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Information processing in the human brain can be modeled as a complex dynamical
system operating out of equilibrium with multiple regions interacting nonlinearly. Yet,
despite extensive study of the global level of nonequilibrium in the brain, quantifying
the irreversibility of interactions among brain regions at multiple levels remains
an unresolved challenge. Here, we present the Directed Multiplex Visibility Graph
Irreversibility framework, a method for analyzing neural recordings using network
analysis of time-series. Our approach constructs directed multilayer graphs from
multivariate time-series where information about irreversibility can be decoded from
the marginal degree distributions across the layers, which each represents a variable.
This framework is able to quantify the irreversibility of every interaction in the complex
system. Applying the method to magnetoencephalography recordings during a long-
term memory recognition task, we quantify the multivariate irreversibility of interac-
tions between brain regions and identify the combinations of regions which showed
higher levels of nonequilibrium in their interactions. For individual regions, we find
higher irreversibility in cognitive versus sensorial brain regions while for pairs, strong
relationships are uncovered between cognitive and sensorial pairs in the same hemi-
sphere. For triplets and quadruplets, the most nonequilibrium interactions are between
cognitive–sensorial pairs alongside medial regions. Combining these results, we show
that multilevel irreversibility offers unique insights into the higher-order, hierarchical
organization of neural dynamics from the perspective of brain network dynamics.

irreversibility | visibility graphs | long-term memory | higher-order interactions |
neural dynamics

The human brain produces complex spatiotemporal neural dynamics across multiple time
and length scales. Abstracting the brain as a large-scale network of discrete interacting
regions has proved fruitful in the analysis and modeling of neural dynamics (1). Moreover,
this abstraction lends neuroscientists the language and tools of statistical physics in the
hope of uncovering the central mechanisms driving brain function and their links to
observed neural dynamics (2, 3). For instance, recent data captured by functional imaging
showed large-scale violations of detailed balance in human brain dynamics, suggesting
that the brain is operating far from equilibrium (4). This fundamental observation
has prompted the development of a range of techniques to provide a measure for the
degree of nonequilibrium in neuroimaging time-series recorded in different conditions
(5–10). These measures have shown that the degree of nonequilibrium is elevated during
cognitive tasks (4–7) while reduced in both impairments of consciousness (11), sleep
(10) and Alzheimer’s disease (12), indicating that nonequilibrium may be a key signature
of healthy consciousness and cognition in the brain (13). Despite this, current methods
are restricted to aggregate measures of nonequilibrium. We present an approach to the
analysis of nonequilibrium brain dynamics that is able to measure the irreversibility of
individual, higher-order interactions to gain valuable insight into the organization of
neural dynamics.

The second law of thermodynamics asserts that, in the absence of entropy sinks, the
average entropy of a system increases as time flows forward (14, 15). More specifically, a
system at a steady-state dissipating heat to its environment causes an increase in entropy
(16, 17). This results in the system breaking the detailed balance condition and results
in an asymmetry in the probability of transitioning between system states (18).

This, in turn, yields macroscopically irreversible trajectories from reversible micro-
scopic forces inducing what Eddington denoted “the arrow of time” (AoT) (19). The
rate at which a system dissipates entropy, the “entropy production rate” (EPR), is a
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natural measure of the degree of nonequilibrium in the stationary
state, as it is zero in equilibrium and positive out of equilibrium
(20). Results in modern nonequilibrium thermodynamics have
shown that the EPR of a nonequilibrium system can be derived
from the irreversibility of observed trajectories (21–25). In
particular, the EPR is given by,

Φ = k lim
�→∞

1
�
DKL[P({x(t)}�t=0)||P({x(� − t)}�t=0)], [1]

where {x(t)}�t=0 and {x(� − t)}�t=0 represent a trajectory and
its time-reversal, P(·) represents the “path probability,” the
probability of observing that specific trajectory, k is Boltzmann’s
constant, and DKL represents the Kullback–Leibler divergence
(KLD),

DKL(P||Q) =
∫

p(x) log
(
p(x)
q(x)

)
dx, [2]

which measures the distance between two probability distribu-
tions P and Q with densities p and q respectively (24, 25). In the
case of real-world data, trajectories are sampled at discrete time-
points forming a multivariate time-series (MVTS), and the EPR
is lower-bounded by the irreversibility of the observed MVTS.
As a result, the irreversibility of a neural recording is a natural
measure of the degree to which the neural dynamics are out of
equilibrium (13).

