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Abstract

A topic of growing interest in computational neuroscience is the discovery of fundamental

principles underlying global dynamics and the self-organization of the brain. In particular,

the notion that the brain operates near criticality has gained considerable support, and

recent work has shown that the dynamics of different brain states may be modeled by pair-

wise maximum entropy Ising models at various distances from a phase transition, i.e.,

from criticality. Here we aim to characterize two brain states (psychedelics-induced and

placebo) as captured by functional magnetic resonance imaging (fMRI), with features

derived from the Ising spin model formalism (system temperature, critical point, suscepti-

bility) and from algorithmic complexity. We hypothesized, along the lines of the entropic

brain hypothesis, that psychedelics drive brain dynamics into a more disordered state at a

higher Ising temperature and increased complexity. We analyze resting state blood-oxy-

gen-level-dependent (BOLD) fMRI data collected in an earlier study from fifteen subjects

in a control condition (placebo) and during ingestion of lysergic acid diethylamide (LSD).

Working with the automated anatomical labeling (AAL) brain parcellation, we first create

“archetype” Ising models representative of the entire dataset (global) and of the data in

each condition. Remarkably, we find that such archetypes exhibit a strong correlation with

an average structural connectome template obtained from dMRI (r = 0.6). We compare the

archetypes from the two conditions and find that the Ising connectivity in the LSD condition

is lower than in the placebo one, especially in homotopic links (interhemispheric connectiv-

ity), reflecting a significant decrease of homotopic functional connectivity in the LSD
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condition. The global archetype is then personalized for each individual and condition by

adjusting the system temperature. The resulting temperatures are all near but above the

critical point of the model in the paramagnetic (disordered) phase. The individualized Ising

temperatures are higher in the LSD condition than in the placebo condition (p = 9 × 10−5).

Next, we estimate the Lempel-Ziv-Welch (LZW) complexity of the binarized BOLD data

and the synthetic data generated with the individualized model using the Metropolis

algorithm for each participant and condition. The LZW complexity computed from

experimental data reveals a weak statistical relationship with condition (p = 0.04 one-

tailed Wilcoxon test) and none with Ising temperature (r(13) = 0.13, p = 0.65), presumably

because of the limited length of the BOLD time series. Similarly, we explore complexity

using the block decomposition method (BDM), a more advanced method for estimating

algorithmic complexity. The BDM complexity of the experimental data displays a signifi-

cant correlation with Ising temperature (r(13) = 0.56, p = 0.03) and a weak but significant

correlation with condition (p = 0.04, one-tailed Wilcoxon test). This study suggests that the

effects of LSD increase the complexity of brain dynamics by loosening interhemispheric

connectivity—especially homotopic links. In agreement with earlier work using the Ising

formalism with BOLD data, we find the brain state in the placebo condition is already

above the critical point, with LSD resulting in a shift further away from criticality into a more

disordered state.

Author summary

In this study, we aim to characterize two brain states (psychedelics-induced and pla-

cebo), as captured in functional magnetic resonance imaging (fMRI) data, with features

derived from the Ising model formalism (system temperature, critical point, susceptibil-

ity) and from algorithmic complexity. Under the hypothesis that psychedelics drive the

brain into a more disordered state, we study criticality features of brain dynamics under

LSD in a within-subject study using the Ising model formalism and algorithmic com-

plexity using Lempel-Ziv and the Block Decomposition methods. Personalized Ising

models are created by first using BOLD fMRI data from all the subjects and conditions

to create a single Ising “archetype” model—which we can interpret as the average model

of the data at unit temperature—and then by adjusting the model temperature for each

subject and condition. We find that the effects of LSD translate into increased BOLD sig-

nal complexity and Ising temperature, in agreement with earlier findings and predic-

tions from existing theories of the effects of psychedelics, such as the relaxed beliefs

under psychedelics (REBUS), the anarchic brain hypothesis, and the algorithmic infor-

mation theory of consciousness (KT). However, in contrast with some of the previously

cited theories, we find that the system in the placebo condition is already in the para-

magnetic phase—above the critical point—with ingestion of LSD resulting in a shift

away from Ising criticality into a more disordered state. Finally, we highlight the fact

that the structural connectome can be recovered to a good degree by fitting an Ising

model and that the reduction of homotopic links (direct or indirect) appears to play an

important role in the slide to disorder under psychedelics.
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Introduction

The complex features displayed by the emergent neural dynamics of the human brain are in

many ways reminiscent of behaviors of paradigmatic systems in statistical physics [1–9]. For

example, just as condensed materials can transit between ordered (e.g., solid) or disordered

(e.g., gas) phases, neural networks can undergo phase transitions between highly regular and

highly unsynchronized activity. Of particular interest are the dynamics of systems poised close

to phase transitions, where so-called critical points display a balance of order and disorder that

has been conjectured to be crucial for living organisms [10]. At critical points, non-trivial col-

lective patterns spanning all scales are observed, giving rise to a rich repertoire of short- and

long-range correlations. The fluctuations in critical systems are highly structured, obeying fun-

damental physical principles rooted in the system’s symmetries—which are shared by many

systems despite their underlying constituency, establishing ‘universality classes’ of large-scale

coordinated activity [11].

Theoretical work indicates that computation and information dynamics in complex sys-

tems display special features at critical points [12–16]). Building on these insights, criticality

has been suggested as a useful principle to account for the brain’s inherent complexity that is

required to guide behavior in rich environments by processing various sources of information

[2, 17–23]. Furthermore, it has been found that systems in nature often tune themselves into a

critical state—a principle known as ‘self-organized criticality’ [24–26]. It has been proposed

that neural systems may self-organize, evolutionary and developmentally, through homeostatic

plasticity rules that result in the system arriving near critical states [27–29].

Building on this pioneering work, this paper aims to leverage tools from the statistical phys-

ics literature to study brain dynamics that support different states of consciousness. Here we

focus on the altered state of consciousness induced by LSD, a psychedelic substance that is

recently harnessing attention for its therapeutic potential for addressing mental disorders such

as anxiety, depression, or substance addiction [30–34]. While our understanding of how LSD

works at the neuronal and pharmacological levels is relatively well-developed [29, 35, 36], its

effects at the whole-brain level are less understood. Yet, this is paramount to explain better and

predict the outcomes of psychedelic interventions—such as psychedelic-assisted therapy [30,

37, 38]. It has been argued that the observed expansion of the repertoire of functional patterns

elicited by hallucinogenic substances can be understood as being driven by an enhancement of

brain entropy [29]. In turn, this may take place while the brain is moving closer to criticality,

with this being related to the relaxation of high-level cognitive priors [39, 40], which in turn

may lead to a favorable context for conducting psychotherapy [39, 41]. Studies on functional

neuroimaging regarding LSD effects have shown initial evidence of the mechanistic alterations

on brain dynamics at the network level, with the majority of the findings suggesting a relative

weakening of usual functional configurations giving place to an increase of brain entropy,

global functional integration, and more flexible brain dynamics [29, 30, 42–47].

