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a b s t r a c t 

Anesthesia induces a reconfiguration of the repertoire of functional brain states leading to a high function- 
structure similarity. However, it is unclear how these functional changes lead to loss of consciousness. Here we 
suggest that the mechanism of conscious access is related to a general dynamical rearrangement of the intrinsic 
hierarchical organization of the cortex. To measure cortical hierarchy, we applied the Intrinsic Ignition analysis 
to resting-state fMRI data acquired in awake and anesthetized macaques. Our results reveal the existence of spa- 
tial and temporal hierarchical differences of neural activity within the macaque cortex, with a strong modulation 
by the depth of anesthesia and the employed anesthetic agent. Higher values of Intrinsic Ignition correspond to 
rich and flexible brain dynamics whereas lower values correspond to poor and rigid, structurally driven brain 
dynamics. Moreover, spatial and temporal hierarchical dimensions are disrupted in a different manner, involving 
different hierarchical brain networks. All together suggest that disruption of brain hierarchy is a new signature 
of consciousness loss. 
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. Introduction 

Recent studies suggest dynamical disruptions on brain activity dur-
ng general anesthesia, sleep and disorders of consciousness ( Dehaene
 Changeux, 2011 ; Mashour et al., 2020 ). Nevertheless, whatever

he level of consciousness, the resting-state brain activity displays
ighly organized coherent networks ( Biswal, Yetkin, Haughton, and
yde, 1995 ; Buckner, Andrews-Hanna, and Schacter, 2008 ; Fox et al.,
005 ; Fransson, 2006 ; Vincent et al., 2007 ). Examples are anticorre-
ated networks still present under anesthesia ( Boveroux et al., 2010 ;
incent et al., 2007 ) and early stages of sleep ( Fukunaga et al., 2006 ;
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icchioni et al., 2008 ). Evidence suggests that anesthesia modulates
he strength of functional connectivity ( Martuzzi, Ramani, Qiu, Rajee-
an, and Constable, 2010 ; Barttfeld et al., 2015 ; Boveroux et al., 2010 ;
chrouff et al., 2011 ). In Barttfeld et al. ( Barttfeld et al., 2015 ), dy-
amical resting-state analyses of functional magnetic resonance imag-
ng (fMRI) data acquired in awake and propofol anesthetized macaques,
ndicate that during the awake state, the brain activity at rest displays
 rich repertoire of flexible functional patterns that is independent of
he underlying anatomical connectivity. Conversely, during anesthesia-
nduced loss of consciousness, the resting-state brain activity is shifted
oward a poor repertoire of rigid functional patterns with higher simi-
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arity to structural connectivity. A finding that was generalized to dif-
erent anesthetic agents ( Uhrig et al., 2018 ) and also applied to classify
ifferent categories of chronic loss of consciousness ( Demertzi et al.,
019 ). This dynamical disruption at long-distance networks might be
he common fingerprint of all different types of loss of consciousness
anesthesia-induced, injuries-induced loss of consciousness and sleep). 

Unfortunately, it is still unclear how these functional disruptions are
nduced and if they are causal or consequence of other factors. We hy-
othesised these dynamical disruptions are due to the breakdown of the
ierarchical organization of the cortex and cortico-sub-cortical networks
esulam (1998) . Independently of the molecular pathways of different

nesthetics, stages of sleep or localization/types of brain injuries, if this
s enough to disturb the hierarchical structure of the conscious brain,
t will lead to a loss of consciousness. Differently than previous hierar-
hical auditory regularities studied in awake and anesthetized macaques
 Bekinschtein et al., 2009 ; Uhrig, Janssen, Dehaene, and Jarraya, 2016 ),
he causal driven forces that generate similar global disruptions would
orrespond to any local or global disturbance with enough power to re-
rganize the network hierarchy. These disruptions become a common
ignature for loss of consciousness, at the same time as saving the speci-
city of different impairments Sherrington (1906) . 

