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The study of human brain networks with in vivo neuroimaging has given rise to the field of connectomics,
furthered by advances in network science and graph theory informing our understanding of the topology
and function of the healthy brain. Here our focus is on the disruption in neuropsychiatric disorders (patho-
connectomics) and how whole-brain computational models can help generate and predict the dynamical
interactions and consequences of brain networks over many timescales. We review methods and emerging
results that exhibit remarkable accuracy in mapping and predicting both spontaneous and task-based
healthy network dynamics. This raises great expectations that whole-brain modeling and computational
connectomics may provide an entry point for understanding brain disorders at a causal mechanistic level,
and that computational neuropsychiatry can ultimately be leveraged to provide novel, more effective thera-
peutic interventions, e.g., through drug discovery and new targets for deep brain stimulation.
Introduction
The ability of modern neuroimaging to map the structural and

functional connectivity of the normal human brain in vivo has

given rise to the connectome (Sporns et al., 2005) as the com-

plete map of the brain’s neural elements and their structural in-

teractions that allow complex integration and segregation of

relevant information (Sporns, 2013). Network science has used

the mathematical theory of graphs to characterize brain systems

and their relation to other complex systems (Bullmore and

Sporns, 2009; van den Heuvel and Sporns, 2013). Much of this

research has been descriptive, but whole-brain computational

models have started to make inroads in understanding the

link between structural and functional brain connectivity and

their potential breakdown in disease (Cabral et al., 2014a;

Deco and Corbetta, 2011; Deco et al., 2011; Honey and Sporns,

2008).

The study of disruptions to the normal human connectome has

started to generate exciting new insights into the disrupted net-

works in neurological and psychiatric disorders (van den Heuvel

et al., 2010). These network findings make it clear that neurolog-

ical and psychiatric disorders often share underlying brain

network pathology (such as in patients with Parkinson’s disease

(PD) who show both depressive and motor symptoms), which

makes traditional diagnostic boundaries less meaningful (Buck-

holtz and Meyer-Lindenberg, 2012; Uhlhaas and Singer, 2012).

In this Perspective, we make the argument for computational

modeling of connectomics as a rational way to generate new

insights into general principles of brain function in health and

disease.
892 Neuron 84, December 3, 2014 ª2014 Elsevier Inc.
Neuropsychiatric disorders are devastating not only to individ-

uals, but are also a growing and serious health burden for soci-

ety. Take, for example, major depressive disorder, which, with

a 17% lifetime prevalence, is the leading cause of years lost to

disability worldwide, and which is predicted to be the largest

contributor to the worldwide burden of disease by 2030 (WHO,

2008). While there has been some progress, the paucity of reli-

able animal models and the inadequacy of current treatments

such as antidepressants would indicate that new research stra-

tegies are needed (Holtzheimer and Mayberg, 2011). Early inter-

ventions are key to halting and controlling disease and have been

shown to be far more cost effective than later interventions

(Heckman, 2006).

There are many reasons for the disappointing progress in the

nosology and diagnostics of neuropsychiatric disorders, but

fundamentally the problem can be tracked to a lack of causal

understanding of the underlying biological mechanisms. This un-

derstanding has been further confused by a large number of sta-

tistically significant, but minimally differentiating, findings (Kapur

et al., 2012). What is clearly needed is a better understanding

of the fundamental principles of brain function and the way

that the brain can become unbalanced in neuropsychiatric disor-

ders (Kringelbach et al., 2011). This may in time lead to novel

ways of identifying biologically homogenous subtypes that cut

across phenotypic diagnosis (Cuthbert and Insel, 2013). Such

biomarker-defined subtypes can only come frommeasuring clin-

ically meaningful differences between relevant clinical popula-

tions to facilitate a deeper understanding of the underlying brain

mechanisms. This would open up the possibility of identifying
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biomarkers that stratify a broad-illness phenotype into a finite

number of treatment-relevant subgroups (Trusheim et al., 2007).

In recent years, the advances in neuroimaging, genomics, and

computational modeling have raised great expectations for such

a stratified psychiatry (Maia and Frank, 2011; Montague et al.,

2012; Stephan et al., 2006). Here we expand on the previous

computational psychiatry approaches by incorporating whole-

brain computational modeling informed by connectomics, and

not just applied to psychiatric disorders, but also to neurological

disorders, hence the new focus on computational neuropsychi-

atry and connectomics. Importantly, the current literature differs

on what is thought to constitute a computational (as opposed

to mathematical) modeling approach. Some authors have res-

tricted the term ‘‘computational’’ to models of information pro-

cessing (e.g., Montague et al., 2012), while others stress the

inference aspect of the term and use this to refer to generative

models (e.g., Stephan andMathys, 2014). Please note that these

generativemodels take their lead from statistics representing the

joint probability of parameters and data, including both priors on

the parameters and a likelihood function. The generative whole-

brain models considered in this Perspective contain a likelihood

function, but no priors.

Computational connectomics aims to model not only the

spontaneous dynamics of brain connectivity networks during

rest, but also task-related dynamics in health and disease.

Computational neuropsychiatry, as discussed here, aims to

describe the whole or partial breakdown of these task-related

network dynamics in mechanistic terms in order to be able to

provide computer models that can rebalance these dynamics

in silico. A direct outcome of such models would be to generate

rational ways for effective brain interventions to rebalance the

networks, e.g., for drug discovery and new targets for deep brain

stimulation (DBS).

