each task). As can be seen, lower frequency 
modes contribute disproportionately more toward the reconstruction distance as it can be seen by the elbow around 20 modes (Lower panel). (B) This can also 
be seen in the reconstruction mse distance for all 47 HCP tasks for the EDR+LR, EDR binary, and EDR continuous, each benchmarked against the geometrical 
modes for the first 20 modes, where the Top panel shows hues of blue with better performance of the EDR modes while red hues mean better performance of 
the geometric modes. The Lower panel shows the average across the 47 HCP tasks. (C) Individual mode contribution toward the reconstruction of the relational 
task. We show the disproportional contribution of some modes (1–4, 6, 15) to the overall reconstruction, where the brain renderings show the mse distance 
reconstruction to the overall task-activation map (Far Left). (D) Similarly, for the motor task target (Far Left), we compare the overall correlational contributions of 
the number of modes (using 20, 15, 10, and 5 modes) when using EDR+LR and geometry as the underlying representations. As can be seen, the reconstruction 
with EDR+LR converges more quickly for lower modes than geometry.
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statistically different from each other). Reassuringly, recent work 
has reported similar observations when comparing the nonbina-
rized structural connectomes graph representation to the geomet-
ric modes ( 24 ). It is therefore warranted to unify the methodological 
approaches before comparing the superiority of the different ana-
tomical features as the differences might be simply explained by 
methodological choices themselves. Therefore, we caution future 
research to unify the applied methodologies in this direction.

 Given the relevance of rare LR connectivity for complex brain 
dynamics in humans, it is also important to consider how these 
findings might translate to other nonhuman species. Unfortunately, 
a direct comparison between species is challenging due to the 
different methodologies used. Unlike nonhuman species studies 
that use track tracing studies to describe the anatomical connec-
tivity of the brain, human experiments rely on noninvasive tech-
niques like diffusion MRI. Furthermore, the challenges in 
estimating LR connectivity via dMRI further complicate the direct 
comparison ( 25 ,  26 ). Yet, a growing body of nonhuman species 
studies have converged on a general principle that smaller brains 
such as the mice brain are denser, all-to-all connected, whereas 
larger brains such as the primate brains are sparser with weak LR 
connections reflecting further regional specialization ( 27 ,  28 ). 
Therefore, it can be hypothesized that LR EDR connections 
together with the rare connectivity exceptions play an important 
role in the emergence of complex computational capabilities. This 
opens up exciting future cross-species research of the impact of 
rare LR connections on the brain’s computational capabilities.

 Understanding rare LR connections’ impact on the emergent 
brain dynamics will also help clinical diagnosis in neuropsychiatry 
and neurology, and inform more accurate clinical treatments. For 
instance, the weak nature of these rare LR connections might be 
abnormally affected in disconnection syndromes such as Alzheimer’s 
disease and schizophrenia, and this in turn might have a dispropor-
tionate impact on the large-scale emergent dynamics affecting cog-
nition and behavior ( 27 ). Moreover, novel treatment solutions, such 
as transcranial electrical stimulation, will rely on model optimization 
where anatomical connectivity plays an important role ( 29 ,  30 ). In 
the future, the specific inclusion of rare LR connections in the mod-
els might ensure more accurate description of the disorders as well 
as more efficient stimulation protocol for possible treatments.  

Materials and Methods

Experimental Data.
HCP functional MRI. We utilized the publicly available Human Connectome 
Project (HCP) dataset, Principal Investigators: David Van Essen and Kamil Ugurbil: 
1U54MH091657) with the funding coming from sixteen NIH Institutes and 
Centers supporting the NIH Blueprint for Neuroscience Research; and by the 
McDonell Centre for Systems Neuroscience at Washington University. All par-
ticipants joined voluntarily and provided informed consent. The open-access 
data used in this study were obtained through the WU–Minn HCP consortium, 
following approval from the local ethics committee. The data were shared with 
the authors in accordance with the terms specified by the HCP for data usage. All 
procedures conducted in this study adhered to the protocols outlined in these data 
use terms. For a comprehensive description of the image acquisition protocol, 
preprocessing pipelines (31), and ethics oversight, please refer to the detailed 
account provided (31, 32).
Spontaneous fMRI dataset. We used the spontaneous fMRI dataset from the 
freely accessible database with connectome DB account at https://db.human-
connectome.org. Time series were minimally processed. Consistent with work 
of Pang et al. (5), we used a subset of 255 participants (22 to 35 y old, 132 
F and 123 M) who completed all spontaneous and tasks-based fMRI record-
ings, further excluding twins and siblings. For the auxiliary dataset, we used 
a subset of 100 HCP participants which were different to the main analysis 
performed with the 255 HCP participants. The neuroimaging acquisition was 

