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Abstract

Memory is a complex cognitive process composed of several subsystems, namely short- and long-term memory and working memory
(WM). Previous research has shown that adequate interaction between subsystems is crucial for successful memory processes such
as encoding, storage, and manipulation of information. However, few studies have investigated the relationship between different
subsystems at the behavioral and neural levels. Thus, here we assessed the relationship between individual WM abilities and brain
activity underlying the recognition of previously memorized auditory sequences. First, recognition of previously memorized versus
novel auditory sequences was associated with a widespread network of brain areas comprising the cingulate gyrus, hippocampus,
insula, inferior temporal cortex, frontal operculum, and orbitofrontal cortex. Second, we observed positive correlations between brain
activity underlying auditory sequence recognition and WM. We showed a sustained positive correlation in the medial cingulate gyrus,
a brain area that was widely involved in the auditory sequence recognition. Remarkably, we also observed positive correlations in the
inferior temporal, temporal-fusiform, and postcentral gyri, brain areas that were not strongly associated with auditory sequence
recognition. In conclusion, we discovered positive correlations between WM abilities and brain activity underlying long-term recog-
nition of auditory sequences, providing new evidence on the relationship between memory subsystems. Furthermore, we showed
that high WM performers recruited a larger brain network including areas associated with visual processing (i.e., inferior temporal,
temporal-fusiform, and postcentral gyri) for successful auditory memory recognition.
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Significance Statement:

Memory is dependent on the successful interaction between its multiple subsystems. Here, we assessed the relationship between
individual working memory (WM) abilities and brain activity underlying the recognition of previously memorized auditory se-
quences. We observed positive correlations between brain activity underlying auditory sequence recognition and WM, especially
in the medial cingulate gyrus, inferior temporal, temporal-fusiform, and postcentral gyri. In this study, we provided new evidence
on the relationship between two memory subsystems: WM and long-term auditory recognition. Moreover, we showed that, to suc-
cessfully complete memory recognition tasks, high WM performers recruited a larger brain network, which comprised brain areas
mainly associated with visual processing, such as inferior temporal, temporal-fusiform, and postcentral gyri.

Introduction
Memory is a fundamental cognitive process that is widely re-
garded as a multisystem function (1) relying on a widespread
network of brain areas such as the medial temporal lobe (2, 3),
prefrontal cortex (4), and basal ganglia (5). Broadly, the mem-
ory subsystems encode, store, and retrieve past memories (long-
term memory), temporarily store sensory information (short-term
memory), and maintain and manipulate data [working memory
(WM)] (1, 6, 7). These subsystems operate simultaneously and in

parallel (8), giving rise to efficient memory functioning that is es-
sential for many daily activities.

WM capacity allows us to briefly store and manipulate infor-
mation and is involved in decision-making and executive pro-
cesses (9–11). Among the several theories of WM, Baddeley and
Hitch’s (12) multicomponent model has become highly influen-
tial. According to this theory and its subsequent revisions, WM is
composed of four components: (i) the phonological loop, which
is involved in verbal WM; (ii) the visuospatial sketchpad, for
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visuospatial WM; (iii) the central executive, or the attentional con-
trol system; and (iv) the episodic buffer, for storing information
(10, 12–14). Frequently, WM paradigms request individuals to re-
tain sensory information and perform some operation or manip-
ulation on it, as in the case of the N-back (15) and digit span (16)
tasks.

Neuroimaging studies have highlighted the role of cortical
brain areas, such as the prefrontal, parietal, and cingulate cor-
tices, and subcortical areas, including the midbrain and cerebel-
lum, in WM processes, as reported in a review by Chai et al. (17).
Evidence comes mainly from studies using visual stimuli, provid-
ing a valuable but incomplete picture of the neuroanatomy of
WM. However, recent studies on auditory WM processing have un-
covered the role of the primary auditory cortex and high-order
structures such as the hippocampus for this cognitive function.
For example, Kumar and colleagues (18) demonstrated that the
activity and connectivity of the primary auditory cortex, hip-
pocampus, and inferior frontal gyrus are associated with the
maintenance of single sounds’ series. Additionally, theta oscilla-
tions and phase locking in the dorsal stream predict performance
in a maintenance and manipulation auditory task (19). Related to
the present study, Bonetti et al. (20) showed a positive correlation
between WM capacity and brain activity underlying an auditory
mismatch-negativity (MMN) task. The authors found that partic-
ipants with higher WM scores showed enhanced MMN responses
in frontal regions but not in temporal areas. Notably, this inves-
tigation evidenced the relationship between auditory short-term
memory and WM.

Long-term memory refers to the ability to recall information
that has been encoded and stored in the past (7, 21). Research
on this cognitive function has emphasized the distinct features
of several types of long-term memory, namely episodic, semantic,
and procedural memory (22, 23). These are classified according
to the kind of information they hold (e.g. personal experiences
in the case of episodic memory, factual knowledge for semantic
memory) (24, 25) and how this information is encoded (e.g. skill
acquisition in procedural memory) (26).

The neural underpinnings of long-term memory rest primarily
upon medial temporal lobe structures (hippocampus, entorhinal,
perihinal, and parahippocampal cortices) (2, 21) and interact with
the prefrontal cortex for successful memory retrieval (27). More-
over, consolidation, the process of transforming temporary infor-
mation into long-lasting memories, is achieved through the inter-
actions between the hippocampus and neocortex (28, 29). Con-
verging evidence suggests that, in the case of auditory long-term
memory, the primary auditory cortex also supports the storage of
information (30). Using a musical long-term memory task, Grous-
sard et al. (31) revealed that musicians’ inferior frontal and su-
perior temporal gyri, inferior parietal gyrus, cerebellum, and hip-
pocampus are active when judging the level of familiarity of mu-
sical excerpts. Additionally, similar to visual long-term memory,
recognition of previously memorized environmental sounds elic-
its stronger gamma-band activity in central electrodes than lis-
tening to novel sounds (32).