Two complimentary interpretations of the AoT in the brain
have been given. First, the hierarchical organization of positions
in state-space, that results from asymmetrical transition probabil-
ities, has been linked to the dynamic hierarchical organization of
brain regions (7, 26, 27). Second, the AoT has been interpreted
as inducing a “causal flow” in the system where some regions
emerge as information “sources” and others as “sinks” with these
relationships identifiable from irreversibility analysis (7, 8). These
studies for quantifying nonequilibrium in the brain approximate
the global evidence for the AoT in time-series using techniques
such as estimating transitions between coarse-grained states
(4), with time-shifted correlations (5), machine learning (6)
or with model-based approaches (7–10). However, the AoT

and the corresponding production of entropy is a macroscopic
property of the system, emerging from interactions between
the microscopic variables at multiple scales. Recent theoretical
research has shown that the AoT can be decomposed into unique
contributions arising at each scale within the system (28, 29) or
into spatiotemporal modes of oscillation (30), offering insights
beyond a global level of nonequilibrium in the brain. Motivated
by these insights, we present the Directed Multiplex Visibility
Graph Irreversibility (DiMViGI) framework, as illustrated in
Fig. 1, for analyzing the irreversibility of multivariate signals
at multiple levels using network analysis of time-series, in
particular, the visibility graph (31, 32). Using the DiMViGI
framework, we investigate the irreversibility of human brain
signals, captured by magnetoencephalography (MEG), during
a long-term recognition task of musical sequences that utilized
long-term memory (33–42). Our analysis covers all possible levels
in the system and is able to capture the higher-order organization
of brain regional interactions yielding interpretable insights
into the neural dynamics underpinning long-term memory and
auditory recognition.

Quantifying the Arrow of Time in Multivariate
Interactions

As the evidence for the AoT can be inferred from the irreversibility
of observed trajectories, we focus on the quantity,

� =
∑
Γ

P(Γ) log
P(Γ)
P(Γ′)

, [3]

where Γ is a stochastic trajectory, Γ′ is its time-reversal and P(Γ)
is the probability of observing that specific trajectory. Eq. 3
is precisely the KLD between the forward and backward path
probabilities, which is a natural measure of the irreversibility
of a stochastic process (23). Inspired by previous decompositions
(28, 29), we note that individual interactions can have differential
levels of irreversibility within a globally nonequilibrium system.
Our framework aims to compute the irreversibility of individual
k-tuples of variables in a MVTS in order to compare interactions
at each level, defined by k. First, we consider the projection of

A B C

Fig. 1. The DiMViGI workflow. The method is able to measure the irreversibility of each interaction in a multivariate time-series. It is composed of three stages,
illustrated here with a random time-series of 2 variables: (A) First, we construct a 2-layer directed multiplex visibility graph from the multivariate time-series
where each layer represents a variable and each node represents a time-point. The connections are made according to the visibility criterion defined in Eq. 7
and illustrated in Fig. 2. (B) Second, we calculate the in- and out-degree distributions for each tuple at each level. In the 2-variable system, there are 3 such tuples:
the singletons, (x1), (x2) and the pair (x1 , x2). The Top Left/Right panels show the in- and out-degree distributions for the singletons (x1), (x2) respectively. The
Bottom two panels show the in- (Left) and out- (Right) degree distribution of the pair (x1 , x2). (C) Third, we measure the Jensen–Shannon divergence of the in-
and out-degree distributions for each tuple in the system. We show the 1-order irreversibility, &̃(x1),&̃(x2), of the singletons (x1), (x2) (Top) and the 2-order
irreversibility, &̃(x1 ,x2), of the pair (x1 , x2) (Bottom).
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an N−dimensional trajectory, Γ = {x1(t), . . . , xN (t)}Tt=0, into
the portion of state-space defined by the k-tuple of variables
(xi1 , . . . , xik), to be the k-dimensional trajectory,

Γ(xi1 ,...,xik ) = {xi1(t), . . . , xik(t)}
T
t=0. [4]

The DiMViGI framework then quantifies the marginal irre-
versibility of a given tuple by approximating,

&(xi1 ,...,xik ) =
∑

Γ(xi1 ,...,xik )

P(Γ(xi1 ,...,xik )) log
P(Γ(xi1 ,...,xik ))

P(Γ′(xi1 ,...,xik ))
, [5]

using visibility graphs, as will be detailed subsequently. As
a result, we are able to identify tuples of variables whose
multivariate trajectory is highly irreversible indicating a strongly
nonequilibrium interaction between the variables in this tuple,
which also suggests the presence of a hierarchical structure within
the tuple (7).