To investigate the brain mechanisms of consciousness loss, a newly
ntroduced measure called Intrinsic Ignition, together with general anes-
hesia, offer a unique opportunity to quantify the hierarchy of neural
ctivity and its disruptions ( Deco and Kringelbach, 2017 ). On the one
and, this is possible through the massive modulation of both arousal
nd conscious access (i.e. awareness) by elective pharmacological drugs,
alled anesthetic agents. Different anesthetics, with different pharma-
ological and molecular pathways, generate comparable dynamical dis-
uption ( Uhrig et al., 2018 ). On the other hand, Intrinsic Ignition quan-
ifies the neural propagation activity in space and time, from one region
o other areas of the brain ( Deco et al., 2017 ). 

Intrinsic Ignition combines simplified versions of integration from
he “integrated information theory (IIT) ” ( Deco, Tononi, Boly, and
ringelbach, 2015 ; Tononi & Koch, 2015 ) and broadcasting from “the
lobal neuronal workspace theory (GNW) ” ( Dehaene & Changeux,
011 ). Moreover, Intrinsic Ignition is complementary to the concept of
gnition/broadcasting from the GNW theory. The former being consid-
red intrinsic (due to internal interactions under resting state) and the
ater extrinsic (due to external stimuli) ( Van Vugt et al., 2018 ), how-
ver, in its original formulation, ignition was also related to spontaneous
eural activity ( Dehaene and Changeux, 2005 ). Intrinsic ignition might
ecome a middle concept to unify ideas about phenomenal conscious-
ess and access consciousness. Broadcasting, as the first stage of neu-
al processing and integration as the second stage, are combined into
ne measure of brain activity Deco and Kringelbach (2017) . Intrinsic
gnition uses the graph theory to define integration. Integration is the
ccumulative and averaged value of the maximal path in a network at
ifferent states, computing the value among spatial areas and time evo-
ution. This measure quantifies different modes of consciousness and es-
imates the type of hierarchical organization for different conditions. At
pontaneous waking brain activity, analyses using Intrinsic Ignition sug-
est that the brain organization is maximally hierarchical, but not uni-
ormly graded ( Deco and Kringelbach, 2017 ; Deco, Tagliazucchi, Laufs,
anjuán, and Kringelbach, 2017 ). Intrinsic Ignition has been applied to
ompare awake versus sleep conditions ( Deco and Kringelbach, 2017 ;
eco et al., 2017 ) and normal subjects versus meditators ( Escrichs et al.,
019 ). 

Here, we measured Intrinsic Ignition of cortical areas from awake
nd anesthetized macaques, with unique access to six experimental con-
itions (awake, ketamine, light/deep propofol, light/deep sevoflurane
nesthesia) ( Barttfeld et al., 2015 ; Uhrig et al., 2018 ). Intrinsic Igni-
ion of cortical areas assessed with fMRI reveals spatial-temporal hier-
rchical differences and allows clustering anaesthetics. Finally, Intrinsic
gnition, as a unifying concept across theoretical frameworks of con-
ciousness, quantifies the dynamical disruption in terms of hierarchical
2 
rganization arrangement and defines a multidimensional signature of
onsciousness. 

. Results 

.1. Dynamical differences among anesthetics 

The analyzed data here corresponds to 119 runs. An example of the
ime series for one subject in the awake condition is plotted in Fig. 1 a.
he probability density (density distribution) of fMRI values is plot-
ed after a normalization procedure (using z-score). These plots suggest
he use of non-parametric statistical tests since the center of the data
istributions present close to zero mean, but seemingly different vari-
nce. The Kolmogorov–Smirnov test finds statistical differences among
ll conditions (p < 0.001, confidence intervals (CI) reported in Captions
ig. 1 b). The FC matrix plotted as the average among subjects also sup-
orts dynamical differences among conditions ( Fig. 1 c). 

