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A general theory of brain function has to be able to explain local and non-local network computations over
space and time. We propose a new framework to capture the key principles of how local activity influences
global computation, i.e., describing the propagation of information and thus the broadness of communica-
tion driven by local activity. More specifically, we consider the diversity in space (nodes or brain regions)
over time using the concept of intrinsic ignition, which are naturally occurring intrinsic perturbations reflecting
the capability of a given brain area to propagate neuronal activity to other regions in a given brain state.
Characterizing the profile of intrinsic ignition for a given brain state provides insight into the precise nature
of hierarchical information processing. Combining this data-driven method with a causal whole-brain
computational model can provide novel insights into the imbalance of brain states found in neuropsychiatric
disorders.
Introduction
Historically, within brain science, themost sophisticated and pre-

cise spatiotemporal information has come from single-neuron

recordings of spiking activity (Hodgkin and Huxley, 1952; Hubel

andWiesel, 1959; Mountcastle, 1957). Measuring spiking activity

could help derive the underlying mechanistic principles of

brain function (notwithstanding the mounting evidence of the

importance of glial processes). This local information has helped

develop important computational models of attention, memory,

and decision making (Amit and Brunel, 1997; Brunel and Wang,

2001; Deco andRolls, 2005;Wang, 2002). Yet, non-local informa-

tion is also very important given that neurons are connected to

other neurons in sophisticated networks with specific properties

(smallworldor not) that arecrucial for efficient brain function (Mar-

kov et al., 2013, 2014; Sporns and Zwi, 2004;Watts and Strogatz,

1998). This local versus non-local processing can be character-

ized onmany different levels, from the cortical column to brain re-

gion-specific networks to whole-brain connectivity (Sporns et al.,

2005). Abundant evidence shows that computation happens on

all these levels and that the field of brain science could benefit

from a better understanding of the computational principles at

the network level.

Here we propose a novel framework for measuring and under-

standing the intrinsic dynamics and communication principles

of brain activity across all levels of networks (from local net-

works of neurons in a brain region to higher-order whole-brain

networks). The starting point is how best to characterize the

way that information propagates from a local node through the

network.We are proposing a conceptual framework for studying
the ‘‘intrinsic ignition’’ of brain activity across time and space,

i.e., the diversity of computation in space and time. This frame-

work allows the study not only of the propagation of brain activ-

ity, but also the underlying fluctuations and their functional

network consequences. Informally, the concept of intrinsic igni-

tion refers to the capability of a given local node (single neuron or

brain area) in space to propagate feedforward and recurrent

neuronal activity to other nodes in the network as measured

by the whole-brain integration elicited. As such, intrinsic ignition

is a novel concept that can be used to describe the specific pro-

file of the ignition capabilities of brain regions in different brain

states. Furthermore, defining the variability of the ignition-driven

propagation of activity across time, we can classify each node

(neuron or brain area) according to the local degree of functional

variability, i.e., diversity and metastability.

Ignition as Intrinsic Perturbation
Computation is the fundamental unit of a general theory of brain

function, enabling a full characterization of the fundamental

neuronal principles underlying the computations involved in

cognitive, perceptual, and motor functions in health, as well as

in disease. This is a complex problemgiven that there are billions

of recurrently, synaptically coupled, non-homogeneous neurons

in the human brain. More precisely, the non-linear character of

these basic elements, primarily neurons and synapses, and

the coupling through both feedforward and feedback connec-

tions makes the brain a complex, non-linear dynamical system

(Deco et al., 2011; Sporns, 2014). Uncovering the fundamental

mechanisms underlying the emerging properties of a complex
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dynamical system will rely on solving the so-called ‘‘inverse

problem.’’ In neuroscience, the attempts of finding a solution

has adopted threemain strategies, namely: (1) correlating neural

activity with task, (2) measuring spontaneous, non-task-related,

on-going brain dynamics, and (3) lesioning or perturbing the in-

ternal dynamics of the brain.