Given the theoretical and empirical evidence suggesting that LSD induces a shift towards a

broader repertoire of neural patterns enabled by more flexible dynamics, the present study

aims to characterize the underlying neural mechanisms responsible for these effects via mathe-

matical and computational modeling tools from statistical physics and the study of phase tran-

sitions. Specifically, we leverage maximum entropy models—the most parsimonious models

one can build following statistical physics principles [48, 49]—to describe the coordinated

activity of various brain areas as captured by BOLD signals. By building individualized compu-

tational models for LSD and placebo conditions, we aim to analyze differences in terms of the

model’s temperature, a parameter that describes the system’s randomness. In particular, a low

temperature amplifies distinctions between energy levels and hence a higher dissimilarity
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between the likelihood of occupancy of different states; conversely, a high system temperature

‘flattens’ the energy landscape and allows access to more states. Moreover, the system’s temper-

ature situates the state in relation to the critical boundaries defining phase transitions. Finally,

given the intuitive relationship between signal diversity, algorithmic complexity, and critical-

ity, we explore complexity metrics characterizing the two conditions in the data with the

hypothesis that complexity correlates with system temperature and hence experimental condi-

tion [40, 50, 51].

Materials and methods

Ethics statement

The study was approved by the National Research Ethics Service committee London-West Lon-

don and was conducted in accordance with the revised declaration of Helsinki (2000), the Inter-

national Committee on Harmonization Good Clinical Practice guidelines, and National Health

Service Research Governance Framework. Imperial College London sponsored the research,

which was conducted under a Home Office license for research with Schedule 1 drugs. Written

informed consent was given, and data was de-personalized (anonymized) prior to analysis.

Experimental protocol and BOLD fMRI data

Our dataset consists of BOLD time series obtained under LSD effects and in a placebo condi-

tion from fifteen participants (N = 15). Details of the data acquisition process can be found in

detail in [30, 52], and we only provide a summary here. A group of 15 participants (4 women;

mean age, 30.5±8.0) were recruited by personal spoken communication and provided with

written consent to participate in the experiment after a briefing and screening study for physi-

cal and mental health. This included an electrocardiogram (ECG), urine and blood tests, plus a

psychiatric test and drug history. Participants under 21 years, with psychiatric diseases, family

history of psychotic disorders, experience with psychedelics, pregnancy, problems with alcohol

(>40 units per week), or any other medically significant condition that could affect the study

were excluded. Participants attended twice the laboratory (once per condition), with a separa-

tion of 2 weeks. The order of these was alternated across participants without giving the infor-

mation about the experimental condition used in each session. With the help of a medical

doctor, a cannula was inserted into a vein in the antecubital fossa after the tests. The dose con-

sisted of 75 mg of LSD via a 10 ml solution proportioned over two minutes with an infusion of

saline afterward. Similarly, a placebo (10 ml saline) was injected intravenously over two min-

utes. After this, participants were suggested to lie relaxed with closed eyes inside the MRI scan-

ner. Participants provided subjective reports of the drug effects after a 5 to 15 minute period

from the administration of the drug. The peak effects were reported to occur 60–90 minutes

after the dose. Subsequently, effects were generally constant for four hours. The scanning was

done approximately 70 minutes after the dose and lasted a full hour. BOLD scanning was com-

posed of three resting state scans of seven minutes. The middle one incorporated listening to

two excerpts of music from two songs by ambient artist Robert Rich. For our analysis here,

we exclude the scan with music. Thus, the dataset includes four scans, each of 7 minutes (two

under LSD, two in the placebo condition) for each of the fifteen subjects (for a total of sixty).

The data from the two scans in each condition are combined in the following analysis.

Parcellated data series

The fMRI BOLD data was preprocessed using FSL tools (FMRIB’s Software Library, www.

fmrib.ox.ac.uk/fsl) with standard parameters and not discarding any Independent Component
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Analysis (ICA) components. This included corrections for head motion during the scans,

which was within the normal, acceptable range for fMRI sessions. Also, FSL was used to gener-

ate parcellated (region-averaged) BOLD signals for each participant and condition, i.e., the

signal was averaged over all voxels within each region defined in the automated anatomical

labeling (AAL) atlas. Only the 90 AAL atlas cortical and subcortical non-cerebellar brain

regions of interest (ROIs or parcels) were considered [53] (see Table A in S1 Text). For each

subject and condition (LSD or placebo), we obtained a BOLD time series matrix of dimensions

90 x 217 (AAL regions x time points, where the sampling cadence was 2 s) from each session.

The preprocessing pipeline of the BOLD data and the generation of the BOLD time series is

described in more detail in [52]. Fig J in S1 Text provides plots of the FC for each condition,

and Fig L group provides the FC per subject.

Data binarization

To build an Ising model from the data or carry out complexity analysis, we transformed each

parcel’s BOLD fMRI data series into a binary format. This was done by using a threshold:

each value of the region-averaged BOLD time series was assigned a value of + 1 if its value was

greater than the threshold and −1 otherwise. The threshold was set to the median of the time

series in the parcel of interest. Hence the median of the thresholded time series of each voxel

was zero, and the entropy of each time series was maximal. The binarization was carried out

independently for each condition, session, subject, and parcel. The binarized data from the

two scans in each session were concatenated.

Data analysis of the fMRI series

Lempel-Ziv complexity. Lempel-Ziv (LZ) refers to a class of adaptive dictionary compres-

sion algorithms that parse a string into words and use increasingly long reappearing words to

construct a dictionary. Compression is achieved by pointing to the identifiers of words in the

dictionary [54–56]. LZ algorithms are universally optimal—their asymptotic compression

rate approaches the entropy rate of the source for any stationary ergodic source [56], i.e.,

‘! nH. where ℓ is the length of the compressed string, n is the length of the string and H is

the entropy rate.

LZ has been used across many studies to characterize brain state—from neurodegeneration

[57–60] to anesthesia [61], disorders of consciousness [62, 63] to fetal consciousness [64]. The

entropic brain hypothesis [43] proposes that within a critical zone, the entropy of spontaneous

brain activity is associated with various dimensions of subjective experience and that psyche-

delics acutely increase both [39]. More recently, it has been proposed that algorithmic versions

of entropy, which can be estimated by LZ and other methods such as BDM (discussed below),

provide a more direct link with the subjective structure of experience [40, 50].

After applying the algorithm to a string of length n, we obtain a set of words in a dictio-

nary of length c(n) that can be thought of as a first complexity metric [65]. The description

length of the sequence encoded by LZ can be approximated by the number of words seen

times the number of bits needed to identify a word, and, in general, ‘ � cðnÞlog
2
cðnÞ≲ n.

We note that LZ provides an upper bound on algorithmic complexity, but, given its reduced

programming repertoire (LZ is the Kolmogorov complexity computed with a limited set of

programs that only allow copy and insertion in strings [66]), it fails, in general, to effectively

compress random-looking data generated by simple, but highly recursive programs, e.g., an

image of the Mandelbrot set (deep programs [40, 67]). As a simple example of these limita-

tions, consider a string concatenated with its bit-flipped, “time-reversed”, or dilated version.

Such simple algorithmic manipulations will not be detected and exploited by LZ. Despite
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these limitations, LZ can be useful for studying the complexity of data in an entropic sense.

To use LZW, we first transform numeric data into a list of symbols. Here we binarize the

data to reduce the length of strings needed for the algorithm to stabilize. A reasonable

strategy in the study of algorithmic information content in data is to preserve as much infor-

mation as possible in the resulting transformed string. In this sense, using methods that max-

imize the entropy of the resulting series is recommended. Here, as discussed above, we use

the median of the data as the threshold.

Two associated metrics derived from LZ compression are commonly used: c(n) and ℓ. Of

the two, the latter is more closely related to Kolmogorov complexity or description length. A

natural way to normalize this metric is to divide the description length by the original string

length n, r0 ¼ ‘=n! H; with units of bits per character. Here, we analyze synthetic lattice

data generated by the Ising model by computing ρ0 for each lattice realization. We also analyze

ρ0 by concatenating them for a global measure (with real data). The former allows for a plot

of the mean and standard deviation of the measure with synthetic data generated using the

Metropolis algorithm as a function of temperature.