These differences also appear when plotting the dynamical func-
ional connectivity (dFC) ( Fig. 1 d). Awake (followed by light propofol
nd light sevoflurane sedation) seems to present more correlated ac-
ivity among functional matrices across time than the deep anesthesia
onditions. Deep propofol anesthesia is slightly more activated than ke-
amine and deep sevoflurane. To quantify these qualitative differences
 Pearson correlation between the FC per subject and the structural
onnectivity (SC, CoCoMac) is performed ( Fig. 1 e). It reveals that the
wake state has a lower correlation value, indicating that functional ac-
ivity is farther from SC, than other conditions (Kolmogorov–Smirnov
est, p < 0.001). The violin plots in Fig. 1 e also demonstrate differ-
nces in the type of distributions. Light propofol sedation has the highest
ean correlation value, however, anesthetics are not differentiated in

erms of statistical tests ( p > 0.01). Quantifying the dynamical variability
hrough metastability, as the standard deviation of the Kuramoto’s order
arameter (synchrony), shows the awake condition with higher values
f metastability ( Fig. 1 f, Kolmogorov–Smirnov test, p < 0.001), light
ropofol and light sevoflurane sedation slightly higher than ketamine
nd deep sedations, but not statistically significant. Deep propofol anes-
hesia has a slightly lower value than ketamine anesthesia (Kolmogorov–
mirnov test, p = 0.01), as well as light propofol ( p < 0.001) and light
evoflurane anesthesia ( p = 0.0011). Other conditions do not present
ajor statistical differences in terms of metastability ( p > 0.01). 

These dynamical analyses support and replicate previous results sug-
esting disruption of the dynamical functional organization under anes-
hesia ( Barttfeld et al., 2015 ; Uhrig et al., 2018 ). However, they do not
istinguish among anesthetics or quantify the degree of disruption in
erms of hierarchical organization. Therefore, extra analyses may offer
 complementary picture. 

.2. Intrinsic ignition and global hierarchical organization 

The computation of Intrinsic Ignition is based on network theory
nd binarization techniques (Methods and Fig. 2 a). An example of the
aster plot generated for each subject is shown in Fig. 2 b. In this case,
he raster plot is calculated for one subject in six conditions. The igni-
ion capability generates two measures: Intrinsic Ignition and Ignition
ariability. 

Plotting the Intrinsic Ignition per node values from highest to lower
reates a sorted curve. The shape of that curve informs about the pos-
ible types of hierarchical organization in a network. Qualitatively,
he Intrinsic Ignition per node curve for the awake condition seems
o correspond to a graded non-uniform hierarchy, as previously re-
orted ( Deco and Kringelbach, 2017 ; Deco et al., 2017 ). While the anes-
hesia curves transit from graded non-uniform hierarchy to less pro-
ounced curve slope, suggesting spatial modifications towards weak
on-hierarchies ( Fig. 3 a). However, a zoom on these curves indicates
hat the graded non-uniform nature is maintained, and what changes
re the degrees of this non-uniformity (Supplementary Fig. 2). The
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Fig. 1. Dynamical Analysis. A) Example of time series for 
one monkey, awake condition, 500-time points with a 2400 
ms repetition time (TR). B) Distribution plots of the fMRI 
signal for each condition. All conditions are significantly 
different (Kolmogorov–Smirnov test p < 0.001, awake CI 
[0.0062 -0.0332], ketamine [0.0027 -0.0021], light propo- 
fol CI [0.0025 -0.0026], deep propofol CI [0.0033 -0.0029], 
light sevoflurane CI [0.0032 -0.0058], deep sevoflurane 
anesthesia CI [0.0061 -0.0057]). C) Functional connectiv- 
ity matrices (FC) for each condition, CoCoMac, 82 corti- 
cal regions. D) Example of dynamical functional connec- 
tivity (dFC) for one subject in each condition. E) Pear- 
son Correlation between FC and Structural connectivity 
(SC) for each subject and plotted as a violin plot, see 
methods, and (Hintze & Nelson, 1998). SC matrix is plot- 
ted alongside for reference. Awake condition is signifi- 
cantly different than the other conditions (Kolmogorov–
Smirnov test p < 0.001, awake CI [0.1671 0.1369], ke- 
tamine CI [0.2926 0.2687], light propofol CI [0.3093 
0.2738], deep propofol CI [0.2957 0.2568], light sevoflu- 
rane CI [0.2943 0.2601], deep sevoflurane CI [0.2725 
0.2196]), while other conditions are not statistically differ- 
ent (p > 0.01). F) Metastability is higher in the awake state 
than in the anesthesia conditions (Kolmogorov–Smirnov 
test p < 0.001, awake CI [0.1143 0.1024], ketamine CI 
[0.0835 0.0759], light propofol CI [0.0849 0.0775], deep 
propofol CI [0.0762 0.0697], light sevoflurane CI [0.0853 
0.0759], deep sevoflurane CI [0.0844 0.0687]). 
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igher values of Intrinsic Ignition are found in the awake condition,
ollowed by light sevoflurane and light propofol, and later deep propo-
ol, deep sevoflurane, and ketamine anesthesia. Ketamine anesthesia
as a similar effect than deep propofol and deep sevoflurane anesthe-
ia. The curves seem to differentiate at least two groups: awake and
nesthesia. 