In this Perspective we first discuss the relevance of connec-

tomics to neuropsychiatry. We review the methods and findings

of using network science to map the structural and functional

brain networks in health and disease. We discuss the potential

using these topological measures for discovering potential bio-

markers for neuropsychiatric disorders. We point out, however,

that these types of networks features are limited in their ability

to establish genuine links between structure and function. As

such, they are limited in disentangling the underlying mechanism

for computation in the healthy brain, as well the breakdown in

disease. We propose that this gap might be bridged using

whole-brain modeling. Furthermore, we provide an overview

of the current state of the art of whole-brain computational

modeling and the application for understanding disease.

Relevance of Connectomics to Neuropsychiatry
The connectome is defined as a comprehensive map of neural

connections in the brain on many spatial scales (Sporns et al.,

2005). In humans, this description is typically supported by

the use of diffusion-weighted/tensor imaging (DWI/DTI), which

measures the constraining of white-matter fiber tracts by the

diffusion of water molecules, typically on a scale of millimeters

(Basser and Pierpaoli, 1996; Beaulieu, 2002). The connectivity

between brain regions can then be reconstructed in multiple

ways (Hagmann et al., 2010; Johansen-Berg and Rushworth,
2009), using diffusion imaging measures of fractional anisotropy,

local level of mean diffusivity, radial diffusivity, and axial diffu-

sivity. This tractography can be combined with other imaging se-

quences such as magnetic transfer imaging to get more direct

measures of physiological parameters such as axon diameter

and myelin content. The primary advantages of these diffusion

imaging techniques are the ease of acquisition and analysis

which facilitate large-scale cross-sectional and longitudinal hu-

man studies. Yet, there are also significant limitations to these

methods including the indirect nature of connectivity measures

and the lack of information of directionality (Jones and Cer-

cignani, 2010).

In a similar way, the functional connectivity between brain re-

gions refers to the statistical dependence of neurophysiological

neural signals as recorded with indirect measures such as fMRI

and PET, or with direct measures of neural activity such as

MEG and EEG. Typically, functional connectivity is measured

by analyzing the relationship between regional time series with,

for example, correlations, coherence, ormutual information (Bas-

sett et al., 2011; Stam et al., 2009) (see Figure 1).

Functional connectivity measures on spontaneous activity

recorded during rest over several minutes have shown highly

reproducible and organized patterns of activity (Damoiseaux

et al., 2006; Greicius et al., 2003), which overlapwith task-related

activity (Fox and Raichle, 2007). This functional connectivity has

been shown to be constrained by structural connectivity (Honey

and Sporns, 2008; Honey et al., 2009), but functional and struc-

tural connectivity are not identical, especially not over shorter

time scales of minutes and seconds (Allen et al., 2014; Baker

et al., 2014). Indeed, characterizing and understanding the rela-

tionship between functional and structural connectivity across

many time scales from milliseconds over minutes and hours to

days and months remains one of the most exciting challenges

of the field.

The analysis of the topology and overall organization of brain

networks has typically used constructs from graph theory to

represent regions as nodes and connections as edges. The brain

can be parcellated into a number of distinct regions, which has

historically been carried out based on careful studies of the prop-

erties of the underlying brain tissue (Zilles and Amunts, 2010).

Modern neuroimaging parcellations typically range from tens to

several hundreds of regions (Craddock et al., 2013). The optimal

parcellation of brain regions is not currently clear, but some of

the most popular choices include the Hagmann parcellation

with 66 cortical regions (Hagmann, 2005) and the automated

anatomical labeling (AAL) parcellation with 116 cortical, subcor-

tical, and cerebellar regions (Tzourio-Mazoyer et al., 2002).

The graph theoretical approach has allowed for the character-

ization of key features of brain networks (see Figure 2). The

research has shown that brain architecture comes from opti-

mizing the economic tradeoff between the cost (i.e., minimizing

connection density) and the efficiency of network function (i.e.,

minimizing the characteristic path length) (Bullmore and Sporns,

2012). The human brain is thus a small-world network (Watts and

Strogatz, 1998) with many locally connected clusters of modules

(Newman, 2006). These anatomical modules form the potential

basis for functional segregation of information (Sporns, 2013).

Furthermore, the graph theoretical degree and centrality
Neuron 84, December 3, 2014 ª2014 Elsevier Inc. 893
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Figure 1. Connectomics Using Human Neuroimaging Techniques
(A) Creating the individual structural connectivity (SC) requires MRI and DTI, as well as a parcellation, e.g., AAL.
(B) Creating the individual functional connectivity has traditionally required measuring the resting state MRI (rs-MRI), typically using EPI images sampling the
BOLD time course in each voxel in the brain. This is then combined with a parcellation scheme to recreate the regional time courses for each of the regions in the
parcellation. The FC matrix is then typically created from correlating these time courses between regions.
(C) A more detailed FC matrix can be created from recording resting state MEG (rs-MEG). The sensor data can be transformed to the source space of the brain
using the individual’s MRI and a source reconstruction method such as beamforming. Combining this with a parcellation scheme allows for the extraction of
regional time courses, typically ordered across different frequency bands, which can be correlated into resulting FC rs-MEG matrices.
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measures provide important topological information on the role

of each region (node) in the integration of information. Central

brain regions with high measures of degree and centrality are

referred to as hubs (Bullmore and Sporns, 2009). Some of these

hubs have high and diverse ‘‘rich’’ patterns of dense intercon-

nectivity (van den Heuvel and Sporns, 2013). This central ‘‘rich

club’’ has been suggested to play an important role for global

brain integration (Van Boven and Loewenstein, 2003).