To calculate a global measure of LZ complexity using the experimental data, we first

concatenated the data from all subjects, conditions, and sessions, then, flattened it along the

spatial dimension first and then time. Secondly, we compressed the flat binarized data with

the LZ algorithm and saved the output “archetype dictionary”, which was used as the initial

dictionary to compress the data from all the subjects in the two conditions, LSD and placebo

(comparison by condition), and also per subject (comparison by condition and subject). The

archetype dictionary was built by concatenating first the LSD data for all subjects and sessions

and then the placebo data because we were forced to make a choice when flattening the array.

However, we checked whether concatenating the placebo data before the LSD changed the

results, and the difference was negligible. For details and code used to compute LZ complexity

—we use the Lempel-Ziv-Welch (LZW) variant—see [55, 68].

Block decomposition method. The Block Decomposition Method (BDM) [69] combines

the action of two universally used complexity measures at different scales by dividing data

into smaller pieces for which the halting problem involved can be partially circumvented in

exchange for a huge calculation based upon the concept of algorithmic probability and extend-

ing the power of the so-called Coding Theorem Method (CTM). The calculation, however, has

been precomputed and hence can be reused in future applications by exchanging time for

memory in the population of a precomputed look-up table for small pieces. BDM is used to

account for both statistical regularities and algorithmic ones and is sensitive enough to capture

small changes in complexity while invariant to different descriptions of the same object.

It, therefore, complements the use of lossless compression algorithms to calculate an upper

bound of algorithmic complexity. We carry out the same analysis as for ρ0 described above,

i.e., both on synthetic and experimental data.

Ising spin model

Abstract frameworks from statistical physics can shed light on understanding emerging phe-

nomena in large networks, such as phase transitions in systems where nodes—neurons or cor-

tical columns here—interchange information under the assumptions of the maximum entropy

principle [48, 49, 70]. The description of systems with many degrees of freedom can be sum-

marized by coarse-graining variables (describing macrostates), which introduces statistics into

modeling. At the so-called critical points, observable quantities such as diverging correlation

length or susceptibility to external perturbations reveal singularities in the limit as the number
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of degrees of freedom goes to infinity. At these transitions, from order to disorder, there is a

loss of sense of scale, with fractal properties in energy and information flow.

In this context, elements such as neurons, columns, or brain regions are modeled by spins

(i.e., with two states, up or down, on or off) with pair interactions. The emerging statistical

properties of large networks of these elements are studied under different conditions (temper-

ature or an external magnetic or electric field). The prototypical simplest system in this context

is the classical 2D Ising model, which features nearest-neighbor interactions and a phase tran-

sition. This model has been shown to be universal, i.e., that all the physics of every classical

spin model (with more general types of interactions) can be reproduced in the low-energy sec-

tor of certain “universal” models such as the 2D Ising model [71]. This fact reflects the intrinsic

computational power of near-neighbor interactions. In fact, Ising models have been shown to

be universally complete [72, 73], with a map between any given logic circuit to the ground

states of some 2D Ising model Hamiltonian. On the other hand, the fact the brain exhibits

characteristics of criticality that may be modeled by systems such as the Ising model is now

well established, with ideas that go back to pioneers such as Turing [74], Bak [1, 75], and Hop-

field [76]. There is further evidence that the dynamics of the healthy brain occupy a sub-critical

zone ([77], and see also [29] and references therein).

The Ising spin model used here arises naturally from model fitting of the binarized data

(discussed in the next section) and is slightly more general than the original one. It is essen-

tially the Sherringon-Kirkpatrick spinglass model [78] with an external field and allows for

arbitrary pair, arbitrary sign interactions. It is defined by the energy or Hamiltonian of the lat-

tice of N spins,

H½s� ¼ �
X

i<j�N

Jijsisj �
X

i

hi si ð1Þ

where σi denotes the orientation of each spin in the lattice (±1), Jij is the coupling matrix or

Ising connectivity (with pairs counted once), and hi is an external magnetic field applied inde-

pendently at each site. In the context of analysis of parcellated BOLD data, σi in this formalism

represents the binarized state of each brain parcel and is equal to + 1 (−1) when the parcel is

active (inactive), hi is a parameter that modulates the mean activity in a single parcel, and

Jij 2 R is a parameter that accounts for the interactions between parcels i and j (correlations),

and which can be positive or negative.

Maximum entropy principle derivation of Ising model. The (spinglass) Ising model,

which was originally proposed to describe the physics of ferromagnetic materials, can be seen

to arise naturally from the Maximum Entropy Principle (MEP) [48]. The MEP is used to find

an appropriate probability distribution given some constraints, e.g., derived from data. It states

that the probability of finding a given spin configuration σ can be inferred from a simplicity

criterion: given some data-derived constraints—which here will be that the mean spin and

spin correlation values of the model should match that of the data—the probability function

we should use is the one that fits the constraints but has otherwise maximal Shannon entropy.

It turns out that the probability distribution function of observing a given spin configuration σ
(bold symbols indicate an array) in thermal equilibrium (at unit temperature without loss of

generality) is given by the Boltzmann distribution [5]

Pðσjh; JÞ ¼
e� Hðσjh;JÞ

P
fσ0ge� Hðσ0 jh;JÞ ð2Þ

with H given in Eq 1, and where ∑{σ0} indicates a sum over all the 2N possible spin configurations.
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Estimation of archetype parameters using maximum pseudo-likelihood. To create the

global model archetype, we concatenate the binarized data from the fifteen participants and

the two conditions (a total of four sessions) to generate a single dataset. We similarly produce

condition (LSD and placebo) archetypes by concatenating the data in each condition.

We estimate the model parameters J and h using an approximation to maximum likelihood

as described in Ezaki et al. [5]. Briefly, we find the parameters that maximize the probability of

observing the data given the model,

ðh; JÞ ¼ arg max
h;J

Lðh; JÞ ¼ arg max
h;J

logLðh; JÞ ð3Þ

with

Lðh; JÞ ¼
Ytmax

t¼1

PðσðtÞjh; JÞ ð4Þ

The likelihood maximum can be found by gradient ascent, with

hnew
i ¼ hold

i þ Z ðhsiiempirical � hsiimodelÞ ð5Þ

jnewij ¼ joldij þ Z ðhsisjiempirical � hsisjimodelÞ ð6Þ

where the old/new superscripts refer to the values before and after updating, and with η a

small positive constant.

When the number of nodes in the system is large, the calculation of the likelihood from the

model because computationally intractable. For this reason, it is approximated by the pseudo-

likelihood, a mean-field approximation that approaches the true likelihood as the number of

time points goes to infinity [5, 79],

Lðh; JÞ ¼
Ytmax

t¼1

PðσðtÞjh; JÞ �
Ytmax

t¼1

YN

i¼1

~PðsiðtÞjh; J;σ=iðtÞÞ ð7Þ

with ~Pðsijh; J;σ=iÞ the modeled probability distribution for a given spin given the states of all

the others, a quantity much easier to compute,

~Pðsijh; J;σ=iÞ ¼
e� Hiðσjh;JÞ

P
s0i
e� Hiðs

0
i jh;J;σ=iÞ

ð8Þ

with

Hiðσjh; JÞ ¼ � hi si �
X

j6¼i�N

Jijsisj ð9Þ

Using this approximation, the gradient ascent rule becomes

hnew
i ¼ hold

i þ Z ðhsiiempirical � hsii~PÞ ð10Þ

jnewij ¼ joldij þ Z ðhsisjiempirical � hsisji~PÞ ð11Þ

where hsii~P and hsisji~P are the 1-point and 2-point correlation functions with respect to
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distribution ~P [5],