Taking both the Intrinsic Ignition value and the Ignition Variability
enerate a scatter plot with one point per node ( Fig. 3 b). Two clus-
ers are now clearly separated; one corresponds to the awake condition
3 
green dots) and the others to sedation conditions. The box plots, on the
ight side, shows the distribution of Intrinsic Ignition values across nodes
n each condition. Awake values are significantly higher than other anes-
hetic conditions (Kolmogorov–Smirnov test p < 0.001, CI reported in
aptions Fig. 3 b), supporting the idea of maximal hierarchical organi-
ation. Values for ketamine anesthesia differentiate from light propofol,
ight and deep sevoflurane ( p < 0.001) but not deep propofol anesthe-
ia ( p > 0.01). Light propofol anesthesia presents slightly higher val-
es of Intrinsic Ignition per node, becoming statistically differentiated
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Fig. 2. Intrinsic Ignition Measures. A) From 

a binarization (Methods), a raster plot is gener- 
ated for all nodes. In parallel, a Hilbert trans- 
form is applied to each time series, from which 
a phase correlation or pairwise phase synchro- 
nization between regions is defined. For each 
matrix generated (e.g, 𝑡 = 50 and 𝑡 = 300 ) an- 
other binarization process is applied. With the 
remaining connections, the largest component 
is computed as the level of integration given 
by the length of the connected component of 
that undirected graph. It creates a curve (lower 
Fig.) and the area below the curve (green) cor- 
responds to the integration value for that node 
at that time-point. Running the same procedure 
for all time-points results in a table of integra- 
tion across time for each node. Finally, for each 
event, the total integration is computed as the 
average across the time window, the event and 
a flag of 4TR, building a matrix of integration 
across events. The average integration across 
events corresponds to the Intrinsic Ignition , 
while the standard deviation integration across 
the same events is the Ignition Variability. B) 

Example of raster plot for one subject in six 
conditions, 82 nodes. C) The previous proce- 
dure is repeated through subjects and condi- 
tions, creating a data matrix 𝐷 𝑖𝑗 for each condi- 
tion, such that 𝑖 corresponds to the nodes and 𝑗
to the subjects. The mean across subjects ( 𝑗) is 
the Intrinsic Ignition per node and Ignition 

