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Abstract

Deep brain stimulation (DBS) is a remarkably effective clinical tool, used primarily for movement
disorders. DBS relies on precise targeting of specific brain regions to rebalance the oscillatory beha-
viour of whole-brain neural networks. Traditionally, DBS targeting has been based upon animal
models (such as MPTP for Parkinson’s disease) but has also been the result of serendipity during
human lesional neurosurgery. There are, however, no good animal models of psychiatric disorders
such as depression and schizophrenia, and progress in this area has been slow. In this paper, we use
advanced tractography combined with whole-brain anatomical parcellation to provide a rational
foundation for identifying the connectivity ‘fingerprint’ of existing, successful DBS targets. This
knowledge can then be used pre-surgically and even potentially for the discovery of novel targets. First,
using data from our recent case series of cingulate DBS for patients with treatment-resistant chronic
pain, we demonstrate how to identify the structural ‘fingerprints’ of existing successful and unsuccess-
ful DBS targets in terms of their connectivity to other brain regions, as defined by the whole-brain
anatomical parcellation. Second, we use a number of different strategies to identify the successful fin-
gerprints of structural connectivity across four patients with successful outcomes compared with
two patients with unsuccessful outcomes. This fingerprinting method can potentially be used pre-
surgically to account for a patient’s individual connectivity and identify the best DBS target. Ulti-
mately, our novel fingerprinting method could be combined with advanced whole-brain computa-
tional modelling of the spontaneous dynamics arising from the structural changes in disease, to
provide new insights and potentially new targets for hitherto impenetrable neuropsychiatric
disorders.

Introduction

Deep brain stimulation (DBS) has shown remarkable results in helping to alleviate the symptoms of otherwise
treatment-resistant movement disorders such as Parkinson’s disease and dystonia [ 1] with over 100 000 patients
having been implanted to date [2]. There is a growing interest in using DBS for other conditions such as
neuropsychiatric disorders [3], yet there is a shortage of suitable animal models to test potential targets.
Serendipitous discoveries during human lesional neurosurgery have informed some targets such as thalamic
regions [4, 5] and periventricular/periaqueductal grey [6] for treatment-resistant chronic pain [7]. However, the

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft



I0P Publishing

New]. Phys. 17 (2015) 015001 H M Fernandes et al

recent discovery of a novel DBS target in the anterior cingulate cortex (ACC) for very severe treatment-resistant
chronic pain [8] has raised the important question of which region of this heterogeneous brain region is the
most effective DBS target for successful outcome.

The underlying mechanisms of DBS are still largely unknown, but it has been shown that the efficacy
of DBS is related to at least three factors: (1) the stimulation parameters such as voltage, frequency and
amplitude; (2) the physiological properties of the local neural tissue (which may differ by disease state); and
(3) the interactions between the electrode and the surrounding neural tissue with whole-brain structural
connectivity of the targeted region [9]. The evidence suggests that these biophysical factors combine with
the individual structural connectivity of the DBS target to help rebalance widespread dynamic brain
networks [1, 10].

The study of structural brain connectivity has given rise to connectomics as the comprehensive map of neural
connections in the brain on many spatial scales [ 11]. In humans, this map uses diffusion weighted/tensor
imaging (DWI/DTI) to measure the diffusion of water molecules constrained by the white-matter fibre tracts,
typically on the scale of millimetres [12, 13]. The connectivity between brain regions can be reconstructed using
methods such as probabilistic tractography utilizing the underlying measures of fractional anisotropy, local level
of mean diffusivity, radial diffusivity or axial diffusivity [14, 15].

Recent studies have identified how integrated physiological systems form a network of interactions that
affects psychological function. These systems are characterised by specific network structures, suggesting a
robust dependency between topology and function on complex networks [16—18].

Connectomics depends on parcellations of the brain into functionally meaningful and distinct regions,
which historically have been based on careful studies of the properties of the underlying brain tissue [19].
Parcellations used for human neuroimaging research typically include tens to several hundreds of regions [20].
The optimal parcellation of brain regions is not currently clear but some of the most popular choices include the
Hagmann parcellation with 66 cortical regions [21] and the automated anatomical labeling (AAL) parcellation
with 116 cortical, subcortical and cerebellar regions [22].