Although previous investigations have mainly examined the
neuroanatomical bases of the memory subsystems in isolation,
few studies have looked into the associations between them. For
instance, Henson and Gagnepain (33) highlighted the interaction
between different memory subsystems, both in terms of behav-
ior and neural substrate. They focused especially on episodic, se-
mantic, and modality-specific perceptual subsystems, claiming
that their successful interaction is crucial for performing memory

tasks. Similarly, Poldrack and colleagues (34) demonstrated the in-
teraction and competition between memory subsystems during
classification learning in humans. Specifically, they observed that
the basal ganglia and medial temporal lobe were differently en-
gaged depending on the emphasis on declarative or nondeclar-
ative memory and showed that the interaction between these
structures was necessary to perform the task. In a review fo-
cusing on pharmacological and neurochemical studies, Gold (35)
proposed that the release of acetylcholine in different memory
subsystems showed extensive interactions between them, which
could be cooperative or competitive. He concluded that different
memory and neural systems tended to interact extensively, even
when described as relatively independent. Finally, White and Mc-
Donald (36) described a theory of multiple parallel memory sub-
systems in the rat brain localized in the hippocampus, caudate-
putamen, and amygdala. The authors claimed that all subsystems
had access to the same information during learning, but that each
subsystem represented a different relationship between the in-
formation features. In their view, these memory subsystems in-
teracted by simultaneous parallel influence on behavioral output
and by directly affecting each other in a cooperative or competi-
tive manner. Overall, these investigations have yielded consider-
able insights into the relationships between memory subsystems,
but we still lack information on the brain correlates underlying
these interactions.

Thus, in our study, we aimed to investigate the relationship be-
tween two of the most important memory subsystems, WM and
long-term memory, emphasizing their interdependence. To this
end, we correlated the scores from a widely used auditory WM
measure with the neural activity underlying tone-by-tone recog-
nition of previously memorized sequences from three different
musical pieces. Previously, we found that WM abilities have a mi-
nor but significant impact on the brain encoding processes of a
musical piece (37). Following this result, we hypothesized to ob-
serve stronger brain activity underlying auditory sequence recog-
nition in individuals with greater WM abilities, especially in brain
structures that have been previously associated with memory
processes, such as the prefrontal cortex and hippocampus (37).
Additionally, we expected WM capacity to be positively correlated
with behavioral responses in the auditory recognition task.

Results
Experimental design
Participants performed an old/new auditory recognition task (38–
40). During the encoding phase, participants listened to three mu-
sical pieces and were instructed to memorize them as much as
possible. In the recognition phase, short musical sequences se-
lected from the pieces (i.e. memorized musical sequences) and
novel musical sequences were presented. For each of the se-
quences, participants stated whether they were memorized or
novel. Due to its high temporal resolution, their brain activity
was recorded using magnetoencephalography (MEG) during the
recognition task. Structural magnetic resonance imaging (MRI)
images were collected for each participant and combined with
the MEG data to reconstruct the sources using a beamforming
approach, which generated the signal that was recorded over
the MEG channels. Finally, participants’ WM abilities were mea-
sured using the Digit Span and Arithmetic subtests from the
Wechsler Adult Intelligence Scale (WAIS-IV) (41). Fig. 1 shows
a graphical depiction of the experimental design and analysis
pipeline.
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Fig. 1. Experimental stimuli and design, and data analysis overview. (a) The data acquisition comprised two parts: (i) a WM task completed outside the
scanner and (ii) an old/new auditory recognition task that was carried out during MEG recording. (b) Illustration of the old/new auditory recognition
task performed in the MEG scanner. After listening to three full musical pieces, participants were presented with melodic excerpts that were extracted
from the pieces they previously learned or with new melodies, and they were asked to state whether each melody was memorized or novel using a
joystick. (c) The broadband continuous neural data was preprocessed, bandpass filtered (0.1 to 1 Hz), and epoched. (d) Source reconstruction analyses
were performed to isolate the contribution of each brain source to the neural activity recorded by the MEG sensors. Preprocessed MEG and MRI data
were coregistered. After that, a forward model was computed, and the inverse solution was estimated using a beamforming approach. (e) Contrasts
between memorized and novel auditory sequences were calculated for each musical tone (top row). Pearsons’ correlations between WM scores and
brain activity underlying recognition of memorized versus novel auditory sequences were computed (bottom row).

Brain activity underlying recognition of
previously memorized versus novel musical
sequences
Before evaluating the relationship between WM abilities and brain
activity underlying musical sequence recognition, which was the
main aim of the current work, we wished to replicate the estab-
lished finding (38–40) that recognition of previously memorized
versus novel auditory sequences is associated with a stronger ac-
tivation in a widespread network of brain areas. Since previous
studies showed that the slow frequency band of 0.1 to 1 Hz was
crucially associated with the recognition of the complete musical
sequence, we performed this analysis at the same slow frequency
band (38–40).

First, we subaveraged the brain data in five time-windows, cor-
responding to the duration of the five tones of the musical se-
quences (0 to 250 , 251 to 500, 501 to 750, 751 to 1000, and 1001

to 1250 ms). Second, independently for the five time-windows, we
computed one t-test for each brain source, contrasting the brain
activity underlying recognition of previously memorized versus
novel musical sequences. Third, we corrected for multiple com-
parisons using cluster-based Monte Carlo simulations (MCS).

Significant clusters of activity (P < .001) were located across a
number of brain voxels (k) for each tone of the musical sequences.
As expected, the main clusters were observed for the third (k =
284), fourth (k = 390), and fifth tones (k = 125). The strongest dif-
ferences between the two conditions were localized in the mid-
dle cingulate gyrus, precuneus, insula, hippocampal regions, or-
bitofrontal cortex, and frontal operculum.

Detailed statistics and information for each voxel forming the
significant clusters are reported in supplementary materials (Ta-
ble S1), while a graphical depiction of the results is illustrated
in Fig. 2a.
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Fig. 2. Brain activity underlying the recognition of auditory sequences and correlation with WM scores. (a) Significant brain activity underlying
recognition of the musical sequences. The activity is depicted in brain templates in five subsequent time windows corresponding to the duration of
each musical tone forming the sequences (as illustrated by the sketched musical tones above the time windows). The colorbar shows the t-values
resulting from the contrast between memorized and novel auditory sequences. (b) Significant Pearson’s correlations between the brain activity
underlying recognition of the sequences and WM scores. The correlations are depicted in brain templates in five subsequent time windows
corresponding to the duration of each musical tone forming the sequences (as illustrated by the sketched musical tones above the time windows). The
colorbar shows Pearson’s correlation coefficient obtained by correlating the brain activity underlying recognition of the previously memorized versus
novel auditory sequences with the WM scores.

WM abilities and brain activity underlying
musical sequence recognition
The main aim of the study was to establish whether there was a
significant relationship between WM abilities and brain activity
underlying tone-by-tone recognition of musical sequences.