Variability per node respectively. The mean 
across nodes ( 𝑖 ) defines the Mean Intrinsic Ig- 

nition and the Mean Ignition Variability . The 
standard deviation of the Mean Intrinsic Igni- 
tion (intrinsic ignition across nodes) returns a 
quantification value of the shape of the Intrin- 
sic Ignition curve, which is defined as the Hier- 

archy . Ultimately, a Spectrum Hierarchy is a 
circle plot with different levels. Each level cor- 
responds to a threshold of the Intrinsic Ignition 
and/or Ignition Variability curve (see Methods 
and Supplementary Fig. 2). The thickness of 
each level line is the number of nodes on that 
level (e.g. red line marks the thickness of level 
two). 
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rom deep propofol and deep sevoflurane anesthesia ( p < 0.001) but not
rom light sevoflurane anesthesia ( p > 0.01) which is the third-highest
alue after the awake condition and light propofol sedation. Intrinsic
gnition in deep propofol anesthesia is significantly lower than in light
evoflurane anesthesia ( p < 0.001) and slightly higher than in deep
evoflurane anesthesia ( p = 0.0013). Finally, light and deep sevoflu-
ane anesthesia also present statistical differences as shown in the box
lot. All the Intrinsic Ignition per node values across different subjects
full distribution) lead to similar conclusions (Supplementary Fig. 3a).
ffect size analyses, performed to quantify these differences, also sup-
ort these findings (Supplementary Fig. 4a and Supplementary Table
). These results support the idea that the spatial dimension regarding
he hierarchical organization is disrupted differently among conditions.
his disruption is classified in at least three clusters: Awake, Light and
eep sedation effects. 
4 
In terms of how these hierarchical disruptions affect the temporal
imension, the distribution of Ignition Variability per nodes across con-
itions is also plotted in the lower part of Fig. 3 b. Statistical tests sug-
est that the Ignition Variability values are more sensitive to the effect
f each anesthetic. All the conditions are differentiated (Kolmogorov–
mirnov test p < 0.001) between them, with the exception of deep
ropofol and deep sevoflurane anesthesia ( p = 0.02). The awake condi-
ion, once again, presents the highest Ignition Variability per node value,
ollowed by light sevoflurane, light propofol, ketamine, deep sevoflu-
ane and deep propofol anesthesia ( Fig. 3 b, c, and Supplementary Fig.
b). The effect size analysis is also in agreement with these results (Sup-
lementary Fig. 4b and Supplementary Table 1). It indicates that dis-
uption effects are bigger among the temporal dimension of hierarchi-
al organization, especially at the moment of differentiating conditions.
o look for these effects, the Ignition Variability curves are plotted in
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Fig. 3. Intrinsic Ignition reveals hierarchical disruption. A) The shape of ignition curves changes slightly across conditions, suggesting spatial modifications 
towards weak non-hierarchies. Nodes are indexed in descendent order. B) Scattering plot shows two different groups, awake and anesthesia. Upper right, awake 
group is significantly different than other conditions (Kolmogorov–Smirnov test p < 0.001, awake CI [0.5926 0.5912], ketamine CI [0.5732 0.5727], light propofol 
CI [0.5752 0.5746], deep propofol CI [0.5733 0.5727], light sevoflurane CI [0.5750 0.5740], deep sevoflurane CI [0.5725 0.5718]). Bottom left, awake is again 
differentiated from the others conditions (Kolmogorov–Smirnov test p < 0.001, awake CI [0.0465 0.0456], ketamine CI [0.0384 0.0377], light propofol CI [0.0392 
0.0384], deep propofol CI [0.0371 0.0363], light sevoflurane CI [0.0405 0.0394], deep sevoflurane CI [0.0391 0.0376]). C) Ignition Variability curves suggest more 
intricate ways to disrupt the temporal organization. D) Scatter histogram. Awake condition is significantly different than sedations (upper right, Kolmogorov–Smirnov 
test p < 0.001, awake CI [0.5963 0.5875], ketamine CI [0.5750 0.5708], light propofol CI [0.5774 0.5724], deep propofol CI [0.5756 0.5705], light sevoflurane CI 
[0.5773 0.5716], deep sevoflurane CI [0.5750 0.5693]), as well as across the Hierarchy (bottom left, Kolmogorov–Smirnov test p < 0.005, awake CI [0.0102 0.0083], 
ketamine CI [0.0058 0.0052], light propofol CI [0.0064 0.0053], deep propofol CI [0.0061 0.0052], deep sevoflurane CI [0.0070 0.0053]), with the exception of 
light sevoflurane (p = 0.08, light sevoflurane CI [0.0081 0.0064]). E) Spectrum Hierarchies, spatial and temporal. Different changes suggest that disturbing one of the 
two dimensions of the hierarchical organization may be enough to cause loss of consciousness. For each Box Plot, the bottom and top edges of the box indicate the 
25th and 75th percentiles, respectively. The whiskers extend the extreme values without outliers, while outliers are marked as a red cross. The center indicates the 
median. 
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ig. 3 c (values are sorted from highest to lowest). The shapes of the Ig-
ition Variability curves seem to capture more complex relations. One
xample is the case of deep sevoflurane anesthesia, higher values are
lose to the values of light sevoflurane, while lower values are near
eep propofol anesthesia. These results suggest more intricate ways to
isrupt the temporal organization than the observed spatial network
ierarchy. 
5 
One form to quantify the hierarchical disruption is by using the stan-
ard deviation of the Intrinsic Ignition curve across nodes, generating
ne value for each subject (Method and Fig. 2 c). This, together with the
ean across nodes, defined as the Mean Intrinsic Ignition value per each