Measuring Irreversibility with the Multiplex
Visibility Graph

We build on the growing paradigm of network analysis of time-
series that has gained traction in the analysis of neural signals
(43, 44). These methods are characterized by mapping a time-
series into a corresponding network. For instance, the visibility
algorithm maps a univariate time-series into a so-called “visibility
graph” (VG) (31). VGs and their variations are a powerful
model-free tool for mapping a continuous-valued time-series
into a discrete object. Their versatility, as well as their lack of
assumptions on the underlying dynamics, has lent them to diverse
applications, in particular in neuroscience (43, 44), as well as in
the calculation of information-theoretic quantities from complex
and chaotic dynamics (45). Explicitly, given a time-series {Xi}i∈I
with time indices {ti}i∈I , where Xi ∈ R and I is the index set, the
VG has one node for each i ∈ I . Nodes i, j ∈ I are connected by
an edge if the corresponding data-points (ti, Xi) and (tj, Xj) are
“mutually visible” i.e. that they satisfy that, for any intermediate
data-point (tk, Xk) with ti < tk < tj,

Xk < Xj + (Xi − Xj)
tj − tk
tj − ti

. [6]

In geometric terms, this condition is met if (ti, Xi) is visible from
(tj, Xj). That is, the line connecting (ti, Xi) and (tj, Xj) does
not cross any intermediate data-points as shown in Panel (B) of
Fig. 2. Trivially, each node is connected to its neighbors while
large positive fluctuations become hubs with many connections
due to their greater visibility. This construction can be naturally
extended to a MVTS by considering the “multiplex visibility
graph” (MVG) (46). Given a MVTS with N variables, the MVG
is a multilayer graph, a so-called “multiplex,” withN independent
layers with the same node base. Applying the visibility algorithm
to each variable in turn yields a series of VGs which each define
one layer of the MVG.

We can further generalize the VG to measure irreversibility in
univariate time-series by extending the undirected VG to a time-
directed counterpart (DVG) (32, 47). To do so, we simply direct
the edges “forward in time.” For example, an edge connecting
time-points ti < tj is now directed i → j (see Panels D and E)
of Fig. 2). We then decompose the degree d of a node into the
sum of the in-going and out-going degree,

d = din + dout. [7]

i
i

ti

ti

ti
i

A

B

C

D

E

Fig. 2. Visibility graphs. An example of a visibility and a directed visibility
graph constructed from a random time-series. (A) A random equi-spaced
time-series. (B) The red lines connect data points that are mutually visible.
(C) The visibility graph associated with the random series. (D) A time-series
showing visibility directed forward in time. (E) The directed visibility graph
corresponding to the above series.

A univariate stationary process, X (t), is time-reversible if the tra-
jectory {X (t1), . . . , X (tT )} is as probable as {X (tT ), . . . , X (t1)}
(48). Therefore, in the case of a reversible process, the in- and
out-going degree distributions of the associated DVG should
converge (32, 47). It follows that the level of irreversibility can be
captured by measuring the divergence between the in- and out-
going degree distributions. We extend this method to the case
of MVTS. We direct the edges of the MVG such that they go
forward in time yielding a directed MVG (DMVG). Since this is
a multiplex graph, we can calculate the multivariate joint, over all
layers, in- and out-going degree distributions, and all associated
marginals.

Explicitly, we consider a MVTS with N variables and T time
points, given by {X(t1), . . . ,X(tT )}, where X(ti) = (x1(ti),
. . . , xN (ti)) ∈ RN and construct its associated DMVG. For
a given k-tuple of variables, (n1, . . . , nk), we calculate the multi-
variate marginal in-going and out-going degree distributions:

P(n1,...,nk)
in (d1, . . . , dk), P(n1,...,nk)

out (d1, . . . , dk), [8]

where P(n1,...,nk)(d1, . . . , dk) is the probability of a node having
degree di in layer ni for all i simultaneously. We then compute the
divergence between these particular in- and out-going marginal
distributions using Jensen–Shannon divergence (JSD) (Materials
and Methods) to obtain a measure of the k-order irreversibility,
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&̃(n1,...,nk) = JSD(P(n1,...,nk)
in ||P(n1,...,nk)

out ). [9]

As we are considering the multivariate joint distribution, we
are quantifying irreversibility in the multivariate state-space.
Repeating this for all possible k-tuples in the system, we quantify
the relative irreversibility of each interaction at a given level.
We can repeat this process for all values of k, thus measuring
irreversibility at all levels.