Before computing neural data analyses, we calculated a Pear-
son’s correlation between the number of correctly recognized au-
ditory sequences in the MEG task and the individual WM scores.
The analysis returned a nonsignificant result (rho = .16, P = .18).

To address our experimental question, we computed Pearson’s
correlations between participants’ WM scores and each of the re-
constructed brain sources. We corrected for multiple comparison
using cluster-based MCS. This procedure was computed indepen-
dently for five time-windows, corresponding to the duration of the
five tones of the musical sequences (0 to 250, 251 to 500, 501 to
750, 751 to 1000, and 1001 to 1250 ms; see the ‘‘Methods” section
for details).

Significant clusters of activity (P < .05) were located in dif-
ferent brain regions and depicted an overall positive correlation
between WM abilities and brain activity underlying recognition
of memorized musical sequences. This difference returned con-
sistent clusters in the middle cingulate gyrus, inferior tempo-
ral cortex, fusiform-temporal cortex, parahippocampal gyrus, and
temporal-occipital fusiform cortex, especially for the third (k = 83)
and fourth (k = 83) tones of the musical sequences.

Detailed statistics and information for each voxel forming the
significant clusters are reported in the Supplementary Materials

(Table S2), while a graphical depiction of the results is illustrated
in Fig. 2b.

Additional analyses were conducted to examine the impact of
musical training on the relationship between WM abilities and au-
ditory memory recognition, based on previous studies linking mu-
sical training with improved auditory memory (42, 43). We used
the Goldsmiths Musical Sophistication Index (Gold–MSI) (44) to
measure musical expertise, and the same procedure was repeated
for two groups of participants (musicians and nonmusicians) in-
dependently. Significant clusters of activity (P < .025) in right hip-
pocampal areas showed a positive correlation between WM abil-
ities and memory recognition for both musicians and nonmusi-
cians. Additionally, activity in the medial cingulate gyrus was pos-
itively correlated with WM scores in the case of musicians only,
while activity in the left auditory cortex was correlated with WM
scores in nonmusicians. Detailed statistics and information are
reported in the Supplementary Materials (Fig. S1 and Tables S3
and S4).

Discussion
In this study, we assessed the relationship between individual WM
abilities and brain activity underlying long-term recognition of au-
ditory sequences.

First, we identified the brain activity associated with recogni-
tion of previously memorized versus novel auditory sequences.
This analysis revealed a widespread network of brain areas
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involved in the recognition process, including the cingulate gyrus,
hippocampus, insula, inferior temporal cortex, frontal operculum,
and orbitofrontal cortex. Remarkably, the cingulate gyrus (espe-
cially the posterior part) was significantly more active for memo-
rized than for novel sequences by the second tone of the sequence.
Moreover, this region was strongly active during the processing
of the rest of the sequence, although its activity decreased in the
last tone. Conversely, the insula, inferior temporal cortex, and hip-
pocampal areas were mainly active during the third, fourth and
fifth tones of the auditory sequence.

Second, we correlated the brain activity underlying recogni-
tion of memorized versus novel sequences with the participants’
WM scores. In general, we observed positive correlations between
brain activity and WM capacity. The analyses returned a sus-
tained positive correlation in the medial cingulate gyrus, a brain
region strongly involved in auditory sequence recognition. No-
tably, we also observed positive correlations in the inferior tem-
poral, temporal-fusiform, and postcentral gyri. These brain areas
were not strongly associated with auditory sequence recognition
and suggest that high WM performers may recruit a larger brain
network to successfully complete memory recognition tasks. Re-
markably, despite the positive correlation between WM capacity
and brain activity, scores on the WM task and the recognition task
were not correlated. Although unexpected, this result points to
the relevance of the brain activity correlation to provide crucial
information that the behavioral data could not return.

Our results on the whole-brain mechanisms for auditory recog-
nition are coherent with previous studies that employed the same
paradigm. For instance, using part of the current dataset, Bonetti
et al. (38, 39) and Fernández-Rubio et al. (40) highlighted the cru-
cial role of the cingulate gyrus, hippocampus, insula, inferior tem-
poral cortex, and frontal operculum for the recognition of auditory
sequences. Similarly, in another study, Bonetti et al. (37) found that
the degree centrality of the frontal operculum within the whole
brain network during the encoding of a musical piece was posi-
tively correlated with WM scores. The replication of previous find-
ings encouraged us to further investigate the relationship between
brain activity underlying auditory sequence recognition and indi-
vidual WM skills.

Overall, this study showed a series of positive correlations be-
tween brain activity and WM abilities, suggesting that memory
subsystems are coherently connected to each other. This is par-
ticularly interesting since the recognition task employed in the
study used musical stimuli, while the WM measure was based on
numbers. This link between different subsystems of memory is
in line with previous research. As previously mentioned, the na-
ture of the interactions between subsystems may be cooperative
or competitive (34, 35) and is essential to perform memory tasks
efficiently (33). Furthermore, different brain areas are involved
depending on the memory process that is emphasized (declar-
ative versus nondeclarative) (34). Finally, White and McDonald’s
(36) study localized multiple parallel memory subsystems in the
rat’s hippocampus, caudate-putamen, and amygdala, and pro-
posed that these subsystems share information during learning
but represent its features differently.

Of particular interest in this study are the brain areas that were
connected to WM. The activity recorded in the medial cingulate
gyrus presented a sustained positive correlation with WM scores.
This is coherent with previous studies linking cingulate gyrus’ ac-
tivity to memory and musical tasks. As mentioned earlier, in the
auditory domain, the cingulate played a crucial role in auditory
sequence encoding (37) and recognition (38–40). Moreover, a re-
cent meta-analysis revealed that the cingulate gyrus is central

for general music processing and particularly for sound imagi-
nation (45). Beyond the auditory system, the cingulate gyrus has
been reported in memory studies employing visual or abstract in-
formation. For instance, it has been suggested that diverse parts
of the cingulate gyrus are differently involved in memory pro-
cesses. According to this view, the anterior part of the cingulate
is primarily connected to the orbitofrontal cortex and handles
abstract reward outcomes, while the posterior cingulate is inte-
grated within the hippocampal and occipital systems and there-
fore highly relevant for memory processing of visual stimuli (46,
47). Similarly, in a recent functional magnetic resonance imag-
ing (fMRI) study, Di and colleagues (48) showed that the ante-
rior cingulate gyrus was functionally connected to the middle
frontal gyrus and superior parietal lobule during a demanding
WM task. Conversely, this connectivity was reduced in the rest-
ing state, suggesting the relevance of the cingulate gyrus during
memory tasks.