ubject, can characterize the spatial hierarchy for each subject. Using
oth values per subjects, the mean of Intrinsic Ignition and Hierarchy
roduces another scatter plot in Fig. 3 d. The clusters are not as evident as
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efore, instead, the points tendency shows a correlation between Mean
ntrinsic Ignition and Hierarchy values (Pearson coefficient 0.6, CI [0.47
.70]). Furthermore, in terms of the Mean Intrinsic Ignition, the awake
ondition is significantly different from the anesthetics (upper box plot,
olmogorov–Smirnov test p < 0.001, CI reported in captions Fig. 3 d),
hile no anesthetics are differentiated between them (Kolmogorov–
mirnov test, p > 0.01). Similar analyses on the mean of Ignition Variabil-
ty are found in Supplementary Fig. 5. In terms of hierarchy, the awake
ondition is also differentiated (bottom box plot, Kolmogorov–Smirnov
est p < 0.001, CI reported in captions Fig. 3 d), with the exception of
ight sevoflurane anesthesia ( p = 0.08, light sevoflurane). Hence, light
evoflurane anesthesia is the only anesthetic condition which seems to
e distinguished from the others ( p < 0.05), with the exception of deep
evoflurane anesthesia ( p = 0.39). 

Another form to characterize the hierarchical structure is the spec-
rum hierarchies of each condition ( Fig. 3 e and Supplementary Fig. 2).
his is a plot that takes the mean and standard deviation of the Intrinsic
gnition per node curve (Spatial, Fig. 3 e upper) and Ignition Variabil-
ty per node curve (Temporal, Fig. 3 e bottom) to describe levels and
umber of areas for each level. The spatial graphs show how the spec-
rum changes from a graded non-uniform in the awake condition to a
ifferent type of graded and non-uniformity under anesthesia. Among
nesthetics, each spectrum presents non-evident visual changes from
ne spectrum to the other, with only slight changes on light and deep
evoflurane anesthesia (as Hierarchy tests confirmed above), suggesting
gain that the spatial dimension of the hierarchical organization does
ot change dramatically across anesthetics. Quite intriguing, if the tem-
oral spectrum is now observed among conditions, no huge differences
re perceived from awake state, ketamine, and light propofol anesthe-
ia, but some differences appear in comparison of the awake state, deep
ropofol, light, and deep sevoflurane anesthesia. This seems to be the op-
osite tendency from the spatial spectrum. These two different types of
hanges on the spectrum hierarchies support the idea that disturbing one
f the two dimensions (spatial or temporal) may be enough to cause loss
f consciousness. It suggests more complex structural qualitative differ-
nces concerning spectrum hierarchies that need to be solved in terms of
he local number of nodes per level. For example, different regions seem
o take different dynamical roles across different conditions, in order to
reserve part of the hierarchical organization (Supplementary Tables 2
nd 3). Everything together indicates that there is a hierarchical disrup-
ion between the awake condition and the anesthetics conditions, while
nder anesthesia the global values of hierarchy seem to correspond to a
imilar organization. To understand what is changing and what is not,
 local analysis of the differences among nodes is needed. 