hsii~P ¼
1

tmax

Xtmax

t¼1

tanh hi þ
XN

j0¼1

j0 6¼i

Jij0sj0 ðtÞ

2

6
6
4

3

7
7
5

hsisji~P ¼
1

tmax

Xtmax

t¼1

sjðtÞtanh hi þ
XN

j0¼1

j0 6¼i

Jij0sj0 ðtÞ

2

6
6
4

3

7
7
5 ð12Þ

Personalization of model—Individualized temperature. With h and J fixed in the arche-

type using the entire dataset, we adapt the archetype model for each subject and condition by

changing the model temperature T = 1/β, that is, by writing

Pðσjh; J; bÞ ¼
e� bHðσjh;JÞ

P
fσ0ge� bHðσ

0 jh;JÞ ð13Þ

In this case, the gradient ascent algorithm becomes

b
new

¼ b
old
� Z ðhHiempirical � hHi~PÞ ð14Þ

with a fixed point at hHiempirical ¼ hHi~P . This, as in the prior equations, can be seen by taking

the derivative of the approximate log-likelihood

logLðh; JÞ ¼
Xtmax

t¼1

logPðσðtÞjh; JÞ ¼
Xtmax

t¼1

ð� bHðσðtÞjhJÞ � logZðh; J;σ=iðtÞ; bÞÞ

with respect to the inverse temperature β, with the partition function, Z, given by

Zðh; J; b; tÞ ¼
X

s0i

e� bHiðs
0
ijh;J;σ=iðtÞÞ

The first term becomes the empirical average of the Hamiltonian, and the second the (data

dependent) model mean (both up to a constant since we are not dividing by the number of

measurements). It can be computed from Eq 12 and from

hHi~P ¼ � hi hsii~P �
X

j6¼i�N

Jijhsisji~P ð15Þ

Metropolis algorithm and Ising model observables. The Metropolis algorithm is used to

compute the observables of the Ising model built from the experimental data. A loop is performed

where a random spin is chosen and flipped with a probability p ¼ minð1; exp½� DH=T�Þ, where

DH is the change in energy the flipped spin would cause in comparison to the previous configu-

ration and T is the system temperature. This process provides the means to sample the system

probability distribution at a given temperature. The method is applied for a sufficient number of

iterations to reach a steady state, and the macroscopic variables are obtained as a mean across

iterations over a large number of configurations in steady state. To evaluate DH, we rewrite the
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energy of the system (Hamiltonian) as

H½s� ¼ �
1

2

X

i;j

Jijsisj �
X

i

hi si ð16Þ

¼ �
1

2

X

i6¼k

X

j6¼k

Jijsisj �
X

i

Jiksisk � hksk �
X

i6¼k

hi si ð17Þ

where in the second line, we separate out the contribution to the energy from spin σk (which

receives two terms from J, which is symmetric). The energy associated with the k-th spin is

Ei ¼ � skð
X

i

Jiksi þ hkÞ ð18Þ

After a flip of this spin, its energy contribution becomes

Ef ¼ skð
X

i

Jiksi þ hkÞ ð19Þ

and

DE ¼ ðEf � EiÞ ¼ 2skð
X

i

Jiksi þ hkÞ ð20Þ

The main global observable is the average lattice magnetization, M, over the spin lattice, S,

of N spin configurations, σi,

M ¼
XN

i¼1

si ð21Þ

Then, the magnetic susceptibility, χ, and heat capacity, Cv, can be computed as follows. Let us

apply a uniform external field h,

H½s; h� ¼ �
X

i<j

jijsisj �
X

j

ðhj þ hÞsj ð22Þ

and let

Zðb; hÞ ¼
X

s

e� bH½s;h� ð23Þ

be the partition function. The average magnetization, hMi, is the ensemble average of lattice

magnetization,

hMi ¼
1

Z

X

s

Me� bH½s;h� ð24Þ

Then it can be verified that (see, e.g., [80])

hMi ¼
1

bZ
@Z
@h

ð25Þ

Following similar considerations (with T = 1/β), the global susceptibility, χ, and the system

heat capacity, Cv, are given by

w ¼
@hMi
@B

�
�
�
�
T

¼ s2
M=T; and Cv ¼

@hHi
@T

�
�
�
�
B

¼ s2
H=T

2 ð26Þ
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where the standard deviation computation is taken over the ensemble. We can extend the defi-

nition of global susceptibility (obtained from average quantities of the system) to local suscep-

tibility, χn, (specific to each spin or brain parcel). Let

w
n
¼

@hMi
@hn

�
�
�
�
T

¼
@

@hn

1

Z

X

s

M e� bH½s�

¼
b

Z

X

s

Msn e
� bH½s� �

b

Z2

X

s

M e� bH½s�
X

s0

sn e
� bH½s0 �

so

w
n
¼ bðhMsni � hMihsniÞ ð27Þ

The global and local node susceptibility quantify, respectively, the sensitivity of the lattice

state (magnetization) to an external uniform or local perturbation (represented by a magnetic

field). They are interesting quantities in the context of brain dynamics from various perspec-

tives, including the effects of external perturbations such as sensory inputs or brain stimula-

tion. Similarly, the link susceptibility

lij ¼
@hMi
@jij

�
�
�
�
T

¼ bðhMsisji � hMihsisjiÞ ð28Þ

provides information about the sensitivity to additive changes to a particular link in the sys-

tem. To understand the impact of changes of scale of a particular link (Jij! Jij + αJij), we define

the corresponding scaled quantity Lij = lijJij.
To smooth the results and deal with slow lattice fluctuations at cold temperatures in finite-

size systems (the system is bistable for the finite case), we work with modified variables to com-

pute the magnetization and susceptibility statistics using Metropolis-generated data. Selection

of one of the metastable branches is achieved by flipping, as needed at each sample point, the

entire lattice so that the magnetization is positive, σn! σn sign(M). E.g., M! |M| = M sign

(M) for the evaluation of magnetization and global susceptibility. Even n-point correlation

functions such as hMσni are invariant. The results away from the critical temperature differ by

a constant from the ideal one (the effect is one of smoothing near the critical point) [81].

Statistical analysis

For the analysis of the Ising models, we performed a paired Wilcoxon test of the temperature

estimates. To further test whether the observed increase in temperature under LSD relative to

placebo was specific to the architecture parameters h and J, we conducted a non-parametric

permutation test on the mean temperature difference [82]. In each of one thousand permuta-

tions, we randomly shuffled the parcellation labels and hence the h and J components of the

archetype parameters (see Eq 3). These permuted archetypes (hp, Jp) were then used to fit the

system temperature of each participant and condition (see Eq 13). The null hypothesis is that

the measured BOLD activity patterns are drawn from the same probability distribution,

regardless of the drug manipulation in which it was recorded. Once the personalized βp esti-

mates were obtained, we performed the temperature contrast between LSD and placebo. This

was carried out by computing a one-sample t-test for every permutation. The level of statistical

significance was estimated by the fraction of t-values derived for every random shuffle that was

higher than the observed t-values obtained from our original temperature contrast obtained
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from the non-permuted h and J. Similarly, we performed a paired one-tailed Wilcoxon test

with the LZW and BDM complexity estimates.