Other brain structures correlated with WM abilities were the
inferior temporal and temporal-fusiform gyri and the postcentral
gyrus. This result is of great interest because these brain struc-
tures did not play a major role in the recognition of auditory
sequences. Indeed, while the cingulate gyrus was largely active,
we previously observed a relatively small contribution of infe-
rior temporal and postcentral gyri to auditory sequence recogni-
tion (38–40). Moreover, the temporal-fusiform gyrus has not been
previously associated with auditory recognition processes. This
suggests that individuals with higher WM abilities recruited a
larger brain network during the recognition of auditory sequences,
which may provide an advantage for auditory recognition. How-
ever, since there were no significant differences in the behavioral
performance of the recognition task, future studies are called to
better understand whether and how this recruitment of addi-
tional brain areas is beneficial for individuals with high WM ca-
pacity.

Previous literature has shown the involvement of inferior tem-
poral and temporal-fusiform gyri and the postcentral gyrus in
visual memory tasks. In the past decades, the inferior temporal
cortex has been widely connected to visual perception and mem-
ory in both humans and monkey (49). Specifically, several studies
demonstrated the involvement of the inferior temporal cortex in
representational memory and recognition of complex visual pat-
terns (49, 50). More recently, Costers and colleagues (51) reported
the involvement of left and right inferior temporal and parahip-
pocampal gyri in a multi-item WM task. Activity in the inferior
temporal gyrus has been repeatedly observed in visual memory
tasks, while its involvement in the auditory domain is less estab-
lished. Importantly, here we revealed that the inferior temporal
cortex plays a significant role in auditory recognition, at least in
individuals with superior WM skills.

The fusiform gyrus has been historically connected to recog-
nition in the visual domain, especially in relation to faces (52–
55). However, recent studies demonstrated its involvement in the
recognition and processing of more general visual stimuli, such as
letters (56, and when performing elaborated associative learning
tasks (57).

The postcentral gyrus is a brain area mainly associated with
motor control (58, 59), yet evidence points to its contribution
to memory processes. For instance, in a visual encoding task, a
vast network of brain areas was active, including the postcen-
tral gyrus (60). Similarly, in a recognition task of short sentences,
supramarginal and postcentral gyrus activity was reported (61).
Another study demonstrated the involvement of the postcentral
gyrus in a WM and especially in a visual attention task (62). No-
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tably, similar to the inferior temporal gyrus, previous literature
reported activation of the postcentral gyrus mainly in relation to
visual memory (60, 61), while this study showed its involvement
during recognition of auditory temporal sequences. Since in this
study all participants provided motor responses, future studies
are called to examine the distinct contributions of the postcen-
tral gyrus to memory processes and motor control.

Finally, supplementary analyses returned significant results
when examining the correlation between WM abilities and the
brain activity underlying auditory long-term memory recognition
in two groups of musicians and nonmusicians. We found that hip-
pocampal regions and the inferior temporal cortex in the right
hemisphere were crucially associated with WM scores in both
groups. Conversely, the medial cingulate gyrus was mainly rel-
evant for participants with previous musical training. This last
result is coherent with our recent meta-analysis that showed
the key involvement of the medial cingulate gyrus during mu-
sical imagery and performance (45). Activity in the left auditory
cortex was correlated with WM scores, mainly in nonmusicians.
However, since the current study was not specifically designed
to test differences between musicians and nonmusicians in this
relationship, future studies are called to investigate this with
a larger sample size and carefully controlling musical training
level.

In conclusion, we discovered a positive correlation between
individual WM abilities and brain activity underlying recogni-
tion of memorized auditory sequences, increasing our knowl-
edge on the relationships between different memory subsys-
tems. Although the methodology employed in this study is well-
established and neuroimaging data were collected from 70 par-
ticipants, we acknowledge that a larger sample size would high-
light even better the individual differences in WM abilities and
auditory long-term memory. Additionally, despite the high tem-
poral resolution of MEG, it would be advantageous to examine
the spatiotemporal dynamics of auditory long-term memory us-
ing fMRI to confirm and expand our results regarding the neural
correlates of this process. Finally, future studies are encouraged
to replicate our results and those of Bonetti et al. (37) and ex-
pand them by investigating the relationship between the brain
mechanisms underlying long-term encoding and recognition of
temporal sequences and the brain processes associated with WM
tasks.

Materials and Methods
Participants
We recruited 71 participants (38 males and 33 females) who
took part in the experiment on a voluntary basis. They
were aged 18 to 42 y old (mean age: 25 ± 4.10 y). All par-
ticipants were healthy and had normal hearing. Participants
came from Western countries and had homogenous educa-
tional and socioeconomic backgrounds. Before starting the ex-
perimental procedures, participants gave their informed con-
sent and performed a hearing test to adjust the volume level
individually.

This study was a part of a larger project focused on brain dy-
namics underlying encoding and recognition of musical patterns.
This project produced several studies (37–40). In the current work,
we used the brain activity data underlying recognition of musi-
cal patterns that was previously reported in Bonetti et al. (38,39)
and Fernández-Rubio et al. (40). The project was approved by the
Ethics Committee of the Central Denmark Region (De Vidensk-
absetiske Komitéer for Region Midtjylland, (Ref 1-10-72-411- 17).

Moreover, the experimental procedures complied with the Decla-
ration of Helsinki Ethical Principles for Medical Research.

Experimental stimuli and design
The study aimed at investigating the relationship between brain
activity during a memory recognition task and WM abilities (Fig.
1).

The brain activity was measured using MEG, while participants
performed an old/new auditory recognition task. The task con-
sisted of an encoding phase during which participants memorized
a musical piece, and a recognition phase in which they recognized
excerpts from the piece. In the encoding phase, participants were
exposed to four repetitions of a full musical piece and were asked
to memorize it as much as they could. The musical piece lasted
for approximately 2.5 minutes. The total duration of the learning
phase was approximately 10 minutes. For the recognition phase,
40 short excerpts (5-tone musical sequences, 1250 ms of duration
in total) were extracted from the musical piece and 40 novel mu-
sical sequences were created. The resulting 80 sequences were
presented in a randomized order. For each of them, participants
were instructed to state whether the sequence was extracted from
the musical piece they previously learned (memorized sequence)
or whether it was a new sequence (novel sequence). To prevent
from potential confounds, memorized and novel sequences were
matched among several variables, including rhythm, timbre, vol-
ume, meter, tempo, number, duration of musical tones, tonality,
information content (IC), and entropy (H).