.3. Local hierarchical organization 

Following the results in Fig. 3 , each value of Intrinsic Ignition and
gnition Variability per node was plotted in Figs. 4 and 5 to show how
ocal differences evolve across conditions. Moreover, a local analysis is
erformed to isolate regions that may have a bigger impact on the global
hanges of spatial and temporal hierarchy disruption ( Fig. 6 ). To find
hose regions, the global tendency was defined in terms of three logi-
al propositions from previous analyses (Methods, Fig. 2 ). This global
endency corresponds to higher values of Intrinsic Ignition and Igni-
ion Variability per node during awake ( 𝑛𝑜𝑑𝑒𝑠 ≥ 𝜇), middle values in
ight sedation ( 𝜇 + 𝜎 ≥ 𝑛𝑜𝑑𝑒𝑠 ) and lower levels during deep sedation
 𝜇 ≥ 𝑛𝑜𝑑𝑒𝑠 ). Each node was classified in terms of the spectrum hierar-
hies levels (Supplementary Tables 2 and 3). Nodes satisfying the log-
cal proposition per condition were defined as a potential area to fol-
ow/drive the global tendency observed (red indexes in Supplementary
ables 2 and 3). To visualize the areas and their changes, all values
ere rescaled/normalized, taking the lower value as zero and the high-

st as 1 (other normalizations present similar visualizations, data not
hown). In Figs. 4 and 5 , results for Intrinsic Ignition per node and Ig-
ition Variability are plotted respectively. According to this intuitive
6 
lassification/level method, regions that follow the global tendency are
istinguished from others. In the case of the Intrinsic Ignition, these
odes are the right subgenual cingulate cortex, the right posterior cin-
ulate cortex, the right inferior parietal cortex, the right intraparietal
ortex, the right frontal eye field, the left parahippocampal cortex, the
eft subgenual cingulate cortex, the left primary somatosensory cortex,
he left intraparietal cortex and the left superior parietal cortex. For In-
rinsic Variability, the regions are the right temporal polar, the right
entral temporal cortex, the right subgenual cingulate cortex, and the
eft dorsomedial prefrontal cortex. In Figs. 4 and 5 , these regions are sig-
aled by red arrows (names indexes reported in Supplementary Table
). 

Supplementary analyses were performed using the median instead
f the mean as a cut off on the logical propositions (plots available
y request). It slightly changes the results for Intrinsic Ignition. In the
ase of Ignition Variability, using the median instead of the mean gives
o results. Finally, to ensure consistency, the same analyses were per-
ormed subject by subject (see Methods), generating a histogram of oc-
urrences. Nodes that appear to satisfy the logical propositions per con-
itions above the 60% of the time were identified. These regions are
he right subgenual cingulate cortex and the right intraparietal cortex
or Intrinsic Ignition (Supplementary Fig. 6b), and only the right central
emporal cortex, for Ignition Variability (Supplementary Fig. 6b). 

. Discussion 

In this study, we analyzed resting-state fMRI acquired from non-
uman primates in the awake state and during anesthesia-induced loss
f consciousness using distinct pharmacological agents. By applying In-
rinsic Ignition measurements, we demonstrate that loss of conscious-
ess is paralleled by a disruption of brain hierarchy, making it both a
ew signature of consciousness and consciousness loss. 