To compare archetypes, we used paired t-tests (Wilcoxon signed-rank tests provided very

similar results). We used Pearson correlation to study correlations of connectivity matrices,

metrics, and receptor maps.

dMRI tractography

We will find it useful to compare Ising connectivity with structural connectivity obtained from

dMRI tractography in a separate cohort as described in Cabral et al., 2014 [83]. Briefly, the

data was obtained from 21 healthy, normal participants (11 males and 10 females, age: 22–45

years) different from the healthy subjects in the LSD cohort. All scans were performed on the

same Philips Achieve 1.5 Tesla Magnet. Diffusion MRI was acquired by using a single-shot

echo-planar imaging-based sequence with coverage of the whole brain with 33 optimal nonlin-

ear diffusion gradient directions (b = 1200 s/mm2) and 1 non-diffusion weighted volume

(b = 0), repetition time (TR) = 9390 ms; echo time (TE) = 65 ms. T1-weighted structural

images with a three-dimensional ‘FLASH’ sequence (TR = 12 ms, TE = 5.6 ms, flip angle = 19˚,

with elliptical sampling of k-space, giving a voxel size of 111 mm in 5.05 min) were also

acquired. The AAL template was used to parcellate the brain into 90 regions (45 for each hemi-

sphere), which define the network nodes. For each participant, parcellation was conducted in

the diffusion-MRI native space. The b0 image in diffusion-MRI space was linearly co-regis-

tered to the T1-weighted structural image using the Flirt tool (FMRIB, Oxford). The trans-

formed T1-weighted image was then mapped to the T1 template of ICBM152 in MNI space,

inversed and further applied to warp the AAL mask from MNI space to the diffusion-MRI

native space. Interpolation using the nearest-neighbor method ensured the preservation of

labeling values. The links between nodes were weighted in proportion to the number of white

matter tracts detected between brain areas. The processing of the diffusion-MRI data was

performed using the Fdt toolbox in FSL (www.fmrib.ox.ac.uk/fsl, FMRIB). Preprocessing

involved the co-registration of the diffusion-weighted images to a reference volume using

an affine transformation to correct head motion and eddy current-induced image distortion.

Subsequently, the local probability distribution of fiber direction at each voxel was estimated.

The probtrackx algorithm was used, allowing for automatic estimation of two fiber directions

within each voxel, which can significantly improve the tracking sensitivity of non-dominant

fiber populations in the human brain. For each voxel in the brain, probabilistic tractography

was used to sample 5000 streamline fibers passing through that voxel. The connectivity proba-

bility from voxel i to another voxel j was defined by the proportion of fibers passing through

voxel i that reach voxel j. This was then extended from the voxel level to the region (parcel)

level. The connectivity Cnp from region n to region p is calculated as the number of fibers

passing through any voxel in parcel n that connect to any voxel in parcel p, divided by 5000N,

where N is the number of voxels in parcel n. For each brain region, the connectivity to each

of the other 89 regions was calculated. Since the connectivity from n to p is not necessarily

equal to that from p to n but highly correlated for all subjects, the undirected connectivity Cnp

between regions n and p was defined by averaging the two.

Results

Ising connectome vs. dMRI connectome

The first step in our analysis is to identify the parameters h and J that could best fit the fMRI

data from all subjects in both conditions—which leads to what we call the ‘archetype model.’

Additionally, in order to check for network changes due to the effect of LSD, we also estimated
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the parameters h and J that could best reproduce the data from the LSD and placebo condi-

tions separately. Gradient descent resulted in very good fits of the functional connectivity data

in each condition (r� 1, see Fig J in S1 Text).

Fig 1 (top) provides the resulting connectivity matrix (i.e., the values of Jij) estimated from

all the data and also the changes in connectivity between the LSD and placebo conditions. We

can observe that structural intrahemispheric connectivity in the Ising model is mostly positive.

In contrast, interhemispheric connectivity is mostly negative and weaker except for homotopic

links (strong and positive).

Fig 1 (bottom) provides an unsigned version of the global archetype connectivity matrix J
and, for reference, the structural connectome (obtained with dMRI tractography from a sepa-

rate cohort as described in Cabral et al., 2014 [83]—see Methods). We can see that the two are

Fig 1. Archetype connectivity. A) Global archetype (combining all data) Ising connectivity. The down-trending diagonal values reflect strong inter-

hemispheric homotopic connectivity. B) Difference in connectivity magnitude between the placebo and LSD archetypes, with a visible loss in

homotopic connectivity (see also figures in section 5, S1 Text). C) Unsigned global archetype Ising connectivity. D) AAL connectome.

https://doi.org/10.1371/journal.pcbi.1010811.g001
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very similar (r = 0.60). The correlation between the two intrahemispheric submatrices is higher

(r = 0.70), while for the interhemispheric ones is strong (r = 0.54) but mostly accounted for by

the homotopic diagonal (removing it reduces r to 0.14).

Differences between LSD and PCB archetype connectivities

To analyze the archetypes, we introduce further metrics. We define the unsigned Global Con-

nectivity (GC) as the array resulting from summing the rows of the magnitude (absolute value)

of the connectivity adjacency matrix,

GCi ¼
X

j

jJijj ð29Þ

We also introduce the interhemispheric and intrahemispheric submatrices, Jinter and Jintra,

where only the respective links are included (others set to zero), and their respective global

connectivities GCinter and GCintra. Finally, we also use the notion of homotopic connectivity

(HC). In our parcellation, we label homologous areas symmetrically (see labeling of parcels in

section 1, S1 Text), and

HCi ¼ jJi;90� ij ð30Þ

The change in link strength between |JLSD| and |Jplacebo| was significant (statistic=-4.4,

p = 1.09 × 10−5, treating the array elements in the two archetypes as samples). No significant

changes were found in the signed version of global connectivity between the two archetypes,

but they were strong in the unsigned version of this quantity (GC) (t-test statistic=-7.6,

p = 3.1 × 10−11, Wilcoxon p = 2.3 × 10−9). The changes in h exhibited a trend to weaker exter-

nal uniform drive (t-test statistic=−1.54, p = 0.13) on the system. The main effect, which can

be observed in Fig 1, was a robust decrease in homotopic connectivity across parcels (connec-

tivity between homologous areas in the two hemispheres, HC) in the LSD condition (t-test

statistic=−7.8, p = 7.6 × 10−10, Wilcoxon p = 1.1 × 10−7). These changes at the level of the two

archetypes reflect differences in the total homotopic FC for each subject across the two condi-

tions (paired Wilcoxon statistic=-4.38, p = 6 × 10−4). In more detail, interhemispheric (t-test

statistic=−6.9, p = 6.1 × 10−10, Wilcoxon p = 8.2 × 10−9) but not so much intrahemispheric GC

(t-test statistic=−2.9, p = 0.005, Wilcoxon p = 0.003) was significantly reduced in the LSD con-

dition. The decrease in homotopic connectivity scaled with the homotopic connectivity esti-

mated in the placebo condition (r = −0.4, p = 1.1 × 10−5).

Archetype connectomes and 5-HT2A distribution

As the LSD effects should be related to the density of the 5-HT2A receptors [39, 84], we ana-

lyzed the correlation between the receptor density distribution, Ising connectivity, and the

changes in the archetype parameters obtained separately from the LSD and placebo data.

The 5-HT2A receptor map in AAL parcellation was obtained as in Deco et al. (2018) [84].