In summary, the DiMViGI framework, shown in Fig. 1, begins
with a MVTS of neural activity. The series is mapped into the
associated DMVG using the visibility algorithm. We calculate the
joint in and out-degree distributions and all the possible marginal
in- and out-degree distributions. We measure the JSD between
the pairs of in- and out-marginals for each tuple in the system
to quantify the irreversibility of that interaction. At each level k,
we can then compare the relative irreversibility of each k-order
interaction to identify the dominant irreversible interactions.

Analysis of MEG During Long-Term Recognition

We consider MEG recordings from 51 participants with 15 trials
per participant source-localized into 6 regions of interest (ROIs)
collected according to the experimental paradigm presented in
Fig. 3, described in Materials and Methods, SI Appendix, and in
ref. 33. The ROIs include the auditory cortices in the left and
right hemispheres (ACL, ACR); the hippocampal and inferior
temporal cortices in the left and right hemispheres (HITL, HITR)
and two medial regions, the bilateral medial cingulate gyrus (MC)
and the bilateral ventro-medial prefrontal cortex (VMPFC).
Panel (A) of Fig. 4 shows a schematic representation of the
regions. The participants performed an auditory recognition task
during the MEG recordings (Fig. 3A). First, they memorized a
short musical piece. Next, they were presented musical sequences
and were requested to state whether the sequence belonged to the
original music or was a varied version of the original sequences.
Since differences between experimental conditions have been
described in detail by Bonetti et al (33) and are beyond the scope
of this work, here, we consider only one experimental condition,
where participants recognized the original, previously memorized
sequences.

For each participant and trial, we construct the DMVG. Next
we estimate every marginal in- and out-degree distribution using
each DMVG as a sample and calculate the JSD. We denote the
JSD between k-dimensional degree distributions as the k-order
irreversibility. Alternatively, for each participant in isolation, the
degree distributions can be calculated using only their associated
trials to get an estimate of the k−order irreversibility for each

participant and each tuple (SI Appendix). However, due to the
higher number of samples, the cohort-level analysis is more robust
and hence is our focus in this report. The results of the DiMViGI
analysis are presented in Fig. 4. We note that the darker colors
represent tuples with greater irreversibility while the lighter colors
reflect more reversible interactions. The icon along the x-axis
indicates which tuple is being considered, with reference to the
schematic in Panel (A) of Fig. 4, with the included regions colored
in black. Furthermore, we highlight statistically significant tuples
at each level. The number of (∗)/(†) indicates the number of SDs
above/below the k−level mean.

We begin our analysis at 1-order. While individual (micro-
scopic) variables are often reversible in a nonequilibrium complex
system, the ROIs considered here reflect a very coarse parcellation
of the brain. At this level, we are considering each ROI, which is
composed of many truly microscopic variables, in isolation and
note that each one shows significant irreversibility. It is clear from
Panel (B) of Fig. 4, that the ROIs have a clear disparity in their
levels of irreversibility. The sensory ROIs are more reversible
than the medial and hippocampal ROIs. Furthermore, there is a
skew toward the right hemisphere being more irreversible than
the left. This result emerges consistently across all levels. Next,
we consider the irreversibility of pairwise interactions (k = 2).
Panel (C ) of Fig. 4 shows the 2-order irreversibility for all
pairs. We are able to identify strongly irreversible pairs such
as the intrahemispheric pairs (ACL, HITL) and (ACR, HITR).
On the other hand, cross-hemispheric pairs, e.g. (ACL, ACR),
are the most reversible, indicating a lack of interaction between
them. The strong hemispheric symmetry in the results validates
the findings, as it is an expected and intuitive observation. Panel
(D) of Fig. 4 shows the irreversibility for each triplet interaction in
the system. The highly irreversible triplets are those that include a
hemispheric pair alongside a medial region, with those containing
the VMPFC, a region known to drive brain dynamics during task
(49), being particularly irreversible. Panel (E) of Fig. 4 shows that
the most irreversible quadruplet interactions are composed of a
hemispheric pair alongside both medial regions as well as those
that contain (VMPFC, HITL, HITR) alongside a sensory region.
Conversely, the quadruplet containing no medial regions, is the
most reversible, and therefore has the least interaction. This is
particularly interesting as this quadruplet is made up of the two
most irreversible pairs yet they do not appear to interact as a
foursome. Therefore, this framework is truly capturing higher-
order interactions that cannot simply be decomposed into a sum
of independent interactions of lower order. Finally, Panel (F ) of
Fig. 4 shows that quintuplets that contain both medial ROIs are
the most irreversible. Furthermore, the quintuplet that does not