Historically, single-neuron recordings have adopted the first

task-evoked strategy, e.g., recording activity in primary visual

cortices to simple visual cues such as orientation (Hubel and

Wiesel, 1959). Once a correlation was established, using the

third perturbation strategy, these neurons could then be lesioned

(or perturbed) to show a causal functional role, e.g., lesioning

neurons to show the effects on the brain of visual orientation

cues (Calford et al., 2000).

The second strategy measuring spontaneous activity is diffi-

cult to apply to a local framework of such single-neuron record-

ings since the spontaneous activity within these recordings has

traditionally been seen as merely noise. The advent of optical

imaging (Grinvald et al., 1986; Kenet et al., 2003) and neuroi-

maging experiments of non-linear, baseline, resting-state activ-

ity (Biswal et al., 1995; Raichle et al., 2001) has led to a shift in

focus to the second strategy of analyzing internal on-going

brain dynamics (Smith et al., 2009; Zhang and Raichle, 2010).

This has led to an emphasis on the functional significance

of the non-local compared to the local computation. The first

two strategies of measuring and analyzing brain dynamics

with or without task are orthogonal and complementary yet

only allow for understanding correlative, rather than causal,

relationships.

The third perturbation strategy has been used extensively in

experimental animals and measuring the behavioral outcomes.

For ethical reasons, such systematic perturbations are not

directly translatable to humans. Still, the field has been able

to draw on perturbations from naturally occurring lesions linked

to stroke and neurosurgical procedures. In addition, there is

a growing field of electrical brain stimulation, often as part of

neurosurgical evaluation of patients with epilepsy and resec-

tion of special cases of brain tumor (Parvizi et al., 2013;

Selimbeyoglu and Parvizi, 2010; Winawer and Parvizi, 2016).

Furthermore, there is even more widespread use of deep brain

stimulation for symptom alleviation in movement disorders,

such as Parkinson’s disease (Kringelbach et al., 2007). Still,

what has been missing is an understanding of how the propa-

gation of information is influenced by perturbation (Borchers

et al., 2011).

Ideally, measurements of activity across thewhole brain would

be useful to characterize the underlying mechanisms, similar

to how perturbation of a physical system can be described in

physics. Massimini and colleagues pioneered studies using

electroencephalography (EEG) to characterize the degree and

short-term latency of the dynamics (100–200 ms) elicited by

the external perturbation by transcranial magnetic stimulation

(TMS) (Massimini et al., 2005). This has been used successfully

for separation of brain states in healthy subjects during wakeful-

ness, dreaming, and sleeping and in different levels of anesthesia

(Casali et al., 2013; Ferrarelli et al., 2010), as well as characteriza-

tion of brain-injured patients emerging from coma (Rosanova

et al., 2012).
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This approach can be extended in several ways by using

whole-brain computational modeling of the underlying brain

activity in a given brain state (e.g., wakefulness, sleep, or coma)

measured, for example, with magnetoencephalography (MEG)

or fMRI (Deco and Kringelbach, 2014). Such models can then

be systematically perturbed in ways not possible experimentally

(Cabral et al., 2014). Crucially, rather than just measuring the

complexity of the elicited activity after perturbation, the whole-

brain model allows for the possibility of generating a long-lasting,

strong perturbation and measuring the latency of the recovery of

brain dynamics, observable over much longer time spans (on the

order of tens of seconds).

Similarly, rather than using extrinsic perturbation, one could

study the effects of a naturally occurring intrinsic perturbation.

We define intrinsic ignition as the capability of a given brain

area to propagate neuronal activity to other regions in a given

brain state, describing the whole-brain integration elicited from

the propagation of both feedforward and recurrent activity. As

such, intrinsic ignition is a novel concept that can be used to

describe the specific profile of the ignition capabilities of regions

across the network (from local networks of neurons in a brain

region to higher-order whole-brain networks) in different brain

states.