Combining parcellation schemes with probabilistic tractography in humans has made it possible to e.g.
subdivide the human thalamus into significant clusters of connectivity [23], which corresponded with existing
maps of established patterns of connectivity [24]. The idea of measuring the inter-regional structural
connectivity where each functional region has a distinct ‘fingerprint’ was demonstrated in a structural
connectivity database in primates [25]. Klein and colleagues have provided an excellent overview of existing
studies using tractography for fingerprinting structural connectivity [26] with further progress being made, such
asrecent inter-species comparisons of functional connectivity in humans and macaques [27].

The structural connectivity between regions in a given parcellation scheme can then be further elucidated
using graph theoretical tools to demonstrate global measures such as small-worldness [28], and local measures
such as modules defined as locally connected clusters [29] and hubs which are central brain regions with high
measures of degree and centrality [30].

These advances can potentially help in identifying the necessary and sufficient structural connectivity of DBS
targets using neuroimaging in existing patient groups, and subsequently as a pre-surgical tool and a rational
method for discovering new DBS targets.

In this paper we use advanced probabilistic tractography combined with a whole-brain anatomical
parcellation to provide an innovative foundation for identifying the structural connectivity fingerprint of
existing, successful DBS targets. First, using data from our recent case-series of cingulate DBS for patients with
treatment-resistant chronic pain, we demonstrate how to identify the structural ‘fingerprints’ of existing
successful and unsuccessful DBS targets in terms of their connectivity to other brain regions, as defined by the
anatomical parcellation. Second, conservative pattern recognition methods are used to fingerprint the structural
connectivity across patient groups with successful and unsuccessful outcomes. Potentially this fingerprint
could be used pre-surgically to account for a patient’s individual connectivity and identify the best DBS target.
This method may also be employed to search the whole brain to help identify novel DBS targets for treatment-
resistant disorders. Furthermore, our novel fingerprinting method could be combined with advanced
whole-brain computational modelling of the spontaneous dynamics [31] arising from the structural changes
in disease to provide new insights and potentially even new targets for hitherto impenetrable psychiatric
disorders.

Methods

Figure 1 summarises the methods described in the following. Briefly, we analysed the electrode positions in DBS
implanted patients with chronic pain at the individual level, calculated the transformation to MNI space and
estimated the current spread to generate likely left and right anatomical regions of stimulation. These seed masks
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Figure 1. Novel method for fingerprinting structural connectivity of DBS electrodes. (A) Electrode localisation. (B) Creation ofa
binary mask of the effective electric field distribution around the DBS electrode. (C) Registration of a brain parcellation template
(AAL) to each patient native space, and further probabilistic tractography between the left and right DBS electrode and these brain
regions. A fingerprint of the resulting normalised structural connectivity strength for the left (blue) and right (right) DBS electrodes
was represented in different ways, such as radar-plots (top), logarithmic scale normal plots (middle) and 3D glass brain
reconstructions (bottom).

were then used together with each individual’s DTI to estimate the structural fingerprints of each electrode.
We then used a conservative strategy to estimate the necessary underlying connectivity for patients with
successful (SO) and unsuccessful (UO) outcomes.
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Table 1. Demographics and clinical characteristics of patients. For each patient, information about the clinical success rating, sex and age, as
well as different clinical details such as the pre-operational visual analogue scale (VAS), date of surgery and origin and location of the pain are
listed.

Pain
Patient Sex Age at surgery Outcome Status Origin Location Date of surgery
SO1 Male 49 Successful FBSS® Right hemibody 12 June
SO2 Male 51 Successful FBSS* Rightleg 10 October
SO3 Female 46 Successful FBSS® Whole Spine 12 March
SO4 Male 46 Successful BPI” Rightarm 12 November
Uo1 Male 52 Unsuccessful Unknown Chest 11 November
U0o2 Female 58 Unsuccessful Head injury Right hemibody 12 May

* Failed back surgery syndrome.
® Brachial plexus injury.

Patients
We analysed data from six patients with neuropathic chronic pain refractory to medication, presented for DBS
to Oxford Functional Neurosurgery. This sample includes successful (n = 4) and unsuccessful cases of DBS
(n=2),based onlong-term clinical postoperative assessments. Further demographic and clinical details about
these patients can be found in table 1.