We found a weak negative correlation between homotopic connectivity and receptor density

(r = -0.27, p = 0.01) and a positive correlation between GCintra and receptor density (r=0.37,

p = 3 × 10−4), both especially evident in the LSD condition. For the overall GC and receptor

density, the correlation was weaker (r=0.24, p = 0.02 with data from both conditions). No cor-

relation was observed between receptor density and GCinter. Finally, we did not observe corre-

lations between receptor density and changes in GC or homotopic connectivity.
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Archetype phase diagrams

To find the critical temperature of the archetype model, we explored its phase space by calcu-

lating key quantities belonging to the Ising formalism and related measures of signal and

algorithmic complexity. Figs 2 and 3 provide, respectively, the local susceptibility and local

magnetization at each node in the lattice, and the global magnetization, susceptibility, energy,

heat capacity, LZW, and BDM complexity estimates and their standard deviation, as a function

of temperature. As can be observed, the critical point (i.e., the peak of the standard susceptibil-

ity) is well below T = 1, the nominal temperature of the archetype model (which corresponds

to the global fit) and of the individualized models. This indicates that archetype and individu-

alized models are all in the paramagnetic, supercritical phase. Susceptibility, heat capacity, and

complexity peak at approximately the same temperature (T� 0.7–0.8). Finally, Fig 2 displays

the peak susceptibility of nodes in the parcellation and the temperatures at which they occur.

Individual temperature shift with LSD

The next step in our analysis was to analyze the personalized temperatures of each subject dur-

ing the LSD and placebo conditions. These temperatures can be compared to the system’s criti-

cal temperature to locate where the temperatures of the two conditions and different subjects

sit in the archetype phase space. Fig 4 displays, on the top, personalized temperatures of the fif-

teen subjects in the LSD and placebo conditions and the temperature difference between con-

ditions for each subject.

Temperatures in the LSD state were found to be substantially higher than in placebo condi-

tion (6.7% ± 5.1%; mean ± standard deviation), with this increase being statistically significant

(two-tailed t-test p = 6.1 × 10−5; Cohen’s d = 1.35, one-tailed Wilcoxon test p = 9 × 10−5). The

non-parametric permutation test shuffling ROI labels in the model to test sensitivity to arche-

type parameters confirmed these were significant results (p = 1 × 10−3).

LZW and BDM complexity from empirical and model data

We also extracted features related to the algorithmic complexity both from the empirical fMRI

data and the synthetic data generated with the model with the Metropolis algorithm. We

would expect these features to show a similar trend to the one obtained with the Ising

Fig 2. Local magnetization and susceptibility as a function of temperature from Metropolis simulations with the global archetype model. A) Local magnetization

and B) local susceptibility (i.e., specific to each spin or brain parcel).

https://doi.org/10.1371/journal.pcbi.1010811.g002
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temperatures. Figs 4 and 5 display the individual LZW and BDM complexity of 15 subjects

under the effect of LSD and placebo (left) and the difference in LZW and BDM complexity

between the LSD and placebo conditions for each subject (right), calculated respectively using

experimental and simulated data generated by the personalized Ising models.

The LZW complexity in the LSD state from the data was found to be higher than in the pla-

cebo condition for 2/3 of the subjects (Fig 4, middle). The mean and median relative LZW

complexity shift with LSD were respectively 0.008 and 0.005, with a standard deviation of

0.013. The paired one-tailed Wilcoxon test with the LZW complexity estimates resulted in

p = 0.04 for the Wilcoxon test (p = 0.04 for the t-test). The probability of finding this or a larger

increase of ρ0 with LSD ingestion was estimated at p< 0.04 (one-tailed Wilcoxon test).

As shown in Fig 4 (bottom), the BDM complexity in the LSD state inferred directly from

the data was higher for more than 70% of subjects. The mean and median BDM complexity

shift with LSD were respectively 338 and 298, with a standard deviation of 804. Also, the BDM

complexity from empirical data correlated with the condition (p = 0.04, one-tailed Wilcoxon

test).

Fig 3. Phase diagram for global archetype model as a function of temperature. A) Global susceptibility and magnetization, B) energy and heat capacity. C) LZW

complexity (ρ0) and its standard deviation, and D) BDM complexity and its standard deviation. The Metropolis algorithm has been run for 108 spin flip tests for each

temperature to obtain these plots.

https://doi.org/10.1371/journal.pcbi.1010811.g003
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Fig 4. Individual shift of Ising temperature (top), LZW (middle), and BDM (bottom) complexity induced by LSD (empirical data). The LZW and BDM estimates

here are computed from the experimental fMRI BOLD data times series. A, C, E) Box plots of the metrics (temperature, LZW and BDM complexities) for each subject

under the effect of LSD and placebo (one star: p< 0.05, four stars: p< 0.0001). B, D, F) Bar plots of the differences in metric (temperature, LZW and BDM complexities)

between LSD and placebo for each subject. The dashed line in each plot represents the mean of the metric.

https://doi.org/10.1371/journal.pcbi.1010811.g004
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As can be observed in Fig 5, the increase in LZW and BDM complexity in the LSD state,

using synthetic data generated by the personalized models, was statistically significant (one-

tailed Wilcoxon test p = 9 × 10−5 and p = 2 × 10−4, respectively).

We also analyzed the correlation between the features extracted from the data and from the

model. A summary of the statistics of the different metrics and the Pearson correlation coeffi-

cients between them is given in Tables 1 and 2, whereas the correlation scatter plots can be

found in Figure O in section 10, S1 Text. The difference in LZW and BDM complexity from

the model correlates strongly with the delta Ising temperature (r(13) = 0.97, p = 3.46 × 10−9 for

LZW and r(13) = 0.95, p = 1.1 × 10−7 for BDM). The changes in LZW from experimental data

do not display a significant relationship with the changes in Ising temperature (r(13) = 0.06,

p = 0.83), nor with the delta LZW complexity from synthetic data (r(13) = 0.10, p = 0.73), pre-

sumably due to the short length of the time series and the limited number of subjects. The

difference in BDM complexity from the experimental data correlates with the delta Ising tem-

perature (r(13) = 0.56, p = 0.03), whereas it does not show a strong statistical relationship with

Fig 5. Individual shift of LZW (top row) and BDM (bottom) complexity in LSD and placebo conditions estimated from synthetic data generated by the archetype

model. Here we derive complexity estimates from synthetic data generated by the individualized archetype models for each subject. A, C: Box plots of the metrics for

each subject under the effect of LSD and placebo. B, D: Bar plot of the differences in metrics between LSD and placebo for each subject. The dashed line represents the

mean of the metric (three stars: p< 0.001, four stars: p< 0.0001).

https://doi.org/10.1371/journal.pcbi.1010811.g005
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the delta BDM from the model (r(13) = 0.42, p = 0.12), with the delta LZW from the data

(r(13) = 0.35, p = 0.19), and with the delta LZW complexity from the model (r(13) = 0.48,

p = 0.07).

Correlation between questionnaire scores and data features

In the LSD trial, participants were asked to answer two types of questionnaires to give feedback

on their psychedelic experience. They completed VAS-style ratings via button-press and a digi-

tal display screen after each scan and the 11-factor altered states of consciousness (ASC) ques-

tionnaire at the end of each dosing day [30]. The most important ASC scores reported by the

authors were elementary imagery (“I saw regular patterns in complete darkness or with closed

eyes.”, “I saw colors before me in total darkness or with closed eyes.”, “I saw lights or flashes of

light in total darkness or with closed eyes.”), complex imagery (“I saw scenes rolling by in total

darkness or with my eyes closed.”, “I could see pictures from my past or fantasy extremely

clearly.”, “My imagination was extremely vivid.”), and audio-video synesthesia (“Noises

seemed to influence what I saw.”, “The shapes of things seemed to change by sounds and

noises.”, and “The colors of things seemed to be changed by sounds and noises.”).