This task was conducted independently for three musical
pieces composed in different musical tonalities, with the aim of
collecting a copious amount of data and increase the reliability of
our findings. The three musical pieces were the right-hand part of
J. S. Bach’s Prelude No. 1 in C minor BWV 847 the right-hand part of
J. S. Bach’s Prelude No. 1 in C major BWV 846 and an atonal version
of the “major prelude” All the pieces had the same duration. The
atonal piece was composed by LB following a systematic change
of pitch of the tones of the major prelude. Additional details on
this procedure can be found in Fernández-Rubio et al. (40).

The MIDI versions of the three pieces used in the encoding
phase and the musical sequences used in the recognition phase
were created using using Finale (MakeMusic, Boulder, CO, USA)
and presented to the participants through Presentation software
(Neurobehavioural Systems, Berkeley, CA, USA).

WM abilities were assessed with the Wechsler Adult Intelli-
gence Scale IV (WAIS-IV) (41), one of the most widely used tests
to assess cognitive abilities. The WAIS-IV comprises four main
indices: WM, Verbal Comprehension, Perceptual Reasoning, and
Processing Speed. In this study, we used the two primary subtests
of the WM index: Digit Span and Arithmetic. In the Digit Span
subtest, participants are presented orally with sequences of num-
bers and required to repeat them in the same order, backwards, or
in ascending order, immediately after hearing them. In the Arith-
metic subtest, participants are presented orally with mathemati-
cal problems and are required to solve them without using any ex-
ternal aids (e.g. calculator, pen, etc.). These tests were performed
outside the scanner.

Data acquisition
The MEG data were recorded in a magnetically shielded room lo-
cated at Aarhus University Hospital (Denmark) with an Elekta
Neuromag TRIUX MEG scanner equipped with 306 channels
(Elekta Neuromag, Helsinki, Finland). The data were collected at
a sampling rate of 1000 Hz with an analogue filtering of 0.1 to
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330 Hz. Before starting the experiment, we recorded the partici-
pants’ headshape and the position of four Head Position Indica-
tor (HPI) coils with respect to three anatomical landmarks (nasion
and left and right preauricular points) using a 3D digitizer (Polhe-
mus Fastrak, Colchester, VT, USA). We used this information in a
later stage of the analysis pipeline to coregister the MEG data with
the MRI anatomical images. During the MEG experiment, the HPI
coils recorded the continuous head localization, which was sub-
sequently used to compensate for participants’ movement inside
the MEG scanner. Moreover, two sets of bipolar electrodes were
employed to record cardiac rhythm and eye movements. These
were later used to remove electrooculography (EOG) and electro-
cardiography (ECG) artifacts.

The MRI scans were acquired on a CE-approved 3T Siemens MR-
scanner at Aarhus University Hospital (Denmark). We recorded
a structural T1 with a spatial resolution of 1.0 × 1.0 × 1.0 mm
and the following sequence parameters: echo time (TE) = 2.96 ms,
repetition time (TR) = 5000 ms, and bandwidth = 240 Hz/pixel, and
reconstructed matrix size = 256 × 256.

The MEG and MRI recordings were acquired in two separate ses-
sions.

Data preprocessing
The raw MEG sensor data (204 planar gradiometers and 102 mag-
netometers) was preprocessed by MaxFilter (63) in order to sup-
press external artifacts interfering with the magnetic field pro-
duced by the brain activity. Using MaxFilter, the data were also
corrected for head motion and downsampled to 250 Hz. We then
converted the data into Statistical Parametric Mapping (SPM) (64)
format and further analyzed it in MATLAB (MathWorks, Natick,
MA) using the Oxford Centre for Human Brain Activity (OHBA)
Software Library (OSL, https://ohba-analysis.github.io/osl-docs/),
a freely available software that builds upon Fieldtrip (65), FSL (66),
and SPM toolboxes, and in-house-built functions. We applied a
notch filter to the data (48 to 52 Hz) to correct for inferences of the
electric current. The signal was further downsampled to 150 Hz
and the continuous MEG data were visually inspected to con-
trol for artifacts. To remove EOG and ECG components, we com-
puted independent component analyses (ICA), isolated and dis-
carded the components that picked up the EOG and ECG activity,
and reconstructed the signal with the remaining components. We
then bandpass-filtered the data in the 0.1 to 1 Hz band, since we
had previously shown (38–40) that activity in this slow frequency
is mainly associated with the recognition of musical sequences.
The data were subsequently epoched into 80 trials (40 memorized
and 40 novel musical sequences), independently for the recogni-
tion of the three musical preludes. Then, we merged the three
datasets, obtaining 240 trials (120 memorized and 120 novel musi-
cal sequences) without differentiating between the three musical
preludes. Here, each trial lasted 3500 ms (3400 ms plus 100 ms of
baseline time) and further analyses were performed on correctly
identified trials only.

Source reconstruction
After computing the preprocessing of the data, we estimated the
brain sources that generated the signal recorded by the MEG. This
procedure was carried out by designing a forward model and com-
puting the inverse solution using beamforming algorithms . Fig.
1 shows an illustration of the source reconstruction pipeline.

First, using the information collected with the 3D digitizer, the
MEG data and the individual T1-weighted images were coregis-
tered, independently for each participant. We used the MNI152-

T1 standard template with 8-mm spatial resolution in the case
of four participants whose individual anatomical scans were not
available.

Second, we computed a single-shell forward model using an 8-
mm grid. This theoretical head model considers each brain source
as an active dipole and calculates how a unitary strength of such
dipoles would be reflected over the MEG sensors (67). Then, we
used a beamforming algorithm as inverse model. This is one of
the most used algorithms for reconstructing the brain sources
from MEG channels’ data. It consists of employing a different set
of weights based on the forward model and the covariance be-
tween the MEG channels. Afterwards, these weights are sequen-
tially applied to the source locations (dipoles) for computing the
contribution of each source to the activity recorded by the MEG
channels, independently for each time point (68–70).

Brain activity underlying recognition of
previously memorized versus novel musical
sequences
Before evaluating the relationship between WM abilities and brain
activity underlying musical sequence recognition, which was the
main aim of the current work, we wished to replicate the estab-
lished finding (38–40) that recognition of previously memorized
versus novel auditory sequences is associated with a stronger ac-
tivation of a widespread network of brain areas. This analysis was
performed at a slow frequency (0.1 to 1 Hz) that has been linked
to memory recognition processes in previous studies [see Bonetti
et al. (38, 39) and Fernández-Rubio et al. (40) for details].