This definition of intrinsic ignition makes it possible to create

a full characterization of each ‘‘activity event’’ of the nodes

(neuron or brain areas) for a given brain state. Such intrinsic ac-

tivity event can be seen as an internal intrinsic perturbation that

could eventually elicit (or not) the propagation of activity across

the whole network. As an example, one simple way to charac-

terize an ‘‘ignition event’’ is to binarize eachmeasurement result-

ing from the thresholding of activity at different possible levels

in multimodal neuroimaging data (see Figure 1). This method

lends itself naturally to spiking neuronal activity but can easily

be extended to local field potential (LFP), MEG, and fMRI sig-

nals. However, please note that our framework could equally

well use other more sophisticated mathematical methods for ex-

tracting point processes (Caballero Gaudes et al., 2013; Karaha-

no�glu et al., 2013; Petridou et al., 2013). Such methods have

been shown to be able to describe many important aspects

of dynamics, such as, for example, resting-state networks and

complexity (Karahano�glu et al., 2013; Karahano�glu and Van De

Ville, 2015).

The proposed new paradigm allows for a description of how

the ignition capability of each node, i.e., the integration elicited,

varies for different brain states by averaging the event-related

changes (across many occurrences of the same event) induced

for each time point aligned after each event. The differences

between ignition profiles of the different nodes (i.e., neurons or

brain areas) provide a marker of different brain states.

Note that our novel concept of intrinsic ignition is different

from the ignition defined by Dehaene and colleagues (Moutard

et al., 2015), as the rapid and sustained activity elicited after

stimulation in contrast to the ultra-slow (<0.1 Hz) fluctuations

of relatively low amplitude in resting state. Both modes can

emerge from the same underlying connectome as ‘‘two dynamic

faces’’ of the strong recurrent loops built by the brain networks.

Indeed, the dense lateral intra- and inter-areal connections that

characterize brain networks make possible the emergence of a
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Figure 1. Schematic of the Process of Measuring Intrinsic Ignition
We measure the activity of a node in the network and the changes in subse-
quent activity across the whole network.
(A) Here we show the spiking activity in a neuron (green area superimposed on
the brain and with activity in the stippled green square). For each driving event,
we measure the activity in the rest of the network (in stippled red area) in the
gray time window.
(B) This corresponds to a binary connectivity matrix, where spikes are co-
occurring.
(C) In this matrix, we find the largest subcomponent as a measure of the global
integration, i.e., the broadness of communication across the network. This is
repeated for each of the driving events, producing a mean and standard de-
viation of the intrinsic ignition for each network node.
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reverberatory dynamic when the level of excitation exceeds

the level of inhibition, which can be propagated globally across

the brain. This imbalance between excitation and inhibition

could appear spontaneously (resting state) or rapidly induced

(ignition) by the action of an external stimulation, explaining in

this way both modes. Nevertheless, such concept of ignition is

not covering how an intrinsic (i.e., in the absence of any kind

of external stimulation) local activity event in a given brain state
(e.g., wakefulness and sleep) is eliciting a propagation of activity

across the network.

The novel concept of intrinsic ignition allows us to measure

the spatial and temporal diversity of propagation of information

in the whole network using our existing integration measure

(Deco et al., 2015). Briefly, for each intrinsic ignition event, a

value can be computed that measures the integration, i.e.,

the degree of broadcasting of the information arising from

both feedforward and recurrent processing (Figure 1). This inte-

gration value is defined as the length of the largest connected

component in a binarized functional connectivity matrix of the

whole network at a given window of time following the intrinsic

ignition triggering event. Note that the binarization procedure of

the activity in each node allows us to construct the functional

connectivity matrix in this window of time, where the largest

subcomponent is defined as the length of the connected

component of the undirected graph defined by the binarized

matrix considered as an adjacency matrix. This is the largest

sub-graph in which any two vertices are connected to each

other by paths and which connects to no additional vertices

in the super-graph. Similar to event-related potential (ERP)

analysis, the intrinsic ignition for each node in a given network

is fully characterized by the mean and standard deviation

across events.