These graph theoretical measures have been successful in

characterizing and defining topological features of the normal

human brain (Bullmore and Sporns, 2009; Sporns et al., 2007),

and, as wewill show below, significant efforts have concentrated

on measuring how these change in neuropsychiatric disease

(Greicius, 2008). Some have labeled this effort pathoconnectom-

ics, referring to the mapping of abnormal brain networks (Rubi-

nov and Bullmore, 2013). It is important to remember, however,

that such topological measures are not the only measures of

brain function, and that the temporal segregation and integration

of information is equally, if not more, important. This is especially
894 Neuron 84, December 3, 2014 ª2014 Elsevier Inc.
true of neuropsychiatric disorders such as bipolar disorder

where temporal integration and segregation of information are

clearly compromised (Whybrow, 1998).

One of the advantages of using functional and structural con-

nectivity measures such as DWI/DTI and resting state MRI/MEG

in neuropsychiatry is that these measures require very little effort

on the part of the patient. In order, however, to make sure that

these measures can be used in a clinical setting, it is important

to carry out quality control to ascertain that they are valid, reli-

able, sensitive, and specific—and that potential biomarkers

have predictive value (Castellanos et al., 2013). E.g., promising,

but not conclusive, comparisons have beenmade between DWI/

DTI with definitive tract-tracing methods in the nonhuman pri-

mate to test validity of existing measures (Kelly et al., 2010; Mar-

gulies et al., 2009). Overall, the quality control of the research is

going on in parallel while thesemeasures are being implemented

in clinical settings. This has progressed given the moderate-to-

high test-retest reliability across scans (Castellanos et al.,

2013), but studies are ongoing examining the consistency of
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Figure 2. Network Science
Connectomics is concerned with characterizing the way that different regions connect to each other. A brain network can be characterized using graphs where
the nodes are the regions, and the edges are the connections between regions. Here we introduce some of the key concepts in network models.
(A) The example shows a matrix with the connection strengths (in shades of gray) between 20 brain regions.
(B) This connectivity can be binarized at a given threshold of connectivity strength (here we have used 50%).
(C) This binary connectivity can then be reordered to an optimal modularity partition, with this example having three modules (colored in orange, blue, and red).
(D) Another way to visualize this network is to use a spring-embedded 2D network diagram, with the three modules circled.
(E) The topology of networks can be separated into segregated modules and integrative hubs.
(F) The key issue for optimal functioning for any brain is to balance the amount of spatial segregation and integration. In the example with 20 brain regions, region A
is clearly a hub with a high degree (number of connections), betweenness centrality (placed on many of the short paths in the network), and participation co-
efficient (distributed connections across network modules). In contrast, region A has low clustering given that most of the topological neighbors are mutually
unconnected. In contrast, region O has high clustering, and region H has low betweenness, while region G has low participation coefficient, and region N has low
degree. (B)–(D) adapted from Sporns (2014).
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findings within a given scan (Chang and Glover, 2010), as well as

across magnets and sites (Biswal et al., 2010; Tomasi and Vol-

kow, 2010).

The hope is that pathoconnectomics could lead to potential

biomarkers for neuropsychiatric disorders. These biomarkers

can potentially help on multiple levels, i.e., the determination

of the presence or absence of a disease (diagnosis), staging

of a disease, determination of risk prognosis, and prediction

and monitoring of clinical response to an intervention (Castella-

nos et al., 2013). There is already cautious optimism about

how disease state prediction could potentially be made from

resting state functional connectivity (Craddock et al., 2009),

how changes in insula activity could be used as a metabolism-

based treatment-specific biomarker (McGrath et al., 2013), and
how there is reduced functional connectivity with the basal

ganglia network in PD patients, which improves with medication

(Szewczyk-Krolikowski et al., 2014) (see Figure 3).

In the following, we review some of the findings of this

emerging field of disordered topological brain networks. These

findings are mostly correlational, and the development of poten-

tial biomarkers will have to move beyond these measures to use

causal methods such as whole-brain computational modeling.

Clinical Topological Brain Connectivity Findings
Leading to Potential Biomarkers
The rate of growth of neuroimaging studies using functional con-

nectivity has increased compared to traditional task-based

studies (Snyder and Raichle, 2012). Typically such studies use
Neuron 84, December 3, 2014 ª2014 Elsevier Inc. 895



Figure 3. Examples of Structural and Functional Changes in Neuropsychiatric Disorders
(A) Reduced resting state functional and structural connectivity in subnetworks of interconnected edges were found in two independent studies of patients with
schizophrenia (Fornito et al., 2012).
(B) Significant changes in modularity were found between patients with childhood-onset schizophrenia and a control population (Alexander-Bloch et al., 2010).
(C) Schizophrenia patients showed reduced connectivity, predominantly in the rich club connections, with intermediate levels found in nonaffected siblings (Collin
et al., 2014).
(D) Significant impact of lesions to whole-brain connectivity was shown resulting from a midline lesion (top) and parietal lesion (bottom) (Alstott et al., 2009).
(E) An example of a potential biomarker for PDwas found using rs-MRI, where PD patients showed reduced functional connectivity with the basal ganglia network
(BGN) in a wide range of regions, which improved with medication. The average functional connectivity with BGN differentiated PD patients from controls with
100% sensitivity and 89.5% specificity. Subsequent validation showed 85% accuracy (Szewczyk-Krolikowski et al., 2014).
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resting state fMRI (rs-MRI) and are increasingly used to address

clinical questions (Kelly et al., 2012). There are many advantages

to rs-MRI including better signal-to-noise compared to task-

based studies, greater applicability for patients who may not

be able to perform tasks, potential circumvention of task-related

confounds, and the multipurpose nature of data sets, which can

be used to study multiple, interacting networks (Fox and Grei-

cius, 2010).