Thus, we first subaveraged the brain data in five time-windows
corresponding to the duration of the five tones of the musical se-
quences (0 to 250, 251 to 500, 501 to 750, 751 to 1000, and 1001
to 1250 ms). Second, independently for the five time-windows, we
computed one t-test for each brain source, contrasting the brain
activity underlying recognition of previously memorized versus
novel musical sequences. Third, we corrected for multiple com-
parisons using cluster-based MCS.

Cluster-based MCS returned the spatial clusters of brain
sources that exhibited a significantly different activity between
our two experimental conditions (α = .001). Then, the significant
brain voxels emerged from the previous t-tests were shuffled in
space and the maximum cluster size was measured. Repeating
this procedure for each of the 1,000 permutations used in the MCS
analysis, we built a reference distribution of the maximum cluster
sizes computed in the permuted data. Then, the original cluster
sizes were compared to the reference distribution and were con-
sidered significant only if their size was bigger than the 95% of the
maximum cluster sizes of the permuted data.

WM abilities and brain activity underlying
recognition of musical sequences
Before computing neural data analysis, we inspected whether
there was a relationship between recognition accuracy and WM
skills. To this aim, we computed a Pearson’s correlation between
the individual WM scores (from WAIS-IV) and the number of cor-
rectly recognized auditory sequences in the MEG task.

To determine the relationship between WM abilities and brain
activity underlying recognition of musical sequences, we com-
puted Pearson’s correlations between participants’ WM scores
and each of the reconstructed brain sources. We corrected
for multiple comparisons using cluster-based MCS analogous
to the ones described in the previous subsection. This proce-
dure was computed independently for five-time windows that
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corresponded to the duration of the five tones of the musical se-
quences (0 to 250, 251 to 500, 501 to 750, 751 to 1000, and 1001 to
1250 ms). Cluster-based MCS returned the spatial clusters of ac-
tive brain sources during recognition of musical sequences that
significantly correlated (α = .05) with the participants’ WM abil-
ities. For each of the five MCS, the data was subaveraged in the
correspondent time window (as reported above), and the brain ac-
tivity underlying recognition of novel sequences was subtracted
from the brain activity underlying recognition of memorized se-
quences. In this way, we correlated the WM scores with the brain
activity that was associated with the recognition of the sole mem-
orized sequences. Then, the significant brain voxels emerged from
the previous correlations were shuffled in space and the max-
imum cluster size was measured. Repeating this procedure for
each of the 1,000 permutations used in the MCS analysis, we built
a reference distribution of the maximum cluster sizes computed
in the permuted data. Finally the original cluster sizes were com-
pared to the reference distribution and were considered signifi-
cant only if their size was bigger than the 95% of the maximum
cluster sizes of the permuted data.

Following previous works on the positive impact of musical
training on auditory memory (42, 43), additional analyses were
conducted to investigate the relationship between WM abilities
and the brain activity underlying auditory long-term memory
recognition in musicians and nonmusicians. Participants’ formal
musical training was measured with the Musical Training facet of
Gold-MSI (44). The groups consisted of 23 nonmusicians (12 males,
mean age: 25.65 ± 3.42 y) and 48 musicians (26 males, mean age:
24.68 ± 4.39 y). The same procedure was followed to determine
the relationship between WM abilities and brain activity under-
lying the recognition of musical sequences. This was performed
independently for the musician and nonmusician groups.

Acknowledgments
We thank Giulia Donati, Riccardo Proietti, Giulio Carraturo, Mick
Holt, and Holger Friis for their assistance in the neuroscientific
experiment. We also thank psychologist Tina Birgitte Wisbech
Carstensen for her help with the administration of psychological
tests and questionnaires.

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Funding
The Center for Music in the Brain (MIB) is funded by the Dan-
ish National Research Foundation (project number DNRF117).
L.B. is supported by the Carlsberg Foundation (CF20-0239), Lund-
beck Foundation (Talent Prize 2022), Center for Music in the
Brain, Linacre College of the University of Oxford, and the Soci-
ety for Education and Music Psychology (SEMPRE’s 50th Anniver-
sary Awards Scheme). M.L.K. is supported by Center for Music in
the Brain and the Centre for Eudaimonia and Human Flourishing
funded by the Pettit and Carlsberg Foundations. Finally, we thank
the Fundación Mutua Madrileña for the economic support pro-
vided to the author G.F.R., the Italian section of Mensa: the Inter-
national High IQ society for the economic support provided to the
author F.C., and the University of Bologna for the economic sup-
port provided to student assistants Giulia Donati, Riccardo Proi-
etti, and Giulio Carraturo.

Authors’ Contributions
L.B., G.F.R., M.L.K., F.C., and P.V. conceived the hypotheses and de-
signed the study. L.B. collected the data. L.B., G.F.R., and F.C. per-
formed preprocessing and statistical analysis. L.B., M.L.K., and P.V.
provided essential help to interpret and frame the results within
the neuroscientific literature. L.B., G.F.R., and F.C. wrote the first
draft of the manuscript and prepared the figures. All the authors
contributed to and approved the final version of the manuscript.

Data Availability
The codes are available on GitHub (https://github.com/gem
maferu/MEG-auditory-memory/blob/main/papers/pnasnexu
s_associations_wm_recognition_auditory_sequences.m and
https://github.com/leonardob92/LBPD-1.0.git). The anonymized
neuroimaging data from the experiment are available on Zenodo
(https://doi.org/10.5281/zenodo.7105001).

References
1. Squire LR. 2004. Memory systems of the brain: a brief history

and current perspective. Neurobiol Learn Mem. 82:171–177
2. Squire LR, Stark CE, Clark RE. 2004. The medial temporal lobe.

Annu Rev Neurosci. 27:279–306.
3. Eichenbaum H, Yonelinas AP, Ranganath C. 2007. The medial

temporal lobe and recognition memory. Annu Rev Neurosci.
30:123–152

4. Narayanan NS, Prabhakaran V, Bunge SA, Christoff K, Fine EM,
Gabrieli JD. 2005. The role of the prefrontal cortex in the mainte-
nance of verbal working memory: an event-related FMRI analy-
sis. Neuropsychology. 19:223–232

5. Foerde K, Shohamy D. 2011. The role of the basal ganglia in learn-
ing and memory: insight from Parkinson’s disease. Neurobiol
Learn Mem. 96:624–636

6. Izquierdo I, Barros DM, Mello e Souza T, de Souza MM, Izquierdo
LA, Medina JH. 1998. Mechanisms for memory types differ. Na-
ture. 393:635–636

7. Cowan N. 2008. What are the differences between long-term,
short-term, and working memory? Prog Brain Res. 169:323–338.