This study was approved by the National Research Ethics Service committee South Central—Berkshire in
Bristol—and informed consent was obtained from all patients.

Surgical procedure

Quadripolar electrodes Medtronic model 3389 (Medtronic, Minneapolis, USA) for DBS were implanted in the
ACC bilaterally. Before surgery, anatomical high-resolution T1 and T2 MRI scans with 1 X 1 X 1 mm voxel size
were acquired to plan the electrode implant protocol. The Cosman—Roberts—Wells stereotactic frame was
applied to the patient’s skull under local anaesthetic. For a detailed description of the surgical procedure, see
Kringelbach and colleagues [32]. A 5V bipolar stimulation between the first (C0) and last (C3) contacts, with a
frequency of 130 Hz and a pulse duration of 450 ys was applied to all the patients.

Image acquisition

All DTI data for the patients were acquired on a Philips Achieva 1.5 Tesla Magnet in Oxford. DWI was
performed using a single-shot echo planar sequence with coverage of the whole brain. The scanning parameters
were echo time of 65 ms, repetition time 0of 9390 ms, 176 X 176 reconstructed matrix, reconstructed voxel size of
1.8 X 1.8 X 2 mm. Furthermore, DTI data were acquired with 33 optimal nonlinear diffusion gradient directions
(b=1200 s mm2) and one non-diffusion weighted volume (b= 0). Pre- and postoperative stereotactic CT scans
were also acquired.

DBS electrode localisation and co-registration to DTI space
For each patient, a postoperative CT scan was used to confirm the DBS electrode contact positions. An
individual single-voxel binary mask for each electrode contact was then created.

In order to achieve a good transformation of these masks (CT space) to DTI space, we used the MRI T'1 scan
as an intermediate reference image, taking advantage of its good spatial resolution to improve the accuracy of
our linear registration processes. Both the CT and DTI (b0 volume) were co-registered to the T1 space usinga
3D rigid-body transformation (6 DOF) and a nearest-neighbour interpolation method. The transformation
matrix resultant from the DTT to T1 space linear co-registration was inverted and applied to the electrode masks
(T1 space), using a trilinear interpolation method. For each electrode transformation, we identified and created
abinary mask of the voxel with the highest intensity. This new mask represents the voxel with highest probability
of containing the single-voxel electrode contact transformation from the CT to the DTI space.

This set of operations, which included the creation, linear co-registration and transform application, were
performed using the FLIRT and ApplyXFM tools from FMRIB Software Library (FSL) where FMRIB stands for
Functional Magnetic Resonance Imaging of the Brain (www.fmrib.ox.ac.uk/fsl/, Oxford) [33].

Simulation of the electric field distribution
A simple empirical model for volume of activated tissue (VAT estimation, developed for conditions of
monopolar stimulation and validated for clinical cases of movement disorders was used in this study [34].

4
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where 2 is the tissue impedance, U the applied voltage and ki, k5 and k4 the second-order polynomial
coefficients of the simplest model with close-to-best accuracy (model 10), resultant from a multivariate 2D fit,
with values of —1.0473, 0.0473 and —1.0473 respectively.

This simplified 2D model can be adopted as a fast approach for estimating the VAT radius for any given
voltage between 1-10 V and impedance 500-2000 €2 [34].

The stimulation effects using contacts C0 (—) and C3 (+) as active are believed to affect the neural tissue
surrounding C1 and C2 due to the nature of the electric field distribution in the bipolar stimulation between
non-adjacent contacts (+). In this case, the resulting spatial effects of the stimulation will be lower in the radial
direction and higher in the z-axis [35]. There is currently no optimal solution for modelling the electric field
distribution of bipolar stimulation around and between non-adjacent active contacts, which can realistically
capture the neural activation in the complex brain tissue environment. Due to the limitations of the model used
for estimating the VAT (developed for monopolar stimulation assuming a perfectly isotropic electromagnetic
field distribution around the contact), the spatial resolution of DTTimages and the lack of in vivo measurements
of tissue impedance, we decided to adopt a simplified solution of the electrode configuration and stimulation
settings. Therefore, our final strategy was to simulate the application of 3 V to all the four electrode contacts
previously registered to DTI space, using a value of tissue impedance of 1003 £2 [34].