At the network level, the mean of the intrinsic ignition in a

network allows us to show the spatial diversity as the differences

in average intrinsic ignition profiles across the different nodes for

different brain states. Furthermore, at the network level, we can

characterize the temporal diversity by measuring the variability

of the intrinsic ignition-driven increase of integration across

events by classifying nodes according to the local degree of

functional variability. This functional variability is a measure of

diversity across time, which is related to the fundamental func-

tionality of a given node, linked to high or low levels of local meta-

stability, i.e., the variability of a state that falls outside the natural

equilibrium state of the system but persists for an extended

period of time. In other words, different levels of temporal diver-

sity in a given node can be thought of as a measure of local func-

tional variability or metastability and thus describe the versatility

of a given network node.

Hierarchies of Computation
There is evidence from the field of connectomics using graph

theory to reveal a topological hierarchy in structural connectivity

of the brain (Deco et al., 2015; Sporns et al., 2000). But it is pres-

ently unclear whether this structural hierarchical connectivity

is reflected in the dynamical processing hierarchy. Measuring

the intrinsic ignition of nodes (mean and variability) in a network

makes it possible to investigate the important question of

whether there is a hierarchy of information processing.

Figure 2 shows the spectrum of possibilities for hierarchical

processing. At one end (shown in Figure 2A), the intrinsic ignition

is equal for all nodes in the network. This would be the equivalent

of a weak, flat non-hierarchy, demonstrated by a single circle,

where each node has equal computational importance. At the

other end (shown in Figure 2D), intrinsic ignition is uniform, linear

gradation between nodes, which corresponds to a strong hierar-

chy in which a node at the top of the linear hierarchy has the
Neuron 94, June 7, 2017 963
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Figure 2. Spectrum of Possible Dynamical Processing Hierarchies in the Brain
(A) Weak, flat non-hierarchy is derived when the intrinsic ignition is equal for all nodes in the network, which is shown by a single level of nodes.
(B) On the other hand, a ‘‘staircase’’ hierarchy is suggestive of distinct circles (or orbits) of groups of nodes with equal computational importance. Such a scheme
would correspond to the ideas of a global workspace with a clear computational quantum jump between sensory regions and regions in the global neuronal
workspace.
(C) There are many other possibilities of graded, non-uniform hierarchies with non-uniform, clustered circular orbits for the network nodes.
(D) Strong, graded, uniform hierarchy can occur when a node at the top of the linear hierarchy has the highest intrinsic ignition, which is demonstrated by a uniform
distribution of levels (rings) for each node in the network.
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highest intrinsic ignition, demonstrated by a uniform distribution

of rings for each node in the network.

Between these poles of weak and strong hierarchies, there

aremany significantly different functional possibilities. One pos-

sibility is where the intrinsic ignition resembles a staircase, sug-

gestive of distinct circles (or orbits) of groups of nodes with

equal computational importance. These groups are, however,

clearly stratified, shown in Figure 2B by two orbits with nodes

of similar intrinsic ignition. This scheme would correspond to

the idea of the global workspace, where there is a clear, compu-

tational, quantum jump between sensory regions and regions

in the global neuronal workspace (Baars, 1989; Dehaene and

Changeux, 2011; Dehaene et al., 1998).

Another possibility is that the profile of network nodes shows

a non-uniform gradation in intrinsic ignition, suggestive of a hier-

archical organization of a non-uniform graded variety. This is

schematically demonstrated in Figure 2C by the non-uniformity

circular orbits for each node.