8. Poldrack RA, Packard MG. 2003. Competition among multiple
memory systems: converging evidence from animal and human
brain studies. Neuropsychologia. 41:245–251.

9. Wilhelm O, Hildebrandt AH, Oberauer K. 2013. What is working
memory capacity, and how can we measure it? Front Psychol.
4:433.

10. Baddeley A. 2010. Working memory. Curr Biol. 20:R136–R140.
11. Cowan N. 1999. In: An embedded-processes model of working

memory. Miyake AandShah P, editors.Models of working mem-
ory: mechanisms of active maintenance and executive control.
Cambridge: Cambridge University Press. p. 62–101

12. Baddeley AD, Hitch G. 1974. Working memory. Psychol Learn Mo-
tiv 8:27–89

13. Baddeley AD, Logie RH. 1999. In: Working memory: The multiple-
component model. Miyake AandShah P, editors.Models of work-
ing memory: mechanisms of active maintenance and executive
control. Cambridge: Cambridge University Press. p. 28–61

14. Baddeley A. 2000. The episodic buffer: a new component of
working memory? Trends Cogn Sci. 4:417–423.

15. Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B. 2010. The concur-
rent validity of the N-back task as a working memory measure.
Memory. 18:394–412.

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/1/4/pgac216/6726651 by guest on 12 D

ecem
ber 2022

https://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgac216#supplementary-data
https://github.com/gemmaferu/MEG-auditory-memory.git
https://github.com/leonardob92/LBPD-1.0.git
https://doi.org/10.5281/zenodo.7105001


Fernández-Rubio et al. | 9

16. Dobbs AR, Rule BG. 1989. Adult age differences in working mem-
ory. Psychol Aging. 4:500–503

17. Chai WJ, Abd Hamid AI, Abdullah JM. Working memory from the
psychological and neurosciences perspectives: a review. Front
Psychol. 9: 401 2018.

18. Kumar S, Joseph S, Gander PE, Barascud N, Halpern AR, Griffiths
TD. 2016. A brain system for auditory working memory. J Neu-
rosci. 36:4492–4505

19. Albouy P, Weiss A, Baillet S, Zatorre RJ.2017. Selective en-
trainment of theta oscillations in the dorsal stream causally
enhances auditory working memory performance. Neuron.
94:193–206.

20. Bonetti L, Haumann N, Brattico E, Kliuchko M, Vuust P, Särkämö
T, Näätänen R. 2018. Auditory sensory memory and working
memory skills: association between frontal MMN and perfor-
mance scores. Brain Res. 1700:86–98.

21. Jeneson A, Squire LR. 2012. Working memory, long-term memory,
and medial temporal lobe function. Learn Mem. 19:15–25

22. Humphreys MS, Bain JD, Pike R. 1989. Different ways to cue a
coherent memory system: a theory for episodic, semantic, and
procedural tasks. Psychol Rev. 96:208–233.

23. Tulving E. 1985. How many memory systems are there? Am Psy-
chol. 40:385.

24. Tulving E. 2002. Episodic memory: from mind to brain. Annu Rev
Psychol. 53:1–25

25. Binder JR, Desai RH. 2011. The neurobiology of semantic mem-
ory. Trends Cogn Sci. 15:527–536.

26. Cohen MD, Bacdayan P. 1994. Organizational routines are stored
as procedural memory: evidence from a laboratory study. Organ
sci. 5:554–568.

27. Simons JS, Spiers HJ. 2003. Prefrontal and medial temporal lobe
interactions in long-term memory. Nat Rev Neurosci. 4:637–648.

28. Squire LR, Genzel L, Wixted JT, Morris RG. 2015. Memory consol-
idation. Cold Spring Harb Perspect Biol. 7:a021766

29. Wiltgen BJ, Brown RA, Talton LE, Silva AJ. 2004. New circuits for
old memories: the role of the neocortex in consolidation. Neu-
ron. 44:101–108

30. Weinberger NM. 2004. Specific long-term memory traces in pri-
mary auditory cortex. Nat Rev Neurosci. 5:279–290.

31. Groussard M, La Joie R, Rauchs G, Landeau B, Chetelat G, Vi-
ader F, Desgranges B, Eustache F, Platel H. 2010. When music
and long-term memory interact: effects of musical expertise on
functional and structural plasticity in the hippocampus. PLoS
One. 5:e13225.

32. Lenz D, Schadow J, Thaerig S, Busch NA, Herrmann CS. 2007.
What’s that sound? matches with auditory long-term mem-
ory induce gamma activity in human EEG. Int J Psychophysiol.
64:31–38.

33. Henson RN, Gagnepain PP. 2010 Interactive multiple memory
systems. Hippocampus. 20:1315–1326

34. Poldrack RA, Clark J, Pare-Blagoev EJ, Shohamy D, Creso Moyano
J, Myers C, Gluck MA. 2001. Interactive memory systems in the
human brain. Nature. 414:546–550

35. Gold PE. 2004. Coordination of multiple memory systems. Neu-
robiol Learn Mem. 82, 230–242

36. White NM, McDonald RJ. 2002. Multiple parallel memory sys-
tems in the brain of the rat. Neurobiol Learn Mem. 77, 125–184

37. Bonetti L, Brattico E, Carlomagno F, Donati G, Cabral J, Haumann
NT, Deco G, Vuust P, Kringelbach ML. 2021. Rapid encoding of
musical tones discovered in whole-brain connectivity. Neuroim-
age. 245:118735

38. Bonetti L, Brattico E, Carlomagno F, Cabral J, Stevner A, Deco G,
Whybrow PC, Pearce M, Pantazis D, Vuust P. 2020. Spatiotempo-

ral brain dynamics during recognition of the music of Johann
Sebastian Bach. bioRxiv.

39. Bonetti L, Brattico E, Bruzzone SEP, Donati G, Deco G, Pantazis
D, Vuust P, Kringelbach ML. 2021. Temporal pattern recognition
in the human brain: a dual simultaneous processing. bioRxiv.