For each patient, The VAT around each electrode contact of the same DBS lead was simulated and later
merged, creating a single continuous VAT around the four contacts of each DBS lead. The effect of the two
stimulation parameters on the final simulated VAT around each DBS lead was also studied.

Fingerprint of individual brain structural connectivity

The construction of fingerprints of individual brain structural connectivity consisted of a two-step process. First,
the nodes of the network were defined using brain parcellation techniques. Secondly, the connections between
the DBS electrode to the nodes in the parcellation were estimated using probabilistic tractography. In the
following we outline the details involved in each step.

Brain parcellation

The parcellation of the entire brain in native DTI space into 116 cortical, subcortical and cerebellar regions (table

S1) was accomplished using the AAL template, where each region represents a node of the brain network [22].
We used the Flirt tool (FMRIB, Oxford) [33] to linearly co-register the standard ICBM152 in MNI space

[36] into the T1-weighted structural image, by using an affine registration (12 DOF) and a nearest-neighbour

interpolation. The resulting transformation matrix was subsequently concatenated with the previously created

T1 to DTI native space transformation matrix, allowing a direct co-registration of the AAL template in MNI

space to the diffusion MRI native space. This last transformation was accomplished using a nearest-neighbour

interpolation method to ensure that discrete labelling values were preserved.

Fingerprint of electrode brain connectivity

We used the FDT toolbox in FSL (version 5.0, www.fmrib.ox.ac.uk/fsl/, FMRIB, Oxford) to carry out the
multiple processing stages of the diffusion MRI data. The initial pre-processing involved a correction of head
motion and eddy current gradient induced image distortion. We further modelled for crossing fibres within
each voxel of the brain using a Markov Chain Monte Carlo sampling algorithm to build up distributions on
diffusion parameters and estimate the local probability distribution of fibre direction at each voxel of the brain
[37]. For this step, we used an automatic estimation of two fibre directions within each voxel, which can
significantly improve the tracking sensitivity of non-dominant fibre populations in the human brain [38].

We estimated the connectivity probability by applying probabilistic tractography at the voxel level using a
sampling of 5000 streamline fibres per voxel. Brain boundaries were defined based on a binary brain for the
whole native brain (skull extracted). The connectivity from a seed voxel i to another voxel j was defined by the
proportion of fibres passing through voxel i that reach voxel j [38]. This was then extended from the voxel level
to the region level, i.e. in a brain region consisting of # voxels, 5000* 11 fibres were sampled. The connectivity
probability P;; from region i to region j is calculated as the number of sampled fibres in region 7 that connect the
two regions divided by 5000*#, where # is the number of voxels in region i.

For each DBS electrode, the connectivity probability to each of the 116 AAL regions was calculated. We
implemented the calculation of regional connectivity probability using in-house Perl scripts. Regional
connectivity was normalised using the regions’ volume expressed in number of voxels. For each patient, a
2 X 116 weighted matrix was constructed, representing the structural connectivity networks of stimulation
across the brain for the left and right DBS electrode as individual seed regions. This method allows for analysis of

5
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Figure 2. Example of the fingerprint of structural connectivity from left and right electrode in a patient (SO1). Different
representations of the produced stimulation networks, in radar, normal logarithmic scale and 3D reconstructed glass brain (lateral
view represented), respectively, were produced for each patient.

the impact of stimulation of each individual DBS electrode, as well as the effect of combined bilateral stimulation
over the whole brain network.

Statistical analysis and pattern recognition
Having constructed a probabilistic network of structural connectivity stimulation for each patient, we focused
on decomposing the data into different network properties, by applying simple but potentially powerful
statistical measures. For every patient, we started by analysing the pattern of stimulation for each probe
separately. A logarithmic version of this connectivity strength profile was produced to reduce the wide range of
values to a give a better visual indication of the nodes being stimulated rather than emphasising the connectivity
strength. At this stage, we aimed to identify potential intra- and inter-group lateral network differences.

We then focused on the global effect of bilateral stimulation over the whole brain network, by concatenating
the data of both DBS electrodes. We carried out three separate analyses:

Global network properties

We calculated the global graph theoretical measures (number of fibres, strength and number of fibres per
connection) [39], as well as simple statistical measures (mean, standard deviation and median). This allowed us
to quantify and decode the properties that characterise the structural connectivity fingerprint of each outcome

type group.