Yet, the proliferation and widespread availability of rs-MRI

across multiple centers and populations mean that care has to

be taken to ensure the validity, reliability, sensitivity, and speci-

ficity of the data (Castellanos et al., 2013). Current results all

too often rely on ‘‘significance chasing with under-powered

studies’’ as well as ‘‘approximate replications’’ (Kapur et al.,
896 Neuron 84, December 3, 2014 ª2014 Elsevier Inc.
2012). Large-scale data sets are required for obtaining scientifi-

cally valid biomarkers, and the neuroimaging community will

have to start to make data available online at a faster rate than

is currently done (Milham, 2012; Weiner et al., 2013).

The uncontrolled nature of rs-MRI remains a potential

confound (Buckner et al., 2013), especially when used to study

changes in functional connectivity between clinical groups.

There are potentially deleterious effects of aliasing of cardiac/

respiratory signals and particularly head motion (Power et al.,

2012), which are starting to be addressed with automated

methods (Patel et al., 2014; Power et al., 2014). A pertinent

example is how participants exhibit unstable wakefulness during

scanning, which could introduce confounding effects. This is

especially important given that studies using simultaneous
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EEG-fMRI have shown that different stages of sleep are associ-

ated with different functional connectivity patterns compared to

the awake state (Picchioni et al., 2013), e.g., the breakdown of

long-range temporal dependence in default mode and attention

networks during deep sleep (Tagliazucchi et al., 2013). If rs-MRI

is to be used routinely in patient populations with potentially very

different patterns of sleep to those of controls, it will be important

to implement appropriate monitoring and modeling of vigilance.

Progress has been made in developing methods of automatic

sleep staging using machine-learning algorithms (Tagliazucchi

et al., 2012), which has subsequently been used on large rs-

MRI data sets of over 1,000 participants, showing that a third

of the participants fall asleep within 3 min (Tagliazucchi and

Laufs, 2014).

Notwithstanding these potential confounds with functional

connectivity, a growing number of studies have found differences

in structural and functional connectivity between normal and

neuropsychiatric populations (Greicius, 2008). Examples include

Alzheimer’s disease (Binnewijzend et al., 2012; Damoiseaux

et al., 2012; Greicius et al., 2004; Supekar et al., 2008), posttrau-

matic stress disorder (Karl et al., 2006), dementia (Buckner et al.,

2000; Rombouts et al., 2009), autism (Kennedy et al., 2006;Weng

et al., 2010), multiple sclerosis (Bonavita et al., 2011), bipolar dis-

order (Lim et al., 2013), and major depression (Greicius et al.,

2007; Veer et al., 2010; Wang et al., 2012) (see Figure 3).

Schizophrenia is the paradigmatic example of such topologi-

cal differences in neuropsychiatry and has long been hypothe-

sized to be the result of abnormal brain connectivity (Bleuler,

1911; Kraepelin, 1919; Wernicke, 1874). This hypothesis has

become possible to test with the emergence of neuroimaging

methods (Friston and Frith, 1995). Many neuroimaging studies

have reported altered structural and functional connectivity in

schizophrenia (van den Heuvel and Fornito, 2014).

In terms of structural changes, studies have shown changes in

clustering and modularity structure (van den Heuvel et al., 2013)

pointing to a segregated pattern of network organization. There

is also longer average path length and reductions in global

communication efficiency (Zalesky et al., 2011). Taken together

this is suggestive of reduced communication between local

segregated networks. Functional changes have also been found

in a subtle randomization of functional networks, with decreased

small-world properties, lower clustering coefficients, and fewer

high-degree hubs (Bassett et al., 2012; Liu et al., 2008; Lynall

et al., 2010).

Such changes in structural and functional connectivity could

potentially lead to novel biomarkers for neuropsychiatric disor-

ders (Castellanos et al., 2013), but, as mentioned above, there

are many obstacles to progress. In addition to the technical

problems mentioned, it is also important to link these to clinical

variables such as prognosis, expected treatment response,

and risk. But perhaps most importantly, it will be important to

move beyond correlations to predictive, causal methods such

as whole-brain computational modeling.

The Role of Whole-Brain Models in Modeling
Brain Function
Topological network models are useful as descriptive tools for

characterizing brain organization in health and disease. But in
order for this description to have clinical importance, it needs

computational models that can simulate and predict observed

functional brain activity. Mapping the human connectome is

only the first step to establishing the links between function

and structure needed to understand how integration and segre-

gation are implemented in the human brain.

The main premise of these models comes from statistical

physics where it has been shown that macroscopic physical

systems obey laws that are independent of their mesoscopic

constituents (Haken, 1975). One of the main difficulties of com-

putational brain modeling is to strike the best balance between

complexity and realism. Given the astronomical number of neu-

rons in the human brain and the lack of accurate information of

specific connectivity at the neural level, it is neither feasible,

nor desirable, to create intricate models of, say, each individual

neuron and its connections. Instead, whole-brain computational

models have typically used various mesoscopic top-down ap-

proximations of the underlying complexity, with dynamical net-

works of local brain area attractor networks having proved

most successful (Cabral et al., 2014a) (see Figure 4).