Whole-Brain Evidence for Hierarchy of Intrinsic Ignition
The key question of the dynamical processing hierarchy across

human brain regions can be addressed using the concept of

spatiotemporal diversity as defined by intrinsic ignition. To this

end, we here investigated this issue by using the spontaneous
964 Neuron 94, June 7, 2017
brain activity from a group of 16 healthy individuals measured

with fMRI (van Hartevelt et al., 2015).

The procedure of defining events used the simple method

of Tagliazucchi and colleagues to binarize the fMRI series

in the following way (Tagliazucchi et al., 2012). An event is

defined as a binary signal resulting from the transformed func-

tional time series (BOLD fMRI) into Z scores, zi(t), and imposing

a threshold, q, such that the binary sequence si(t) = 1 if zi(t) > q

and is crossing the threshold from below and si(t) = 0 otherwise

(shown schematically in Figure 3). If the top signal (in red) refers

to the analysis of the ignition capability of a given brain region,

an event is the point where the signal crosses the threshold from

below. The x axis represents the time whereas the y ordinates

represent the different brain areas. The brain was segmented

into 758 regions (based on running a K-means algorithm

run on the standard AAL atlas, Automated Anatomical Labeling,

including all cortical and subcortical areas) (Tzourio-Mazoyer

et al., 2002). Each single black vertical bar refers to an event

for the corresponding brain region.

For each brain region, we computed the mean and standard

deviation of the integration associated with events. Specifically,

we used a window size restricted by the intra-event duration for

observing the evolution of the elicited integration and used the

maximum value of integration within that given time window.
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Figure 3. Intrinsic Ignition Hierarchical Organization Demonstrated with Empirical Data
(A) Neuroimaging signals, such as BOLD, can be treated in the samemanner as spiking data by applying a thresholdmethod to define events. This again gives rise
to a connectivity matrix for each intrinsic ignition event for which the integration, i.e., the largest subcomponent, can be measured.
(B) When applied to fMRI signals of spontaneous activity in normal healthy participants using a very fine-grained parcellation, sorted from largest the intrinsic
ignition of nodes, we found, for both mean and standard deviation, an inverted sigmoid profile. This result indicates that there is a hierarchy of function across
brain regions, compatible with the global workspace theory. Yet, this hierarchy is not stratified in a staircase manner. Still, there are clearly regions with higher
intrinsic ignition variability, which would be more computationally relevant and could play a central role in broadcasting information than the regions with low
intrinsic ignition.
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Figure 3 shows the profiles of the mean and variability of the

ignition-driven integration. Thisshowsan inverse sigmoidal curve,

suggesting that the hierarchical organization is of the non-uni-

form, graded variety and thus closer to the scenario described

in Figure 2C than to the other scenarios. Although, it should be

noted that, with respect to the global workspace scenario, the

results confirm that there is a hierarchy of function across brain

regions. However, this hierarchy is not stratified in a staircase

manner as suggested by the strong version of the global work-

space theory, which is a surprising and non-trivial result. Still,

there are clearly regions with higher intrinsic ignition variability,

suggesting that they aremore computationally relevant and could

play a central role in broadcasting information than the regions

with low intrinsic ignition, which are more likely to be related to

sensory processing.

The Role of Whole-Brain Computational Modeling for
Binding Information
The diversity of computation has to be understood at the network

level, butwhile intrinsic ignition is an importantway to uncover the

computational role of agivennode, this doesnotprovide informa-

tion about what happens when this node is eliminated. This com-
plementary question cannot be answered by simple data-driven

methods but requires causal whole-brain models. Given such a

model, carefully adjusted to empirical data, it is possible to lesion

and perturb the model offline and study the consequences (van

Hartevelt et al., 2015). For example, it is possible to study how

the spatiotemporal diversity will change following the elimination

of any given node.