40. Fernández-Rubio G, Brattico E, Kotz SA, Kringelbach ML, Vuust
P, Bonetti L. 2022. The spatiotemporal dynamics of recognition
memory for complex versus simple auditory sequences. bioRxiv,
2022.05.15.492038.

41. Wechsler D. 2009. Subtest Administration and Scoring. WAIS–
IV: Administration and Scoring Manual. San Antonio, TX: The
Psychological Corporation, 87–93.

42. Cohen MA, Evans KK, Horowitz TS, Wolfe JM. 2011. Auditory and
visual memory in musicians and nonmusicians. Psychon Bull
Rev. 18:586–591.

43. Degé F, Wehrum S, Stark R, Schwarzer G. 2011. The influence of
two years of school music training in secondary school on visual
and auditory memory. Eur J Dev Psychol. 8:608–623.

44. Müllensiefen D, Gingras B, Musil J, Stewart L. 2014. Measuring
the facets of musicality: The Goldsmiths Musical Sophistication
Index (Gold-MSI). Pers Individ Differ. 60:S35.

45. Pando-Naude V, Patyczek A, Bonetti L, Vuust P. 2021. An ALE
meta-analytic review of top-down and bottom-up processing of
music in the brain. Sci Rep. 11:1–15.

46. Rolls ET. 2019. The cingulate cortex and limbic systems
for emotion, action, and memory. Brain Struct Funct. 224:
3001–3018.

47. Rolls ET, Deco G, Huang C-C, Feng J. 2022. The human or-
bitofrontal cortex, vmPFC, and anterior cingulate cortex effec-
tive connectome: emotion, memory, and action. Cereb Cortex.

48. Di X, Zhang H, Biswal BB. 2020. Anterior cingulate cortex differ-
ently modulates frontoparietal functional connectivity between
resting-state and working memory tasks. Hum Brain Mapp 41:
1797–1805.

49. Miyashita Y. 1993. Inferior temporal cortex: where visual per-
ception meets memory. Annu Rev Neurosci. 16:245–263.

50. Milner B. 2003. Visual recognition and recall after
right temporal-lobe excision in man. Epilepsy Behav. 4:
799–812.

51. Costers L, Van Schependom J, Laton J, Baijot J, Sjøgård M, Wens V,
De Tiège X, Goldman S, D’Haeseleer M, D’hooghe MB. 2020. Spa-
tiotemporal and spectral dynamics of multi-item working mem-
ory as revealed by the n-back task using MEG. Hum Brain Mapp.
41:2431–2446.

52. Klopp J, Halgren E, Marinkovic K, Nenov V. 1999. Face-selective
spectral changes in the human fusiform gyrus. Clin Neurophys-
iol. 110:676–682.

53. Murty NAR, Teng S, Beeler D, Mynick A, Oliva A, Kanwisher N.
2020. Visual experience is not necessary for the development of
face-selectivity in the lateral fusiform gyrus. Proc Natl Acad Sci.
117:23011–23020

54. Cichy RM, Pantazis D, Oliva A. 2014. Resolving human object
recognition in space and time. Nat Neurosci. 17:455–462

55. Furl N, Garrido L, Dolan RJ, Driver J, Duchaine B. 2011. Fusiform
gyrus face selectivity relates to individual differences in facial
recognition ability. J Cogn Neurosci. 23:1723–1740

56. Pernet C, Celsis P, Démonet J-F. 2005. Selective response to let-
ter categorization within the left fusiform gyrus. Neuroimage.
28:738–744.

57. Rosen ML, Sheridan MA, Sambrook KA, Peverill MR, Meltzoff AN,
McLaughlin KA. 2018. The role of visual association cortex in as-
sociative memory formation across development. J Cogn Neu-
rosci. 30:365–380

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/1/4/pgac216/6726651 by guest on 12 D

ecem
ber 2022



10 | PNAS Nexus, 2022, Vol. 1, No. 4

58. Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P,
Zuiani C, Bazzocchi M, Di Prampero PE. 1996. Primary motor and
sensory cortex activation during motor performance and motor
imagery: a functional magnetic resonance imaging study. J Neu-
rosci. 16:7688–7698

59. Kato H, Izumiyama M. 2015. Impaired motor control due to pro-
prioceptive sensory loss in a patient with cerebral infarction lo-
calized to the postcentral gyrus. J Rehabil Med. 47:187–190

60. Mainy N, Kahane P, Minotti L, Hoffmann D, Bertrand O, Lachaux
JP. 2007. Neural correlates of consolidation in working memory.
Hum Brain Mapp. 28:183–193.

61. Russ MO, Mack W, Grama C-R, Lanfermann H, Knopf M. 2003.En-
actment effect in memory: evidence concerning the function of
the supramarginal gyrus. Exp Brain Res. 149:497–504

62. Tomasi D, Chang L, Caparelli EC, Ernst T. 2007. Different acti-
vation patterns for working memory load and visual attention
load. Brain Res. 1132:158–165

63. Taulu S, Simola J. 2006. Spatiotemporal signal space separa-
tion method for rejecting nearby interference in MEG measure-
ments. Phys Med Biol. 51:1759–1768

64. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. 2007.
Statistical parametric mapping: the analysis of functional brain
images. London: Elsevier/Academic Press.

65. Oostenveld R, Fries P, Maris E, Schoffelen JMFT. 2011. Open
source software for advanced analysis of MEG, EEG, and
invasive electrophysiological data. Comput Intell Neurosci.
2011:1

66. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni
S, Behrens T, Beckmann C, Jenkinson M, Smith SM. 2009.
Bayesian analysis of neuroimaging data in FSL. Neuroimage. 45:
S173–S186

67. Huang MX, Mosher JC, Leahy RM. 1999. A sensor-
weighted overlapping-sphere head model and exhaus-
tive head model comparison for MEG. Phys Med Biol. 44:
423–440

68. Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen
O, Jerbi K, Litvak V, Maess B, Oostenveld R, Parkkonen L, Tay-
lor JR, van Wassenhove V, Wibral M, Schoffelen JM. 2013. Good
practice for conducting and reporting MEG research. Neuroim-
age. 65:349–363

69. Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson
MI, Francis ST, Morris PG. 2007. Beamformer reconstruction of
correlated sources using a modified source model. Neuroimage.
34:1454–1465

70. Hillebrand A, Barnes GR. 2005. Beamformer analysis of MEG
data. Int Rev Neurobiol. 68:149–171

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/1/4/pgac216/6726651 by guest on 12 D

ecem
ber 2022