BA

Fig. 3. Experimental paradigm for the collection and processing of MEG data. (A) The brain activity in 51 participants was collected using magnetoencephalog-
raphy (MEG) while they performed a long-term auditory recognition task. Participants memorized a 5 tone musical sequence. They were then played 5 further
sequences of tones that were either the original sequence or a modified version. They then were requested to state whether the sequence belonged to the
original music or was a varied version of the original sequences. In this analysis, we only consider the experimental condition where participants were played
the original memorized sequence. (B) The MEG data were coregistered with the individual anatomical MRI data, and source reconstructed using a beamforming
algorithm. This procedure returned one time-series for each of the 3,559 reconstructed brain sources. Six main functional brain regions (ROIs) were derived.
The neural activity for each ROI was extracted yielding a multivariate time-series. For further details on the experimental set-up, see Materials and Methods and
SI Appendix. For a comparison between experimental conditions, see ref. 33.
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A B

C

D

E

F

Fig. 4. DiMViGI analysis of 6-ROI MEG recordings during a long-term memory task. The number of (∗)/(†) represents the number of SDs above/below the mean
for a particular tuple at that level. (A) Schematic diagram showing the organization of the ROIs in the MEG recordings. The ROIs are ACL/R: auditory cortex
Left/Right; MC: medial cingulate gyrus; VMPFC: ventro-medial prefrontal cortex; HITL/R: hippocampal inferior temporal cortex Left/Right. Cognitive regions are
in red and sensory regions in blue. (B) 1-order irreversibility at cohort-level. At this level, we consider irreversibility of each signal in isolation. The hippocampal
regions are the most irreversible while the sensory regions are the most reversible. (C) 2-order irreversibility at cohort-level. The pairs that show the most
irreversibility are those that include a sensory and hippocampal pair in the same hemisphere (ACL/R, HITL/R). The most reversible pair is (ACL, ACR) which is
made up of two sensory regions. (D) 3-order irreversibility at cohort-level. The triplets that are most irreversible are those that include an intrahemispheric
sensory and hippocampal pair as well as the prefrontal cortex (ACL/R, HITL/R, VMPFC). The most reversible contains both hippocampal regions and the medial
cingulate gyrus, (HITL, HITR, MC). (E) 4-order irreversibility at cohort-level. The quadruplets that are most irreversible are those that include a hippocampal and
sensory pair and both medial regions (ACL/R, HITL/R, MC, VMPFC) and those that include both hippocampal regions, a sensory region, and the VMPFC. The
most reversible is the quadruplet that contains no medial regions. (F ) 5-order irreversibility at cohort-level. The most reversible quintuplets are those that omit
a medial region, in particular, the quintuplet that omits the VMPFC.

contain the VMPFC has the most reversible interaction. While
we have attempted to interpret the results from the perspective
of the hierarchical and higher-order organization of the auditory
system, we note that outliers would be expected to arise naturally
due to statistical variation. Nevertheless, due to the consistency of
our results across levels, for example the hemispheric symmetry
that is observed at each level, such results cannot be explained
purely by chance. Furthermore, a subsampling analysis shows
that the error in irreversibility measurements is typically smaller
than differences between tuples implying a range of statistically
significant differences (SI Appendix).

We can interpret this result in the context of predictive coding
and its links to sensory tasks (50–52), as well as through the
hierarchical organization of the auditory system. The participants
are exposed to a memorized tonal sequence that does not
deviate from their expectation of what they were about to hear.
Under the theory of predictive coding, this would result in an
adjustment of a participant’s prior expectations, facilitated by
asymmetric, hierarchical interactions between brain regions at

multiple levels, in order to reinforce the prior expectations in
light of the new sensory information (53). This in turn would
lead to a cascade of interactions between key ensembles of
regions whose function is optimized for the process of auditory
recognition. As irreversible brain dynamics stem from irreciprocal
and hierarchical interactions, such a mechanism results in marked
irreversibility in the emergent dynamics (7).