Among the common assumptions for successful computa-

tional modeling is that explicit structural features (e.g., dendritic

spines) or temporal details of neural networks (e.g., the spiking

dynamics of single neurons) are irrelevant for generating com-

plex mesoscopic dynamics. Instead, the emergent collective

behavior of such dynamics is only weakly sensitive to the details

of individual neuron behavior (Breakspear and Jirsa, 2007). Basic

neural mass or mean-field models capture the changes in the

mean firing rate (Brunel and Wang, 2003), while more advanced

models use parameter dispersion in the neurons and therefore

have a richer dynamical repertoire (Stefanescu and Jirsa,

2008). Further refinements include a dynamic mean-field model

derived from a proper reduction of the detailed spiking model

(Deco et al., 2013b). This reduced dynamic mean-field model ig-

nores the interaction between single neurons within a cortical

area and instead considers the ensemble dynamics.

The dynamics of a whole-brain computational model use

the structural connectivity between brain regions in a given par-

cellation as a description of the synaptic connections between

neurons in those areas. These interregional connections are

weighted by the strength specified in the structural connectivity

matrix and by a global control parameter of the global conductiv-

ity of the fibers, which is assumed to be equal across the brain.

These parameters can then be varied systematically to simulate

and compare the dynamics and fixed points of the global net-

work system of attractors with functional connectivity data

from neuroimaging experiments. This functional connectivity

data contains highly structured spatiotemporal activity patterns

that emerge across the brain at rest when measured with dif-

ferent neuroimaging methods, e.g., rs-MRI or rs-MEG. The

dynamical entrainment and correlations between different local

brain region dynamics are shaped by the underlying structural

connectivity (Deco et al., 2011, 2013a, 2014a, 2014b; Ghosh

et al., 2008; Honey et al., 2009). Whole-brain computational

models can thus give a mechanistic explanation of the origin of

normal resting state networks. Several studies have successfully

done so for both rs-MRI (Deco and Jirsa, 2012; Honey et al.,

2007) and rs-MEG (Cabral et al., 2014b), and have even been
Neuron 84, December 3, 2014 ª2014 Elsevier Inc. 897
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Figure 4. Overview of Whole-Brain Computational Models
(A) Linking between the structural and functional dynamics can be explored usingwhole-brain computational modeling of empirical neuroimaging data. Structural
connectivity data can be obtained using DTI and tractography between a parcellation of the human brain that can provide a structural connectivity matrix. A
whole-brain model can be constructed using a set of stochastic differential equations coupled according to the connectivity matrix, where the model can be
validated by comparing model and empirical spatiotemporal neuroimaging data.
(B) The whole-brain model is able to best fit the empirical resting fMRI data when the brain network is critical (i.e., at the border of a dynamical bifurcation point), so
that, at that operating point, the system defines a meaningful dynamic repertoire that is inherent to the neuroanatomical connectivity (Deco et al., 2013a).
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used to model important features of sleep (Deco et al., 2014c)

(see Figure 5).

The research has shown that the best fit of empirical resting

functional connectivity matrices is obtained when the brain

network is subcritical, i.e., in a region where the spontaneous

state is stable (as measured by low firing activity across all brain

regions) (Deco et al., 2009). There are, however, other attractor

states corresponding to excited states with high firing activity,

which are also stable. In other words, the multistability around

a stable spontaneous state defines an operating working point

of the system such that the noise explores ameaningful dynamic

repertoire that is inherent in the neuroanatomical connectivity

(Deco and Jirsa, 2012; Deco et al., 2013b). It is also an important

research area to develop models that take into account the non-

stationarity of signals, which has been shown in rs-MRI (Allen

et al., 2014; Hutchison et al., 2013) and rs-MEG (Baker et al.,

2014).

These complex models may seem difficult to get a handle on

for neuroscientists, but recently this has become a lot easier

with the exciting development of The Virtual Brain (http://www.

thevirtualbrain.org). This is a neuroinformatics platform that

aims to provide a user-friendly interface, allowing users to per-

form customized simulations, analyze the results, and compare

them with neuroimaging results (Ritter et al., 2013).

Whole-Brain Models and Disease
Whole-brain computational models aim to provide a full under-

standing of the segregation and integration of spatiotemporal in-
898 Neuron 84, December 3, 2014 ª2014 Elsevier Inc.
formation across networks, and can provide insight into how

dysfunction in network activity may underlie mental health disor-

ders. It has been argued that individuals and species rely on

pleasure as the essential source of motivation to seek reward

and avoid punishments (Kringelbach, 2005). Careful neuroscien-

tific studies havemapped the neural systems necessary and suf-

ficient for the predictions and decisions underlying approach

and avoidance behavior associated with positive and negative

affect (Berridge and Kringelbach, 2013). The networks underly-

ing anhedonia, the lack of pleasure, are compromised in the

diseased brain (Treadway and Zald, 2011), and, specifically, dis-

ruptions have been demonstrated to the predictive coding un-

derlying reinforcement learning (Stephan et al., 2006).