In order to investigate these challenging questions more care-

fully, we propose future studies testing the robustness of compu-

tational diversity using a whole-brain model fitting resting-state

empirical data. Briefly, whole-brainmodels link anatomical struc-

turewith functional dynamics. Structural connectivity data canbe

obtained by diffusion weighted/tensor imaging (DWI/DTI) com-

bined with probabilistic tractography, which is a measure of the

density of fibers between brain regions. The global dynamics of

the whole-brain model results from the mutual interactions of

local node dynamics coupled through the underlying empirical

anatomical structural connectivity matrix. Typically, the temporal

dynamics of local brain areas in thesemodels is taken to be either

asynchronous (spiking models or their respective mean-field

reduction) or oscillatory (Deco and Kringelbach, 2014). Recently,

evidence has emerged for a promising version using, for each
Neuron 94, June 7, 2017 965



Figure 4. Using Whole-Brain Models to Determine Causal Functional Roles of Nodes
(A) Causal whole-brain methods can be used to investigate the effects on the computational diversity fitting the model to the empirical data.
(B) The removal or perturbation of the brain regions with the highest level of intrinsic ignition can provide causal information on the functional importance
of individual brain regions in terms of how the profiles of intrinsic ignition might change, similar to how cutting off the head of a hydra may sprout many more
heads. As such, this makes it possible to investigate the change of intrinsic ignition of individual nodes across different brain states and in neuropsychiatric
disorders.
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brain area, a local dynamical model given by a normal form of bi-

furcations (e.g., a supercritical Hopf bifurcation) (Deco et al.,

2016; Kringelbach et al., 2015). The normal form of a Hopf bifur-

cation can describe the transition from asynchronous noisy

behavior to full oscillations and thus unify previous asynchronous

and full oscillatory scenarios. The main parameter that is manip-

ulated for fitting the empirical data and for analyzing the model is

the so-called global coupling parameter G. The global coupling

parameter G corresponds to the conductivity of the synaptic

connections, which is considered here, for simplicity, uniform

across the brain. Our preliminary results indicate that theworking

point of a whole-brain computational model of the resting state

corresponds to where there is maximal hierarchical processing

and thus maximal entropy. Further preliminary results suggest

that this is not the case for other dynamic brain states, such as

deep sleep or drug-altered states. As such, this could provide

novel insights into the dynamic processing of hierarchy in

different brain states.

Similar to our recent work, to the effect of removing so-called

‘‘binding nodes’’ (Deco et al., 2017), future studies could use

causal whole-brain methods to investigate the effects on the

computational diversity of the removal or perturbation of thebrain
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regions with the highest level of intrinsic ignition (see Figure 4).

This would provide information on the functional importance

of individual brain regions. As such, it would also be possible

to investigate the change of intrinsic ignition of individual nodes

across different brain states (Figure 4B). It would also be of

high interest to use direct brain stimulation of such binding

nodes in patients undergoing neurosurgical investigations to

predict and investigate their causal role in cognition (Parvizi

et al., 2013).

Conclusion
In this Perspective, we have provided evidence for a powerful

novel framework for understanding the underlying basis of neu-

ral communication and network organization. The concept of

intrinsic ignition provides a simple way to investigate the compu-

tational spatiotemporal diversity of network nodes and provides

direct evidence on the hierarchical structuring of information

processing in the network. This method can be applied to multi-

modal neuronal data; from the single neuron to local field poten-

tials, MEG, and even fMRI. Combining this data-driven method

with a causal whole-brain model can provide strong evidence

on the functional role of a network node by measuring the
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consequences of its elimination. As such, this is a powerful new

method that can provide strong evidence on brain computation

on many levels from the single neuron to groups of neurons to

the whole-brain level.

There are thus many important implications for using this

framework to understand hitherto poorly understood problems

such as altered states of consciousness. But perhaps most

importantly, it provides new tools for understanding the imbal-

ances in functional organization found in neuropsychiatric disor-

ders, and, when combined with whole-brain models, may even

provide insights into novel ways of rebalancing the whole-brain

networks in health and disease.
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