Discussion

In this study, we describe a framework for measuring the
emergence of nonequilibrium dynamics, through multivariate
irreversibility, at multiple system levels. We are able to capture the
irreversibility of each possible interaction in a MVTS of signals.
Applying the DiMViGI framework to neural recordings obtained
during a long-term memory recognition task, we investigate the
higher-order organization, and the associated nonequilibrium
interactions, of brain regions and how they break time-reversal
symmetry during an auditory recognition task. The results clearly

PNAS 2025 Vol. 122 No. 10 e2408791122 https://doi.org/10.1073/pnas.2408791122 5 of 9
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show a broad distribution of irreversibility at each system level;
hence we are able identify which interactions are particularly
irreversible, which we interpret as a correlate of a hierarchical
and synergistic interaction. Furthermore, we link irreversibility to
hierarchical predictive coding and theorize that nonequilibrium
interactions could emerge as a consequence of the modulation
of prior expectations in light of new sensory information (53).
According to the theory of predictive coding, this might be
realized through hierarchically asymmetric interactions that,
in turn, induce the emergence of irreversibility at multiple
system levels (7, 54, 55). Within this context, the DiMViGI
framework confirms the hierarchical organization of the auditory
system (56–59), with reciprocal connections, such as those
found within the auditory cortex, resulting in more reversible
dynamics, and hierarchical relationships, such as those found
between the auditory cortex and the hippocampus, resulting in
markedly irreversible dynamics. Furthermore, our approach goes
beyond typical approaches to the auditory system, such as the
analysis of coactivation and functional connectivity (60, 61) or
the identification of cortical-gradient hierarchies (33, 58), by
uncovering higher-order interactions within the auditory system
between triplets and quadruplets of brain regions. In particular,
at higher orders, irreversibility reveals synergistic interactions
between hippocampal, cingulate gyrus and sensory regions for
the distributed processing required for audition and long-term
recognition. As a result, our approach yields insights that offer a
perspective on the flow of information during audition. While a
recent analysis of these neural recordings with standard methods
was able to identify a hierarchy of information processing in
the brain during long-term recognition (33), the introduction
of the DiMViGI framework appears crucial to uncovering the
higher-order and nonequilibrium nature of the interactions. Such
insights are opaque to traditional analyses but emerge from the
unique lens of nonequilibrium statistical physics.

The implications of the framework and the associated results
are multifold. First, we go beyond aggregate (4–7, 9, 10) or
univariate (32, 47) measures of irreversibility, expanding the
existing quiver of techniques for studying nonequilibrium in
the brain to include a multilevel approach. Our technique
is able to capture differences in irreversibility across scales
in continuous time-series, inspired by recent theoretical work
for binary variables (28, 29), that is nonspecific and can be
applied to MVTS from any domain to identify particular highly
nonequilibrium interactions. Our approach differs from refs. 28
and 29 as we do not attempt to measure the unique contribution
to the AoT of a specific k-body interaction by discounting the
irreversibility of all subinteractions contained within the tuple.
Instead, we measure the irreversibility of the tuple as a whole. In
SI Appendix, section 6, we consider an extension of our approach
to relate our framework more closely to the approach of refs. 28
and 29, by measuring the unique contribution of each k−body
interaction, defined recursively as,

�(xi1 ,...,xik ) = &(xi1 ,...,xik ) −
∑

Ω⊂{xi1 ,...,xik }

�Ω. [10]

However, we note that the exact decomposition of the EPR
presented in refs. 28 and 29 relates to discrete, Markovian
and multipartite dynamics and thus does not apply directly to
continuous MVTS. Moreover, in SI Appendix, section 5 we show
that irreversibility in our method only decomposes in the case of
independent variables.

Our framework builds on the sustained interest in identifying
higher-order interactions in neural recordings and other MVTS

(62–66), particularly in information theoretic analyses of brain
data that reveal how higher-order functional interactions shape
neural dynamics (67–69). Notably, many higher-order frame-
works are either computationally, or by formulation, restricted to
studying either triplet (63, 64, 66, 67) or system-wide interactions
(62), while our results extend easily to all possible levels in the
system. Our framework attempts to bridge the broader discussion
on higher-order mechanisms and behaviors in complex systems
(70–72) with techniques from nonequilibrium thermodynamics
(20) through the quantification and interpretation of multilevel
irreversibility. Finally, our work further solidifies the visibility
algorithm, and network analysis of time-series, as an empirically
useful tool in the analysis of neural data (43, 73). The code used
to implement the DiMViGI framework is available at ref. 74.
The MEG data used in the study is available at ref. 75 with the
preprocessing scripts available at ref. 76.