Overall, whole-brain computational models have demon-

strated that the spontaneous activity in the brain at rest as well

as task-related activity depend strongly on the properties of the

underlying structural connectivity and the dynamical working

point (Deco and Corbetta, 2011). Damage to the structural con-

nectome can therefore have potentially very severe impact on

the resulting functional connectivity. Changes in structural brain

connectivity can arise in many ways with severe examples such

as stroke, traumatic brain injury, neurosurgical lesions, and

neuropsychiatric disorders—and much less severe examples

such as mild traumatic brain injury, aging, and learning. Impor-

tantly, the functional consequences of the damage are not limited

to the lesion site, but can also be observed at the macroscopic

scale using functional connectivity measures such as rs-MRI

and rs-MEG. On the other hand, changes in the dynamical

http://www.thevirtualbrain.org
http://www.thevirtualbrain.org


Figure 5. Modeling and Predicting Normal Dynamics of Neuroimaging
Whole-brain computational models have managed to simulate and predict empirical neuroimaging data from rs-MRI and rs-MEG in normal participants (Cabral
et al., 2011, 2014b).
(A) Creating a whole-brain model using the normal structural connectivity can be tested against empirical rs-MRI data, where the best fit requires a realistic
dynamical working point in terms of parameters determining global synchrony and metastability.
(B) At the highlighted working point, the whole-brain model reproduces many spatial features of the empirical functional connectivity shown here from a seed in
right cuneus.
(C) Similarly, the same whole-brain model, but now used for rs-MEG, shows the best performance at similar realistic values of coupling strength and mean of
delay distribution.
(D) The full connectivity profiles of simulated and model rs-MRI show very good correspondence, e.g., using a seed in right cuneus.
(E) Equally, there is a strong correspondence between the simulated and empirical connectivity profiles of, for example, a region of superior parietal cortex and the
activity measured with rs-MEG in different bands.
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working point also cause alterations of thewhole-brain dynamics,

which have been associated with schizophrenia, for example (as

described in the next section) (Cabral et al., 2012a, 2012b).

The success of whole-brain computational models in mo-

deling normal spontaneous brain function opens up the possibil-

ity of using them as unique predictive tools for investigating the

impact of structural connectivity damage, e.g., permanent and

reversible lesions in humans (Alstott et al., 2009; van Hartevelt

et al., 2014) and other animals (Honey and Sporns, 2008), as

well as in disease states with altered structural connectivity (Ca-

bral et al., 2012b, 2013). The results show that even very precise

lesions in one hemisphere can generate altered functional

connectivity between distant brain regions, often across both
hemispheres (Alstott et al., 2009). Not surprisingly, the altered

patterns of functional connectivity depend significantly on the

location and size of lesion relative to its role in the whole-brain

networks. In the following, we will discuss examples of the func-

tional consequences of both local and more global alterations of

structural connectivity.

Whole-Brain Computational Modeling of
Neuropsychiatric Disorders
In terms of neuropsychiatric disorders, schizophrenia has been

used as an important test case for the efficacy of whole-brain

models, as demonstrated by Cabral and colleagues who inves-

tigated the functional consequences of structural disconnection
Neuron 84, December 3, 2014 ª2014 Elsevier Inc. 899



Figure 6. Examples of Whole-Brain Computational Modeling of Schizophrenia and Parkinson’s Disease
(A) Whole-brain computational modeling was used to simulate functional networks in schizophrenia and health using global integration values reported
experimentally. This showed significant fragmentation in the simulated functional networks between the two groups as shown by the number of connected
components as a function of graph density and correlation threshold (Cabral et al., 2012a).
(B) Significant changes in small-world index between schizophrenia patients and control patients were found using a whole-brain computational model and
varying the global coupling weight (Cabral et al., 2013).
(C) Similarly, simulations showed that themodel predictedwell the experimentally observedmeasures of graph theoretical measures as a function of the coupling
strength (Cabral et al., 2012b).
(D) Whole-brain computer models have also been useful for other neuropsychiatric disorders such as PD and combined with a causal intervention. A compu-
tational model using the changes in pre- and 6-months-post-DBS showed significant recovery of structural network connectivity as a result of using DBS to
alleviate the symptoms of PD (van Hartevelt et al., 2014).
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using two different computational models (using nodes with sta-

ble asynchronous state; Cabral et al., 2012a; and with self-sus-

tained oscillations; Cabral et al., 2012b). Both models explored

the impact of a brain-wide decrease of the coupling strength,

i.e., the dynamical working point, in the properties of simulated

resting state functional networks. The coupling strength in both

models essentially scales the excitatory-to-excitatory coupling

between brain regions, which is controlled by mechanisms

involved in long-range signal transmission. Examples of such

mechanisms include axonal connectivity, which is dependent

on the number, density, and coherence of axon fibers, as well

as synaptic mechanisms, which include neurotransmission and

plasticity (see Figure 6).

The performance of the model was tested by comparing the

graph theoretical measures applied on the simulated functional

connectivity matrices with experimental data obtained from

healthy controls and patients with schizophrenia (Lynall et al.,

2010). The results showed that the simulated healthy functional

networks were found to have graph properties in the range of

the ones reported experimentally. Decreasing the structural con-

nectivity, either globally or locally, resulted in network reorgani-

zation in the simulated functional connectivity networks, which

were characterized by increases in hierarchy, efficiency, and

robustness, a decrease in small-worldness and clustering, as

well as a narrower degree distribution. This is in correspondence

to measures reported in schizophrenia patients (Lynall et al.,

2010). Theoretical results indicate that changes in both global

and local levels of pathoconnectomics can induce the same

qualitative changes in functional brain connectivity.
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Neurosurgery and Computational Models
Precise neurosurgical lesions have traditionally been used to alle-

viate the symptoms of otherwise treatment-resistant disorders

such as the tremor in PD and essential tremor. Unfortunately,

the permanency and side effects of these radical neurosurgical

procedures are often severe. Over the last 20 years, the advent

of the reversible, neurosurgical procedure of DBS has shown

remarkable results in helping to alleviate the symptoms of other-

wise treatment-resistant movement disorders such as PD,

essential tremor, and dystonia (Kringelbach et al., 2011) with

over 100,000 patients having been implanted to date, mainly for

PD (Lozano and Lipsman, 2013). The success of DBS targets

formovement disorders has been the product of carefully utilizing

animal models (such as MPTP for PD), but has also been the

result of serendipity during human lesional neurosurgery. DBS

could potentially be used for other indications such as neuropsy-

chiatric disorders (Lozano, 2012), but there is a lack of good an-

imal models to test potential DBS brain targets. This is where

whole-brain computational methods might be rather useful in

helping to predict the clinical outcomes presurgically.