Group-exclusive target areas

In addition, a conservative approach was also used to extract group intrinsic nodal properties by identifying the
nodes that survived a threshold of 5% of the maximum connectivity strength of the network in the participant,
and were found common to all patients within the same group.

Connectivity strength comparing groups

Supplementary permutation-based paired t-tests identified which network nodes showed significant group
differences in terms of connectivity strength. Under the null hypothesis there should be no differences in the
average connectivity strength between the two groups, while permutation based paired t-tests were produced for
every pairwise comparison to correct for multiple comparisons, using a statistical criterion for between-group
differences setat p < 0.05.

Results

Using an automatized neuroimage processing pipeline, we extracted the fingerprints as the structural
connectivity between the DBS electrodes in six patients with DBS in the ACC for treatment-resistant chronic
pain. Figure 2 shows multiple ways of visualising this fingerprint from left and right hemisphere to the

116 AAL regions as a radar-plot and as 2D area-plots (normal and logarithmic) as well 3D visualisations.
Figure 3 shows the full fingerprints of the four successful (SO1-SO4) and the two unsuccessful (UO1-UO2)
outcomes.

Specifically, the results from graph analysis (table 2) demonstrated that there are clear group differences
in the structural networks excited by the combined stimulation of the left and right DBS electrodes. For
the patient group with successful outcomes, network patterns suggest a small dominance on the
connectivity of the left side with higher number of connections in the left hemisphere (58.5 +26.1;

6
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Figure 3. Fingerprints of six patients with successful (SO1-SO4) and unsuccessful (UO1-UO2) outcomes. For each patient, a normal
(top) and a logarithmic scale (bottom) graph of the structural connectivity for the left and right DBS electrodes were constructed. A
3D glass brain reconstruction of the resulting brain stimulation networks was also produced (lateral and dorsal view represented). The
red sphere represents the centre of gravity of the simulated VAT. The thickness of each blue edge indicates the strength of connection
(in logarithmic scale) between the source of stimulation and different anatomical targets (AAL regions), each represented by a green
sphere, positioned according to their centroid stereotaxic coordinates.

mean *s.d.) compared to the right hemisphere (55.3 £10.6), revealing an increased total number of fibres
being stimulated (L: 341.1 + 86.85; R: 327.49 + 89) and a trend of having significantly different fingerprint
of anatomical targeting between groups of patients with successful and unsuccessful outcomes (p=0.21).
Additionally, there is a significant group difference in the number of connection on the right
hemisphere (p=0.04).

A lateralisation effect is also found for the group of patients with unsuccessful outcomes but the tendency is
inversed with fewer connections to the left hemisphere (74.5 £ 4.95) compared to the right hemisphere
(77 £7.1). The opposite pattern is found for the strength of the connections from the left electrode which is

7
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increased compared to that of the right electrode (L: 412 + 6.05; R: 385.8 +40.95), suggestive of an imbalance
between the number and strength of the connections on this network, i.e. less connections are being established
with increased strength to the nodes.

The resulting stimulation networks for the combined left and right electrodes (LR) suggest that thereis a
larger number of connections being established between the DBS electrodes and the anatomical regions with
increased overall strength for the UO group (degree: 86 + 4.2; strength: 797.8 + 34.9) in comparison with the SO
group (degree: 71.3 = 21.3; strength: 668.6 + 146.82).

There are no significant hemispheric differences (p = 0.61) between the number of fibres per
connection in the global networks (LR) between the two groups (SO: 10 + 3.28; UO: 9.28 £ 0.1). This is likely
due to the opposite hemispheric patterns of connectivity between groups of successful and unsuccessful
outcomes.

The global structural connectivity fingerprint of each group was obtained by combining the data from the
left and right DBS electrodes (figures 3 and 4). The normalised connectivity patterns for the two groups show
not only that different areas are being stimulated, but also that the distribution of the strength along the
stimulation targets is changed between groups. This can be seen by visually inspecting the mean and median
group plots, where the connectivity to regions in the anterior and posterior cingulate cortices, middle frontal
gyrus and thalamus is increased in the group of patients with unsuccessful outcome, contrasting with
the decrease in connectivity to regions in the caudate and supplementary motor, when compared with the
successful outcomes.