We calculated the questionnaire scores difference between the LSD and placebo sessions

for each category. Then, we computed the average scores of each questionnaire to have a single

measure of the overall intensity of the subjective experience. We checked the Pearson correla-

tion between the subjects’ questionnaire scores and the features extracted from the data, i.e.,

Ising temperature, LZW, and BDM from experimental data.

Tables B and C in section 11, S1 Text, provide the questionnaire scores for all subjects, their

average, and the Pearson correlation coefficients between the scores and the features extracted

from the data.

No strong statistical relationships were seen between the subjective reports and the features.

However, trends were observed between complex imagery and Ising temperatures (r = 0.42)

and elementary imagery and LZW complexity (r = 0.48), both obtained from the ASC ques-

tionnaire. From the VAS-style ratings, trends were observed between emotional arousal and

all three features (positive trends for Ising temperatures and BDM complexity, whereas nega-

tive ones with LZW complexity).

Table 2. Pearson correlation between different metrics.

Pearson cc Ising T LZW data LZW synth BDM data BDM synth

Ising T 0.06 0.97���� 0.56� 0.95����

LZW data 0.10 0.35 0.08

LZW synth 0.48 0.99����

BDM data 0.42

https://doi.org/10.1371/journal.pcbi.1010811.t002

Table 1. Summary statistics of different metrics. Change in Ising temperature and complexity metrics in the LSD

condition relative to the Placebo condition.

Median (%) Mean (%) t-score p-value (one-tailed)

Ising T 3.76 6.61 4.93 9 × 10−5

LZW data 0.50 1.00 2.30 0.04

LZW synth 2.13 2.21 5.46 9 × 10−5

BDM data 1.83 2.10 1.63 0.04

BDM synth 2.51 2.28 5.18 2 × 10−4

https://doi.org/10.1371/journal.pcbi.1010811.t001
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Discussion

We have developed here a framework for the generation and analysis of personalized Ising

spin (spinglass) models starting from group archetypes. We discuss our results next.

Ising and structural connectome

A first finding from fitting the (maximum entropy) Ising model to functional BOLD data is

that it is possible to recover, to a good extent, the underlying structural connectome as inferred

from dMRI data. In fact, what is recovered is a signed approximation to the structural connec-

tome, which may be useful for whole-brain modeling using more sophisticated models such as

neural mass models where it is not easy to decide where long-range connectivity should be

inhibitory. In addition to negative couplings, the biggest discrepancy between the two connec-

tomes is the homotopic component of connectivity (v. Fig G in S1 Text), both of which reflect

features of the FC (v. Fig K and the figures in section 7, S1 Text). This is not surprising since

one of the most interesting differences between functional and structural connectomes is pre-

cisely the homotopic component, which is especially salient in resting-state fMRI functional

connectivity [85] despite not being structurally as strong as detected by dMRI tractography

[86, 87]. This discrepancy suggests that homotopic functional connectivity may arise from

indirect links through other areas, e.g., by a synchronizing role of subcortical areas such as the

thalamic nuclei, achieved by interacting symmetrically with both hemispheres [88], or from

direct neuromodulation of structural elements (the tractogram provides an estimation of the

number of fibers connecting parcels, but it does not provide direct information about the

number of synapses associated with the fibers or the connectivity state as induced by neuromo-

dulatory agents, for example). In either case, the Ising model must reproduce homotopic func-

tional connectivity clearly present in the resting state data (parcel state correlations), and its

structural elements (J) reflect this. An additional observation is that the Ising connectome was

mostly dominated by positive intrahemispheric and homotopic links. Interhemispheric con-

nectivity was otherwise weak and mostly negative in our dataset.

Ising archetypes for LSD and placebo conditions. 5-HT2A distribution

With regard to the archetypes built separately in each condition, the main difference between

the global LSD and placebo archetypes was a decrease in connectivity under LSD, mostly asso-

ciated with homotopic links. We observed the largest losses in homotopic connectivity in the

calcarine, hippocampus, thalamus, and fusiform parcels (see Figs A and B in S1 Text). The

increase of disorder under the LSD condition, as quantified by Ising temperature or complex-

ity metrics, was thus associated with a loosening of interhemispheric connectivity driven by a

loss of homotopic connections (Fig 1, right). The decrease in homotopic connectivity was, in

turn, proportional to the placebo condition archetype homotopic connectivity. Our results

suggest a transient reduction, induced by LSD, of Ising structural homotopic connectivity,

where strong homotopic connections see the largest decrease in strength. Such a reduction has

a strong impact on the system because the Ising connectome can be seen to consist of two net-

works (one per hemisphere) with weaker interhemispheric connections that are dominated by

homotopic links providing “long-range” connectivity. The effect of reducing these connections

can be simulated in the Ising formalism (v. Fig M in S1 Text). E.g., reducing homotopic con-

nectivity in the placebo archetype by twenty percent leads to a decrease of its critical tempera-

ture of ten percent (from T = 0.82 to 0.74), making the system at nominal temperature (T = 1)

more disordered (reducing an equal number of random connections has a smaller impact with

a mean T = 0.80 with a standard deviation of 0.02). Another way to study the sensitivity of the

system to changes in its connections is through the concept of linked susceptibility as defined
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above (Lij). In particular, this displays increased values along the homotopic line (Fig N in S1

Text). With regard to the potential mechanism for these changes, we found that the density of

5-HT2A receptors was positively correlated with the strength of intrahemispheric global con-

nectivity and negatively correlated with the homotopic connectivity of each parcel, suggesting

that the relative functional weight of homotopic links may be reduced by the increased intrahe-

mispheric 5-HT2A agonistic effects of LSD.

Global archetype critical point and local susceptibility

We found it especially useful to generate a global archetype (v. Fig F in S1 Text) assimilating

the data from all participants and conditions (see also Fig D in S1 Text for the empirical FC of

all the data). This is convenient first because of the relative scarcity of data produced by BOLD

fMRI sequences and, second, because it provides a common framework for comparison of

individualized models (in this case, characterized by their temperatures relative to the arche-

type). The archetype generates behavior as a function of temperature similar to the standard,

nearest-neighbor Ising model, with a clearly defined critical point. However, unlike the origi-

nal Ising model, this model does not display translational symmetry because the model param-

eters (Jij and hi) vary with each parcel. As a consequence, some of the nodes of the archetype

model display higher sensitivity to perturbations than others (see figures in section 3, S1 Text).

The brain parcels corresponding to these nodes are natural areas for further study of the effects

of stimulation (invasive or non-invasive) in more sophisticated computational brain models

[89, 90].

Personalized temperatures and complexity

With regard to the personalized temperatures, we found a strong correlation between individ-

ualized temperature and condition. The individualized temperatures derived from BOLD

fMRI data almost uniformly increased with the LSD condition relative to the placebo. Statisti-

cally speaking, the results are very robust. Moreover, both the archetype temperature (T = 1)

and the individualized ones for both conditions were found to be above the critical point of

the model. The state in all cases was found to be in the paramagnetic phase, as was found in

Ezaki et al. (2020) [6].

Since Ising temperature was expected to correlate with entropy and disorder in the models,

and because of the relevance of the notion of complexity in the analysis of brain data, we stud-

ied two proxies (upper bounds) of algorithmic complexity, one closely related to Shannon

entropy (LZW), the other more directly connected with the concept of Kolmogorov complex-

ity (BDM). We did this first, starting from the data itself and then also working with synthetic

data generated from the personalized Ising models. Complexity metrics derived from the data

related only weakly (but significantly at the group level) with temperature and condition, pre-

sumably due to the limited amount of data per participant and condition, and we cannot dis-

count the possibility of paradoxical effects of LSD in some subjects leading to decreases of

complexity. However, it is well known that measures that estimate complexity are sensitive to

data length [66, 91], and this is a limitation in this study because BOLD data is intrinsically

slowly varying and the time series are not very long. To compensate for this, we explored

model-derived LZW and BDM complexity estimates using synthetic data. We found these

to be monotonic functions of temperature (Figs 3 and 5) that correlated strongly with the

condition.