The underlying mechanisms of DBS are still debated, but the

efficacy of DBSmust be related to at least threemain biophysical

factors: (A) DBS stimulation parameters such as frequency,

voltage, and amplitude, (B) physiological properties of the DBS

target region, and (C) interactions between DBS electrode and

the surrounding brain tissue and structural connectivity (Kringel-

bach et al., 2007). Overall, the evidence suggests that the indi-

vidual structural connectivity of the DBS target combines with

these biophysical properties to help rebalance widespread
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dynamic brain networks (Kringelbach et al., 2011; McIntyre and

Hahn, 2010).

Whole-brain computational modeling has only started to be

used to inform functional neurosurgery. In a unique case of a

DBS PD patient with structural connectivity DTI measures pre-

DBS and 6 months post-DBS, van Hartevelt and colleagues

were able to use network science and computational modeling

to determine the structural changes and predict the functional

consequences (van Hartevelt et al., 2014). Graph theoretical

measures found significant localized structural changes as a

result of long-term DBS in sensorimotor, prefrontal/limbic, and

olfactory brain regions, which are known to be affected in PD.

Excitingly, whole-brain computational modeling showed the

impact of DBS-induced structural alterations on functional brain

changes to shift the neural dynamics back toward a healthy

regime. This is the first demonstration that DBS can lead to a

topological reorganization toward healthy bifurcation of the func-

tional networks measured in controls, which is suggestive of po-

tential neural mechanisms for the alleviation of symptoms.

Whole-brain computational modeling combined with individ-

ual structural connectivity could thus play a significant role not

only in helping improve presurgical targeting by predicting the

outcome, but alsomore generally in the discovery of new, poten-

tial DBS targets for existing disorders. Overall, it will soon be

possible to use whole-brain computational models to predict

the outcome of both invasive (e.g., DBS) and noninvasive (e.g.,

neurotransmitter changes) changes to structural connectivity

and their potential to rebalance the disordered brain networks

(Kringelbach et al., 2011).

The success of such a research program will depend signifi-

cantly on the incorporation of reward circuitry, which has shown

to be compromised in neuropsychiatric disorders. A large body

of research in humans and other animals has shown a network

of strongly connected regions that would appear to encode the

pleasure of fundamental reward (such as food, sex, and social

stimuli) as well as more abstract reward (such as music and

money) (Kringelbach and Berridge, 2009). Causal evidence

from other animals points to regions that act as pleasure gener-

ators or ‘‘hedonic hotspots,’’ which can help animals want, like,

and learn about the stimuli that help ensure survival (Peciña and

Berridge, 2005). A problem with parts or all of this circuitry can

lead to anhedonia, which is a common problem for many neuro-

psychiatric disorders (Treadway et al., 2009). While some

computational models makemuch of local changes in such local

circuits, the main importance lies in the global changes in activ-

ity. Whole-brain computational models could help understand

how the local regions interact over time with other regions to

change global activity, which in turn can help to allocate brain re-

sources. Understanding this interaction in a normal population is

likely to lead to novel interventions targeted at rebalancing these

networks in neuropsychiatric disorders.

Conclusion
In summary, we have tried to show some of the progress which

leads to great expectations for how whole-brain computational

modeling and connectomics may be used to alleviate human

suffering, by facilitating a better understanding of fundamental

brain function and leading to the discovery of new, more effec-
tive interventions. We have also discussed some of the potential

obstacles to this nascent field, but none of the obstacles are in

principle insurmountable (Linden, 2012).

The explicit linkage of human neuroimaging data with whole-

brain computational modeling has shown great potential not

only for a deeper understanding of the computational and bio-

physical mechanisms underlying healthy resting state and

task/stimuli-evoked activity, but also for the discovery of the

causes of the breakdown in neuropsychiatric disorders. This

mechanistic information would then be useful as potential bio-

markers for individual patients. In addition, this information can

be used to monitor the progress for existing therapies, helping

to predict the outcome at an early stage, which opens the possi-

bility of tailoring specific treatments to specific patient groups in

a stratified neuropsychiatry. Importantly, this will also help our

understanding of the origin and mechanistic causes of disease

and open up for novel interventions and treatments.

In this Perspective we have presented some promising exam-

ples of existing approaches for computational modeling of

neuropsychiatric disorders. Yet, there are clearly many limita-

tions, and much more research is needed. In this context, we

envisage three main avenues of research for improving compu-

tational models of brain activity: (1) better characterization and

understanding of functional activity on many temporal time-

scales, (2) the use of these new temporal measurements for

making the whole-brain models more realistic and thus more

informative, and (3) the prediction and characterization of brain

activity in individual patients based on resting state brain activity.

First, the use of temporal description of functional activity has

become an increasingly important topic (Allen et al., 2014). It has

been shown that the resting state dynamical correlations evi-

denced and broadly used in a grand average functional con-

nectivity matrix (shown in this Perspective) do not emerge from

stationary dynamics. On the contrary, the temporal structure of

these correlations changes over time, which must be associated

with the capacity of the brain to integrate not only spatial, but

also temporal, information, i.e., how the brain performs binding

of information. For example, the study of the temporal evolution

of functional correlations across time reveals the differential as-

pects of the underlying dynamics that can never be expressed

through a grand average description of functional connectivity

over time. This in turn opens up for novel types of biomarkers

(e.g., an entropic description of the time dynamics of such corre-

lation pairs of brain regions).