A conservative analysis was undertaken to discover similarities and differences in the anatomical target
patterns across all patients in each group. This revealed that the left and right DBS electrodes in both groups
have the two common regions of left and right anterior and middle cingulate cortices (AAL 31-34). Exclusive
regions of the left and right middle superior frontal gyrus and posterior cingulate cortex (AAL regions 23, 24, 35
and 36) were found in the group of patients with unsuccessful outcome, while one region of the left
supplementary motor cortex (AAL region 19) in the patient group with successful outcomes, as shown in
figure 5 and table 3. This suggests that a successful stimulation fingerprint for chronic treatment-resistant pain
will have to reach supplementary motor areas, while avoiding middle superior frontal and posterior cingulate
regions.

We also undertook a less conservative analysis using permutation-based paired t-tests to correct for multiple
comparisons and calculate significant local differences in region connectivity strength between successful and
unsuccessful patients (see methods). Using this less conservative, and potentially more sensitive, measure, we
found 11 significant local differences in connectivity strengths between the DBS electrodes and brain regions
between the SO and UO groups (p < 0.05, see figure 6 and table 4). Ten regions of the hippocampus, vermis,
orbitofrontal, frontal, cingulate and occipital cortices, had significantly stronger connectivity strength in the UO
group compared to the SO group, while only one region of the supramarginal gyrus had significantly stronger
connectivity strength in the SO group.

Discussion

We have presented a new automatized method for ‘fingerprinting’ the structural connectivity from a DBS
electrode to a whole-brain parcellation. This method can identify the necessary and sufficient structural
connectivity patterns responsible for successful outcomes in existing DBS patient groups. Once these
fingerprints are established they can be used as part of pre-surgical planning and as a rational way to discover
new DBS targets in various disorders including neuropsychiatric disorders.

We demonstrated the potential and usefulness of this method in patients with DBS in the cingulate cortex for
severe treatment-resistant chronic pain. While this new DBS target has shown significant success in alleviating
the emotional suffering in treatment-resistant chronic pain [8, 40], we still lack a principled way for accurate
DBS electrode placement. In order to evaluate the underlying features of a successful DBS implant, we extracted
the fingerprints of structural connectivity in a group of four chronic pain DBS patients with successful outcomes
as well as in a group of two patients with unsuccessful outcomes.

Many different potential pattern recognition algorithms, such as principle component analysis and
machine learning, can be used to detect the necessary and sufficient properties of successful DBS targets, all of
which are obviously determined and constrained by the quality of the underlying data. Furthermore, for
each patient, additional brain global and local graph theoretical measures can be combined with more
detailed clinical information to produce a better characterisation of the successful connectivity stimulation
patterns. Given the small sample size of the two patient groups, we opted here for two simple methods to
identify common and different fingerprint patterns between groups. The most conservative method

9
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Figure 4. Fingerprints of the normalised structural connectivity for patient groups with successful and unsuccessful clinical outcome.
(A) Contour-plots illustrating the strength and uniformity of the structural connectivity patterns across patients with SO (I, IIT) and
UO (I, IV) in normal (I, IT) and logarithmic (III, IV) scales. (B) Group statistics, including mean with standard error limits (I, IT) and
median (I, IV) graphs of patients with SO (I, III) and UO (IL, IV), showing the average/median group patterns of anatomical
targeting and the normalised intensity of these connections.

assumed that significant connectivity to a given region had to be present in all patients within and between
groups.

This conservative method of pattern recognition found that successful fingerprints for treating treatment-
resistant chronic pain should have connectivity to supplementary motor regions, while avoiding middle
superior frontal and posterior cingulate regions.

The results of using a less conservative analysis using permutation-based paired t-tests to identify local
differences between the two groups found 11 significant group differences in connectivity strength between the
DBS electrode and brain regions. The successful outcomes were associated with a significant decrease in
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Figure 5. Conservative method for estimating group differences in terms of common areas that to all subjects of the same group. A 3D
glass brain reconstruction was produced to show these group-specific anatomical targeting pattern, shown from the frontal (A),
lateral (B) and dorsal (C) views. AAL regions in green indicate areas that are found common to all patients with successful clinical
outcome, but not to patients with unsuccessful outcomes, where orange areas have the opposite pattern.