Despite these promising results, we note some nuanced
limitations in our framework. While the visibility algorithm
and the degree distribution approach reduces the dimension
of the data, we are still computing an entropy between high-
dimensional distributions which is computationally restrictive.
This can be circumvented by limiting the support of the degree-
distribution to exponentially improve computational efficiency
while minimally affecting numerical accuracy (SI Appendix).
Nevertheless, analyzing all possible interactions yields a com-
binatorial explosion, hence we opt for a coarse, low-dimensional,
parcellation of the brain that allows us to analyze the system
at all possible levels. However, the highlighting of individual
tuples is most meaningful when there is a strong intuition about
the nature of the interaction, which can be only be expected in
low-dimensional parcellations where ROIs are clear, functionally
segregated brain areas. Additionally, we note that our measure
is undirected within the tuple, meaning we cannot identify the
direction of information flow as one can with classical measures of
causality (77, 78) or some approaches to the AoT (7, 8). However,
we note that the AoT represents directed flow between states and
not variables, meaning it is not a direct measure of causality,
but instead capturing a distinct, but related, phenomena in
interacting dynamics. Finally, measuring the irreversibility of
finite-length time-series naturally induces a bias due to the finite
sampling of the state-space (4, 29). In order to validate that the
measured irreversibility emerges from nonequilibrium dynamics
and not from finite-data errors, we employed both surrogate-
testing using shuffled time-series and subsampling approaches to
validate the significance of our results (SI Appendix, section 4).

A key advantage of the DiMViGI framework is the ability to
scale between levels with a consistent approach. Strictly local mea-
sures such as auto- and cross-correlations are limited to individual
and pairwise interactions (79, 80). On the other hand, simply
applying global measures to each subset of variables in the time-
series, such as coarse-graining or using a model-based measure,
yields an inconsistent approach where different tuples cannot be
compared fairly. Our framework extends consistently to all levels
thus yielding directly comparable quantities at each level.

Conclusions

In this work, we have introduced the Directed Multiplex
Visibility Graph Irreversibility framework for measuring the
irreversibility of multivariate interactions at all levels within a
system. We applied this method to neural recordings during
a long-term auditory recognition task to study the relative
irreversibility of different interactions between brain regions.
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Doing so, we were able to demonstrate the hierarchical, higher-
order organization of brain dynamics during tasks. This analysis
suggests that reinforcement of prior expectations during an
auditory recognition task is facilitated through a hierarchy of
irreversible higher-order interactions in the brain, an observation
that we link to both the mechanisms of predictive coding and
the hierarchical structure of the auditory system. Furthermore,
we highlighted the particular combinations of cognitive and
sensorial regions that are preferentially recruited during audition
and long-term recognition. This framework is nonspecific and
provides a general tool for investigating higher-order interactions
and nonequilibrium dynamics in MVTS emerging from other
complex systems.

Materials and Methods
Estimating Degree Distributions from Finite Samples. For each sample, a
MVTS, we construct the DMVG, defined by the multiplex adjacency matrix, A,

A[l]
ij =

{
1 if i→ j in layer l
0 else . [11]

Then we calculate the in- and out-degree of each node in each layer

d̃[l],in
i =

∑
j

A[l]
ji , [12]

d̃[l],out
i =

∑
j

A[l]
ij , [13]

where d[l],in
i , d[l],out

i are the in-and out-degree of node i in layer l respectively.

For a k−tuple (n1, . . . , nk), we calculate P(n1 ,...,nk)
in (d1, . . . , dk) by

counting the number of nodes i, across all samples, where

d̃[l],in
i = dl , [14]

for each l ∈ {1, . . . , k} simultaneously and for dl ∈ {1, . . . , dmax}, where dmax
is the maximum degree of a node in the multilayer graph, and then dividing
through by the total number of nodes in all samples. We calculate the same for

P(n1 ,...,nk)
out (d1, . . . , dk).