Second, the temporal measurements mentioned above could

help us to further constrain the models in a number of important

ways. Most current models use a global conductivity coupling

parameter, but this constraint could be relaxed, and each fiber

could have its own conductivity, i.e., the strength of this partic-

ular connection. This, in turn, would open up for the possibility

of considering the influence of neurotransmitters on the structure

and dynamics. Such whole-brain models could start to help pre-

dict the effect of pharmacological manipulations on brain activity

and therefore could be rather useful for drug discovery.

The inclusion of more structural dynamics in whole-brain

models as well as more constraining temporal measures would

add new promising aspects to connectomics, namely the

effective connectivity matrix, which, thanks to computational
Neuron 84, December 3, 2014 ª2014 Elsevier Inc. 901
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modeling with richer temporal information, will complement the

existing structural and functional connectivity matrices.

Furthermore, not only could the synaptic connections be bet-

ter adapted to predict the empirical data, but there are also pos-

sibilities for improving the characteristics of the local dynamics

in each brain region. At the moment the regional local dynamics

are considered homogeneous as a matter of simplification, but

could be extended to deal with different heterogeneous local

dynamical nodes derived from the temporal information in func-

tional data.

Third, whole-brain models combined with resting state activity

offers a way to characterize and predict the activity of individual

brains not only during rest, but also during tasks. As mentioned

earlier, this is particularly useful in patients, since the acquisition

of resting state activity is much easier than task-based activity,

especially in unresponsive and difficult patient populations.

Furthermore, even with healthy subjects it is not feasible to char-

acterize brain activity during many tasks because of time limita-

tions. Based on the current evidence showing that resting state

activity is strongly linked to task-evoked activity, it would be

possible to construct an individualized brain model for a specific

patient just by fitting the resting state activity with the structural

connectome. Then, offline, the particular brain model can be

studied computationally and dynamically by applying a large

number of external stimulations/tasks and characterizing quan-

titatively the functional consequences. For example, integrative

spatiotemporal measurements and entropic measurements

can be used to describe how well a particular brain encodes all

external stimuli/tasks, which in turn can be defined and used

for diagnosis, supervision, and prediction.

Inmanyways, the holy grail of computational connectomicsand

neuropsychiatry is to create whole-brain models which can infer a

large range of detailed pathophysiological processes from

measured neuroimaging data. At the same time, their complexity

and size will introduce somemajor numerical and inferential chal-

lenges, e.g., problems of model identifiability (i.e., uniquely de-

fined parameter values) and overfitting (i.e., seeing meaningful

patterns in noise) when applying the model to empirical data. As

large-scalemodelswill increasingly strive to incorporate biological

complexity and allow for connection-specific coupling values, one

may expect to see some convergence with other modeling ap-

proaches for inferring parameter values of dynamic system

models from measured neuroimaging data. In particular, the sta-

tistical methodology of dynamic causal models (DCMs), which

are usually restricted tomuch smaller networkswith up to approx-

imately ten nodes, could prove useful (Friston et al., 2003).

Already, the whole-brain models discussed in this Perspective

share many conceptual similarities with DCMs, including the

emphasis on a neural mass or mean-field model perspective

and the use of identical forward models for fMRI. In the future,

DCMs may usefully contribute to further development of whole-

brain models by virtue of their Bayesian foundation, which is

crucial for dealing with problems of identifiability and overfitting;

furthermore, this grounding in probability theory allows for formal

comparison of competing model formulations in terms of evi-

dence (Bayesian model selection [BMS]) (Friston and Penny,

2011). One may anticipate that the statistical advances estab-

lished by DCMs in recent years will find their way into future
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whole-brain models, particularly when aiming for estimates of

effective connectivity (Friston et al., 2013). Furthermore, the ability

to detect signs of overfitting throughBMSs is likely to prove crucial

when enhancing the biological realism of whole-brain models.

In addition, the whole-brain computational models will obvi-

ously also depend on the quality of neuroimaging data in order

to help generate potential biomarkers. In particular, it will be

crucial to obtain more accurate information about timing of neu-

ral events in the whole network. While individual neuroimaging

modalities such as MEG have shown great promise in providing

direct measures of neural activity, it is likely that progress will

come from the combination of multimodal neuroimaging data.

The exciting future possibilities for computational neuropsy-

chiatry might also be further refined by genomic information.

Studies have started to combine whole-genome analyses with

whole-brain data to discover genetic variants that reliably affect

the brain (Medland et al., 2014), and large-scale genomics have

started to unveil the genetic architecture of psychiatric disorders

(Gratten et al., 2014). Still, neuropsychiatric disorders come

about through genetic predisposition and environmental stress

originating in the first two decades of life (Kessler et al., 2005),

and so it is also important to create developmental models that

can help understand and develop early interventions to halt

and control disease, likely to be far more cost effective than later

interventions (Heckman, 2006).

Overall, as shown in this Perspective, on the present evidence

the great expectations for applying computational and connec-

tomic approaches to neuropsychiatry are well founded. Further

developing and refining whole-brain computational models and

bringing them to bear on understanding neuropsychiatric disor-

ders offers exciting prospects for interdisciplinary neuroscience

and the potential to help alleviate the suffering associated with

mental health disorders.
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