Table 3. Brain areas found to be common and exclusive to all subjects of the same group for the two groups under analysis, after a 5%
threshold was applied to the normalised fingerprints.

node AAL region Group
19 Left supplementary motor area SO

23 Left superior frontal gyrus, medial Uuo

24 Right superior frontal gyrus, medial Uo

35 Left posterior cingulate Uuo

36 Left posterior cingulate Uo

connectivity to ten regions of the hippocampus, vermis, orbitofrontal, frontal, cingulate and occipital cortices,
and significant stronger connections to one region of the supramarginal gyrus, when compared with
unsuccessful outcomes.

These preliminary results are suggestive of different lateralisation effects on the stimulation networks in
successful and unsuccessful patients, which will require further validation in future studies. It should be noted
that the statistical significance of this lateralisation effect is strongly dependent on the sample size, and that this
asymmetry could also be associated with consistent differences in the electrode targeting, as well as to group
variations in the intrinsic structural network properties.

These findings will need to be replicated in a much larger sample of patients but offer potential insights that
can be used for future pre-surgical planning. It might also be instructive to use our novel DBS fingerprinting
method with a more fine-grained parcellation of the cingulate cortex, such as the recent parcellation by
Beckmann and colleagues [41], which may help further inform future DBS targeting. These findings should be
seen in the context of previous research which has used tractography to define likely cingulate regions stimulated
by subgenual cingulate DBS for treatment-resistant depression [42]. The authors found that treatment efficacy
appears to be mediated via effects on a distributed network of frontal, limbic, and visceromotor brain regions.
However, this result is tempered by the recent disappointing long-term clinical outcomes of subgenual cingulate
DBS for treatment-resistant depression [43].

Fingerprinting of structural brain connectivity is beginning to gain popularity as a tool for understanding
brain function [26] and has recently been extended to encompass functional brain connectivity [44]. This allows
for a better understanding of the temporal interactions between brain regions and specifically that frequency-
specific neuronal correlations in large-scale brain networks may be fingerprints of the fundamental
computations underlying information processing. More generally, however, such correlations will need to be
supported by computational models in order to understand the underlying mechanistic principles of integration
and segregation of information in the human brain [31, 45].

Ultimately, the novel fingerprinting method presented here has helped shed new light on the necessary and
sufficient fingerprints of structural connectivity underlying successful outcome of DBS implantation. As such
this has the potential to aid pre-surgical planning of DBS. In addition, the method also opens up for the
discovery of new potential targets with similar structural connectivity fingerprints. Further potential
developments include combining this structural method with advanced whole-brain computational modelling
of the spontaneous dynamics arising from the structural changes in disease [46] which can help provide new

11



10P Publishing

New . Phys. 17 (2015) 015001 H M Fernandes et al

om

Momsizes St srs Convwesvy

"
)
90
)
100,
®
-
-
=
.

- /

Figure 6. Analysis using permutation-based paired t-tests to identify regions with significantly different connectivity strength between
groups of patients with successful and unsuccessful outcomes. A 3D glass brain reconstruction was produced, showing the network
pattern between the reconstructed DBS electrodes (with simulated VAT) and the 11 significantly different AAL regions (green—larger
in SO) between the UO and SO groups. The regions where significant connectivity differences are larger in the SO group are colour-
coded in green, while larger in UO group are colour-coded in orange. Bar-plots for four of those significant group differences in
structural connectivity are represented at the top of the image.

Table 4. Significant structural connectivity group differences between patients with SO and UO (p < 0.05) using a permutation-based paired
t-test. The absolute value of the structural connectivity difference, and the resulting p-value of the group comparison for every AAL region
showing significant group difference are listed in the table.

node AALregion SCuyo-SCso p-value
Right superior orbitofrontal —-0.205 0.034
Left mid frontal gyrus —0.024 0.035
10 Right mid orbitofrontal —0.006 0.033
31 Left anterior cingulate —91.500 0.032
38 Right hippocampus —-0.015 0.035
50 Right superior occipital —0.006 0.033
52 Right mid occipital -0.002 0.032
63 Left supramarginal gyrus 3.75E-04 0.002
109 Vermis I, II —0.204 0.033
115 Vermis IX —0.005 0.033
116 Vermis X —-0.031 0.033

insights into the mechanisms of DBS—and may potentially even help discover new targets for neuropsychiatric
disorders.
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