Fig 3 (bottom right) displays the monotonic behavior of BDM complexity with respect to

temperature, with a very sharp increase and then almost a plateau. One limitation in the BDM

calculation is that, as the size of matrices increases, BDM gets gradually closer and closer to an
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entropy measurement as we use precomputed CTM for smaller matrices. Moreover, it is

important to note that, in our Ising and complexity analysis, we are bounded to binary data,

which makes the analysis contingent on how meaningful the binarized version of the data is.

Overall, our results are consistent with the notion that psychedelics drive brain dynamics

into a more disordered state and, in our modeling framework, away from criticality. The

RElaxed Beliefs Under pSychedelics (REBUS) framework [39]) addresses the phenomenology

and physiology of psychedelic states by integrating mechanistic insights with the free-energy

principle (FEP, [92, 93]). The FEP is a formulation based on causal statistical theory that

accounts for action, perception, and learning, and the entropic brain hypothesis (EBH [29]),

which associates entropy of spontaneous brain activity with the richness (vividness and diver-

sity) of subjective experience (and posits that psychedelics increase both).

Relation to the REBUS model and criticality

The mechanisms of action of psychedelics are believed to begin with stimulation of a specific

serotonin receptor subtype (5-HT2A) on cortical layer V pyramidal neurons, i.e., this is the

control signal that results in increased neuronal excitability and dysregulated cortical popula-

tion-level activity [94]. Through this action, psychedelics are believed to disrupt the regular

functioning of various high-level system properties—e.g., major cortical oscillatory rhythms

and the integrity of large-scale networks—that are hypothesized to encode the precision-

weighting of internal models—i.e., priors, beliefs, or assumptions. According to the so-called

‘REBUS’ model [39], psychedelics disrupt models sitting atop the modeling hierarchy, with

direct consequences on experience. Interference with microcircuitry associated with high-level

models may be expected to release lower-level models that would otherwise be suppressed.

In [40], we hypothesized that increased apparent (Shannon) complexity (entropy) of spon-

taneous activity is a logical corollary of this action, as apparently complex, bottom-up uncom-

pressed data more strongly dominates brain activity. Such increases have indeed been

observed using measures such as LZ [95] and are also seen in our data. The present study

extends on previous work, however, by incorporating algorithmically-oriented methods such

as BDM. Our results agree with earlier work pointing to the usefulness of complexity metrics

and the hypothesis that signal complexity should increase with increased system temperature,

and that psychedelics should increase both [50]. With regard to the criticality perspective, in

Ruffini & Lopez-Sola (2022), we proposed that a modeling system tracking structured data in

the world (a wakeful brain) will display dimensionality reduction and criticality features that

can be used empirically to quantify the structure of the program run by an agent [40]. Critical-

ity features are seen to result from the collapse of a dynamical system (the dynamical brain)

into a low dimensional space associated with identified regularities in complex data—the hall-

mark of an algorithmic compressive system. If tracking world data using models keeps the

modeling dynamics on a reduced, lower-dimensional manifold, psychedelics may be said to

“lift” up the enslaved dynamics into higher dimensions. Our finding of the resting brain state

being above criticality and driven further away from the critical point under the influence of

LSD is consistent with this view.

As discussed in the context of the algorithmic information theory of consciousness (KT)

[40, 50], psychedelics will shift the dynamics of an agent system tracking world data to a less

constrained state further away from criticality, and hence produce more complex signals. The

above is in line with the idea that the brain operates near a critical point (v. [21, 96, 97] and

references therein) and that psychedelics move dynamics into a more disordered state [39].

However, at least in our model and as already described in previous work using similar meth-

ods [5, 6], we found that the resting brain in the placebo condition was already above the
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critical point—that is, the resting, the wakeful brain is in a supercritical state as observed

through the Ising framework lens. This is consistent with the idea that, while mutual informa-

tion peaks at the critical temperature, information flow in such systems peaks in the disordered

(paramagnetic) phase [98], which is in apparent contradiction with other studies suggesting a

subcritical nature of healthy brain dynamics [39]. We note here in passing that the term “criti-

cality” is used differently by different authors, e.g., dynamical vs. statistical criticality, whose

relation is the subject of current research [97]. At least with the data in this study, the statistical

criticality metric developed here—the supercritical system temperature of an Ising model—,

provided the best correlate of experimental condition.

Finally, with regard to the relation of these metrics with subjective experience as measured

by questionnaires, some weak correlations were found at the trend level with all metrics (tem-

perature and complexity metrics), presumably because of the limited number of data and the

inherent heterogeneity of self-reports and that these particular ratings were done post-hoc

without precise reference to the scanning periods. Specifically designed neurophenomenologi-

cal methods probing the structure of experience during altered states of consciousness may

provide better correlates in future studies [40].

Conclusions

In this paper, we have studied criticality features of brain dynamics under LSD in a within-sub-

ject study using the Ising model formalism and algorithmic complexity using Lempel-Ziv and

the Block Decomposition methods. Personalized Ising models were created using BOLD fMRI

data by adjusting the model temperature for each subject and condition in relation to the group

average model. We found that the effects of LSD translate into increased BOLD signal complex-

ity and Ising temperature, in agreement with earlier findings and predictions from existing the-

ories of the effects of psychedelics, such as the relaxed beliefs under psychedelics (REBUS), the

anarchic brain hypothesis [39], and the algorithmic information theory of consciousness (KT)

[40, 50]. More precisely, in agreement with earlier work [6], we found that the system in the pla-

cebo condition was already in the paramagnetic phase—above the critical point—, with inges-

tion of LSD resulting in a shift away from criticality into a more disordered state. These results

must be interpreted with care, as the Ising framework used here provides a simple one-parame-

ter model for fitting the individual data. Other studies using different methods suggest that LSD

shifts system dynamics closer to criticality [99, 100], while, for example, using similar methods

to ours, higher fluid intelligence has been associated with closer to critical resting-state neural

dynamics [6]. This highlights the question of whether modeling choices such as what data and

data features to model (e.g., BOLD FC or electrophysiological data), modeling scale (micro,

meso or macroscale), and how to model it (e.g., Ising, Hopf, or neural mass models) can impact

conclusions on the critical features of the system. Further work is needed to reconcile these

results, which may stem from both these modeling choices and associated criticality metrics

[101]. Finally, the Ising formalism provides a parsimonious method to infer structural connec-

tivity from functional data. The Ising connectome, we found, is related to the structural (dMRI)

connectome but differs in two important ways. First, it displays stronger homotopic connectiv-

ity, which, as we saw, is weakened during LSD. Second, it is a signed connectome, and the nega-

tive connections play an important dynamical role. Thus, Ising connectomics may provide

complementary insights into the general problem of whole brain computational modeling.

Supporting information

S1 Text. Supplementary information file. This file contains figures and tables in the following

sections: 1) List of AAL areas, 2) Changes in connectivity, 3) Susceptibility per parcel, 4)
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Empirical FC, 5) Ising and dMRI connectomes, 6) Network plots, 7) Group FC for each condi-

tion (empirical vs. Ising), 8) Homotopic FC and FC negativity. FC for each subject and condi-

tion, 9) Homotopic and link susceptibility, 10) Correlation between metrics, 11) Subject

questionnaire scores and their correlation with metrics.
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