carried out on a 3-T connectome-Skyra scanner (Siemens). A single sponta-
neous fMRI acquisition, lasting approximately 15 min, was conducted on the 
same day. During this session, participants kept their eyes open with relaxed 
fixation on a projected bright crosshair against a dark background. The HCP 
website offers comprehensive details on participant information, acquisition 
protocols, and data preprocessing for both spontaneous and the seven tasks. 
In summary, the data underwent preprocessing using the HCP pipeline, which 
employs standardized methods with FSL (FMRIB Software Library), FreeSurfer, 
and Connectome Workbench software. This standardized preprocessing encom-
passed correction for spatial and gradient distortions, head motion correction, 
intensity normalization, bias field removal, registration to the T1-weighted 
structural image, transformation to the 2-mm MNI space, and application of 
the FIX artifact removal procedure. Head motion parameters were regressed 
out, and structured artifacts were removed using independent component 
analysis, followed by FMRIB’s ICA-based X-noiseifier (ICA+FIX) processing. 
The preprocessed time series for all grayordinates were in the HCP CIFTI gray-
ordinates standard space, available in the surface-based CIFTI file for each 
participant during spontaneous fMRI. Finally, for SI Appendix, Fig. S9, we also 
regressed out the global signal before carrying on with further analysis on the 
spontaneous fMRI.
Tasks-based fMRI dataset. For the task-based fMRI analysis, we obtained fMRI 
data from seven distinct task domains known to reliably engage a diverse range of 
neural systems (5, 31). The tasks included were social, motor, gambling, working 
memory, language, emotion, and relational. We used the specific contrasts within 
each task domain, highlighting the key contrast investigated in this study. These 
contrasts were provided by work of Pang et al. (5) from https://osf.io/xczmp/ in 
“S255_tfMRI_ALLTASKS_raw_lh” .mat file. In total, the analysis encompassed 
47 contrasts, incorporating the seven key contrasts. In brief, the analysis was 
performed on individual task-activation maps generated through FSL’s cross-
run (Level 2) FEAT analysis (33). The task maps, provided by the HCP, were used 
with minimal smoothing (2 mm), and mapped onto the fsLR-32 k CIFTI space. 
This mapping was achieved using multimodal surface matching, resulting in a 
representation of each individual’s task data (32,492 vertices). Additional infor-
mation about each task and contrast as well as further details on the data are 
provided elsewhere (5, 31). The task-evoked fMRI reconstruction distance was 
computed on the parcellated activation maps, unlike those using spontaneous 
fMRI, where the reconstruction distance was performed on the parcellated func-
tional LR connections.
fMRI parcellation. A custom MATLAB script, utilizing the “ft_read_cifti” function 
from the Fieldtrip toolbox, was employed to extract the average time series of 
all grayordinates in each region defined by the Glasser360 parcellations (180 
regions per hemisphere) in the HCP CIFTI grayordinates standard space. For each 
hemisphere, the vertex-space to ROI-space meant going from 32,492 × 1,200 
to 180 × 1,200 for spontaneous fMRI and 32,492 × 1 to 180 × 1 for task-based 
fMRI. Consistent with work by Pang et al. (5), our analysis focused on the left 
hemisphere only.
HCP diffusion MRI. To obtain the structural connectivity for the fitting of the 
EDR and derivation of LR exceptions to the EDR, we used the high-resolution 
connectivity maps from dMRI tractography (34). These were provided by work 
of Pang et al. (5) in “S255_high-resolution_group_average_connectome_cor-
tex_nomedial-lh” .mat file. In brief, the connectome was derived by estimating 
the connectivity of each of the 32,492 vertices within the cortical surface mesh 
by tracing streamlines from each point until they terminated at another point. 
Connection weights between vertices, treated as nodes, were determined as the 
number of interconnecting streamlines without normalization (35). The dMRI 
tractography was conducted on individuals from the HCP. Subsequently, the 
individual weighted connectivity matrices were combined, each of size 32,492 
× 32,492, to generate a group-averaged connectome. The weights in this connec-
tome represented the average number of streamlines, providing a comprehensive 
depiction of group-level connectivity. Further details can be found in previous 
publication by Pang et al. (5).
Structural MRI. For the fitting of the EDR, we used the Euclidean distance between 
the vertices of the cortical mesh representation for the left hemisphere (32,492 
× 32,492). This mesh was derived from the FreeSurfer’s fsaverage population-
averaged template available on github.com/ThomasYeoLab/CBIG/tree/master/ 
data/templates/surface/fs_LR_32k. It is to be noted, we used the version provided 
by Pang et al. (5) in the “fsLR_32k_midthickness-lh” .vtk file.D
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EDR. Previous work has demonstrated that the brain white-matter wiring, based 
on retrograde tract tracing in nonhuman primates, can be analytically approxi-
mated by the EDR (6). Here, we derived the EDR of the underlying human anat-
omy using diffusion MRI (SI Appendix, Fig. S3). Mathematically, the EDR can be 
described with exponential decay function as follows:

C EDR
i,j

= Ae−�(r (i,j)) ,

where r(i, j)  is the Euclidean distance between vertices i   and j   and �  is the decay. 
Consistent with previous literature, we estimated the parameters ( A  and �  ) for the 
exponential decay model using a least-squares method as follows y = Ae−�x  , 
where y  represents a mean connection weight of a given Euclidean distance 
and x  represents the given Euclidean distance (12). In detail, we have generated 
400 bins of equal Euclidean distance taking the bins spanning 10 to 170 mm 
(thus excluding the first 25 bins in the fitting procedure). The estimation yielded 
A = 0.066  and � = 0.162 mm−1  where the exponential decay parameter 
lambda is consistent with previous literature (10, 12). We used this estimation 
for the construction of the EDR+LR graph. For the EDR binary and EDR continuous, 
we used previously reported exponential decay parameter of � = 0.12 mm−1 
to be consistent with work of Pang et al. (5) (EDR Binary and EDR Sontinuous).
Relationship to belkin and niyogi. The EDR, as an optimal solution for connecting 
distance-separated brain regions in the brain, can also be intuitively understood 
from first principles. Belkin et al. have analytically shown the relationship between 
graph Laplacian, Laplace-Beltrami operator, and the heat kernel which is the 

optimal solution for locality preservation - formally as Wij= e
−||xi−xj||2

t  where t  
is the decay parameter of the heat kernel (7). It can thus be appreciated that this 
equation also follows exponential decay (Gaussian) similar to the EDR.
Harmonic modes. In this work, we used four different types of graph representa-
tions to describe various aspects of anatomical features or methodological 
approaches. Namely, we carried out the analysis on what we call Geometric, EDR 
binary, EDR continuous and EDR+LR modes. In what follows, we describe the 
remaining three types of harmonic modes representations.
EDR binary. For the EDR binary, we use the EDR with the same parameters as in 
work of Pang et al. (5) to define the weight of a given edge between vertices i  and 
j  . In other words, the weight is determined by the Euclidean distance between 
regions i  and j  and the fitted lambda parameter, � = 0.12 mm−1 (EDR). Then, 
as in work by Pang et al. (5), we created a binary adjacency matrix where nodes i  
and j  are retained and binarized only if the weight strength surpasses randomly 
distributed distribution of the weights. This option results in a binary adjacency 
matrix whereby Cij = 1 if i and j are above randomly distributed distribution of 
the weights and Cij = 0 if i and j are below the randomly distributed distribution 
of the weights. The choice of this approach was motivated to stay consistent with 
previous work by Pang et al. (5) in order for the results to be directly comparable.
EDR continuous. For the EDR continuous, we similarly use the EDR with the 
same parameters to define the weight of a given edge between vertices i  and 
j  using the EDR with � = 0.12 mm−1 . Unlike the thresholding in EDR binary 
[applied in work of Pang et al. (5)] where connections are retained and binarized 
if they surpass connection weights from a randomly derived distribution, here 
all the connections and their weights are kept. This option results in a weighted 
adjacency matrix whereby Wij = Ae−�(r (i,j)) . Furthermore, we argue in this paper 
that this detailed explanation between EDR binary and EDR continuous adja-
cency matrices is warranted as it zeroes in on what is an appropriate comparison 
between graph Laplacian, and continuous Laplace–Beltrami analysis and we 
motivate future comparative research in this direction.
Geometry. The geometric modes were calculated using the Laplace–Beltrami 
operator (LBO) on the cortical mesh. We used the publicly available version from 
previously published work by Pang et al. which can be downloaded from https://
osf.io/xczmp/ in “fsLR_32k_midthickness-lh_emode_200” .txt file (5). In brief, 
the LBO is in general defined as follows:

Δ: =
1

W
Σi,j

�

�xi
(gijW

�

�xj
),

with gij being the inverse of the inner product metric tensor gij: = < �

�xi
 , �

�xj
 >, 

W : = det(G) and G: = (gij). The solution of the eigenvalue problem was imple-
mented in a python package LaPy using the cubic finite element method (36). 