As we are using a finite number of samples, we then perform distribution
smoothing (81) to eliminate zeros in the empirical distribution. Instead of using,

P(n1 ,...,nk)(d1, . . . , dk) =
N
M

, [15]

where N is the number of nodes satisfying condition [14] and M is the total
number of nodes across samples, we average the empirical distribution with a
uniform prior via the following replacement,

P(n1 ,...,nk)(d1, . . . , dk) =
1
2

N
M

+
1
2

1

dk
max

. [16]

Computing Jensen–Shannon Divergence. We quantify the divergence be-
tween the in- and out-degree distributions using JSD which is a symmetrized
version of KLD that does not suppose a model–data relationship (82). This is
defined between two probability distributions P, Q as

J(P|Q) =
1
2

D(P|M) +
1
2

D(Q|M), [17]

where M = 1
2 (P + Q) is an averaged distribution and D(·) represents the KLD,

given by,

D(P|Q) =
∑
x∈X

P(x) log
P(x)
Q(x)

. [18]

AsX represents the support of the distribution, it takes the form{1, . . . , dmax}
k ,

where k is the dimension of the probability distributions and dmax is the
maximumdegreeofanodeinthemultilayergraph.Forcomputational feasibility,
dmax can be limited during the calculation of JSD, truncating the sum. For 5-
order analysis, we limit dmax to 75. For a systematic analysis of the effect of
degree limiting see SI Appendix.

MEG Data.
Participants. The participant cohort consisted of 83 healthy volunteers made
up of 33 males and 50 females with ages in the range 18 to 63 and a mean
age of 28.76 ± 8.06. The 51 participants included in this analysis included
22 males and 29 females with ages in the range 18 to 63 and a mean age
of 27.57± 7.13. Participants were recruited in Denmark, came from Western
countries, reported normal hearing and gave informed consent before the
experiment. The project was approved by the Institutional Review Board (IRB) of
Aarhus University (case number: DNC-IRB-2020-006) and experimental proce-
dures complied with the Declaration of Helsinki—Ethical Principles for Medical
Research. After preprocessing, the 51 participants with at least 15 nondiscarded
trials in the first experimental condition were included in the analysis. Only trials
where participants correctly identified the sequence were included. For those
participants with more than 15 trials, 15 trials were randomly sampled.
Experimental stimuli and design. We employed an old/new paradigm auditory
recognition task (33, 35, 36, 38). Participants listened to a short musical piece
twice and asked to memorize it to the best of their ability. The piece was the first
four bars of the right-hand part of Johann Sebastian Bach’s Prelude No. 2 in C
Minor, BWV 847. Next, participants listened to 135 five-tone musical sequences,
corresponding to 27 trials in 5 experimental conditions, of 1750 ms each and
were requested to indicate if the sequence belonged to the original music or was
a variation. Differences between experimental conditions have been described
in detail by Bonetti et al (33). We consider one experimental condition, where
participants recognized the original, previously memorized sequences.
Data acquisition. MEG recordings were taken in a magnetically shielded room
at Aarhus University Hospital, Aarhus, Denmark using an Elekta Neuromag
TRIUX MEG scanner with 306 channels (Elekta Neuromag, Helsinki, Finland).
The sampling rate was 1,000 Hz with analogue filtering of 0.1 to 330 Hz. For
further details on the data acquisition see SI Appendix.
MEGpreprocessing. First, raw MEG sensor data were processed by MaxFilter (83)
to attenuate external interferences. We then applied signal space separation (for
parameters see SI Appendix). Then, the data were converted into Statistical
Parametric Mapping (SPM) format, preprocessed and analyzed in MATLAB
(MathWorks, Natick, MA, USA) using in-house codes and the Oxford Centre
for Human Brain Activity (OHBA) Software Library (OSL) (84). The continuous
MEG data were visually inspected and large artifacts were removed using OSL.
Less than 0.1% of the collected data was removed. Next, independent component
analysis (ICA) was implemented to discard artifacts in the brain data from heart-
beats and eye-blinks (for details, see SI Appendix) (85). Last, the signal was
epoched in 135 trials, 27 trials for each of 5 experimental conditions and
the mean signal recorded in the baseline (the poststimulus brain signal) was
removed. Each resulting trial lasted 4400 ms plus 100 ms of baseline time.
Source reconstruction. We employed the beamforming method to spatially
localize the MEG signal (86). For details on the beamforming algorithm and the
implementation see SI Appendix.

Data, Materials, and Software Availability. The code used to imple-
ment the DiMViGI framework is available at https://github.com/rnartallo/
multilevelirreversibility (74). The in-house code used for MEG preprocessing is
available at https://github.com/leonardob92/LBPD-1.0 (75). The preprocessed
MEG recordings used in this analysis are freely available at https://doi.org/10.
5281/zenodo.13939016 (76).
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