For further details, consult work by Pang et al. (5). Although not explicitly stated, 
the derivation leverages an exponential kernel that is reminiscent of the EDR.
EDR+LR. Previous research has shown that human as well as nonprimate anatomy 
is characterized by a relatively small proportion of LR outliers to the EDR (10, 12). 
Therefore, for the EDR continuous adjacency matrix, we wanted to implement a 
version where these LR exceptions are taken into account. Using the structural 
connectivity matrix, we computed the binned distribution (400 bins) as a function 
of Euclidean distance. We defined connectivity exceptions as three SD above 
the mean for a given distance bin that are longer than 40 mm (SI Appendix, 
Fig. S2). To derive the EDR+LR connectivity matrix, we combine the EDR continu-
ous with LR exceptions to the EDR. Moreover, we also created a shuffled EDR+LR 
where the locations of the LR were randomly assigned in the connectivity matrix 
(SI Appendix, Fig. S4).
EDR+LR relationship to connectome harmonics. Combining short-range and 
LR connectivity can be performed in many ways. Indeed, our previous work on 
connectome harmonics has defined the anatomical connectivity in terms of short-
range, nearest-neighbor connections on the cortical surface, combined together 
with LR connections, derived from the diffusion MRI in terms of the connectome 
(4). In this light, here, we derive the short-range connections in a more principled 
way through the “EDR continuous” while accounting for the LR connections in 
terms of the exceptions to the EDR as stated above. Furthermore, we avoid binari-
zation of the adjacency matrix for the calculation of the Laplacian as it has shown 
to retain important information in the reconstruction of both spontaneous and 
task-evoked fMRI from our results on binary and continuous EDR brain modes.
Laplacian decomposition. Having derived the EDR+LR, EDR binary, and EDR 
continuous adjacency matrix, we calculated the normalized graph Laplacian as

Lnorm = D−1∕2LD−1∕2,

with L = D − A, where D is the diagonal degree matrix defined as D =
∑n

i=1
A(i, j) . 

Finally, the harmonic modes were computed as eigenvectors of the following 
eigenvalue problem

ΔA� k (xi ) = �� k (xi ), ∀xi��,

with �k , k � 1, . . . , n are the eigenvalues of ΔA and � k is the kth harmonic mode. 
We report visually the harmonic modes for EDR+LR, geometry, EDR continuous, 
and EDR binary rendered on the brain (SI Appendix, Fig. S1).
Decomposition of brain activity with harmonic modes. The spatiotemporal 
spontaneous fMRI recording and the activation maps of task-based fMRI can 
be represented as a weighted contribution of the harmonic modes as follows:

F (x, t) =
∑N

k=1
ak (t)� k (x),

where F  is the spatiotemporal timercordings for each subjects with dimension 
32,492 × 1,200 (x, t) , ak (t) has dimension 1 × 1,200 and is the contribution 
of kth harmonic to the F timecourse at time t. The same rationale applies to the 
task-based fMRI except of the contributions being independent of time, i.e., 
ak (t) → ak . Both in spontaneous and task-based fMRI, the contributions are 
computed as the inner product between the spatial patterns and harmonic 
modes

ak (t) = << F (x, t),𝜓 k (x) >>> .

Reconstruction error. To compare both the spontaneous and task-based empir-
ical fMRI data with the reconstructed data with a subset of harmonic modes, 
we first parcellated the data to Glasser360 parcellation (we focused on the left 
hemisphere resulting in 180 nodes). For the spontaneous fMRI, we calculated the 
interregional FC (FC −180 × 180) and focused on the most salient features by 
reconstructing the LR FC derived as a subset of connections with high-correlation 
values (>0.5 correlation) and a long Euclidean distance (>40 mm). Then, we 
calculated the reconstruction error as the mse distance between the empirical 
and reconstructed LR FC. For the task-based fMRI, we calculated the reconstruction 
error as the mse distance between the empirical and reconstructed task-activation 
maps. Finally, for the behavioral analysis of SI Appendix, Figs. S6–S8, we correlated 
the reconstruction (for 200 modes) of spontaneous and task-evoked activity with 
fluid intelligence of participants in terms of three variables in the HCP data, 
namely 1) the number of correct responses in the PMAT24 A test and 2) processing 
speed in terms of Pattern Completion Processing Speed (CardSort_UnAdj and 
ProcSpeed_Unadj) (37).D
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Data, Materials, and Software Availability. Code data have been deposited 
in BrainEigenmodes_EDRLR (https://github.com/jvohryzek/BrainEigenmodes_
EDRLR). Previously published data were used for this work (32).
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