At the neuronal level, anesthetic agents act through different
olecular pathways ( Hudetz and Mashour, 2016 ), such as gamma-

minobutyric acid (GABA) receptors, N-methyl-D-aspartate (NMDA) re-
eptors and K + channels Franks (2008) to induce loss of conscious-
ess. At the system level, anesthetics strongly affect brain networks
hat are involved in arousal and awareness. Propofol ( Bonhomme et al.,
001 ), sevoflurane ( Kaisti et al., 2003 ) and xenon ( Laitio et al., 2007 )
nhibit midbrain areas, associated with the ascending reticular system,
he thalamus and cortical areas such as the precuneus, posterior cingu-
ate cortex, and the prefrontal cortex. Moreover, studies with ketamine,
ropofol, and sevoflurane ( Lee et al., 2013 ; Uhrig et al., 2018 ) reported
isruption of frontoparietal activity despite their distinct neurophys-
ology. Ketamine and sevoflurane have opposite effects on thalamo-
ortical connectivity. Under ketamine, an NMDA receptors antagonist
 Anis, Berry, Burton, and Lodge, 1983 ), thalamocortical functional cor-
elations seems to be preserved ( Bonhomme et al., 2016 ), while sevoflu-
ane, a 𝛾-aminobutyric acid receptor type A agonist and NMDA antag-
nist ( Wu, Harata, and Akaike, 1996 ), induces a decrease in thalamo-
ortical functional correlations, but preserving functional correlations
etween thalamus and sensory cortex ( Huang et al., 2014 ; Ranft et al.,
016 ). Propofol, targeting 𝛾-aminobutyric acid-mediated neurotrans-
ission ( Peduto, Concas, Santoro, Biggio, and Gessa, 1991 ), induces
isconnections in thalamocortical circuits. Under anesthesia, the brain
atterns are not uniform, some areas seem more deactivated than others,
hile most anesthetics, with the exception of ketamine ( Langsjo et al.,
005 ), cause a global reduction of cerebral blood flow Franks (2008) .
aking this evidence, finding a common neurophysiological pathway for
his different anesthetics is challenging, but might involve the disruption
f thalamocortical connectivity and/or frontoparietal connectivity. 

Our results indicate that Intrinsic Ignition can discriminate between
he awake condition and different anesthetics, as well as between dif-
erent levels of sedation (i.e. light versus deep anesthesia). Moreover,
igher values of ignition are associated with richer brain dynamics,
hile lower values relate to structural driven dynamics, as shown in pre-
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Fig. 4. Local tendency of Intrinsic Ignition among conditions. The absolute value of Intrinsic Ignition per node was rescaled from zero (minimal value) to 
one (max value), allowing a visual comparison across nodes and conditions. The red vertical line corresponds to the mean value of the distribution ( 𝜇) and black 
vertical lines are the limits given by 𝜇 ± 𝜎, with 𝜎 the standard deviation for each condition. The global tendency was translated into three logical propositions: 
𝑛𝑜𝑑𝑒𝑠 ≥ 𝜇for awake, 𝜇 + 𝜎 ≥ 𝑛𝑜𝑑𝑒𝑠 for light conditions and 𝜇 ≥ 𝑛𝑜𝑑𝑒𝑠 for deep conditions. Only 10 regions (Subgenual cingulate cortex right, Posterior cingulate 
cortex right, Inferior parietal cortex right, Intraparietal cortex right, Frontal eye field right, Parahippocampal cortex left, Subgenual cingulate cortex left, Primary 
somatosensory cortex left, Intraparietal cortex left, Superior parietal cortex left) satisfied the three propositions simultaneously (Supplementary Tables 3, 4 and 5), 
becoming candidates for areas which follow the global tendency of Intrinsic Ignition changes. These regions are signaled by red arrows and correspond to the indexes 
17, 27, 33, 36, 38, 51, 58, 71, 77, and 78 respectively (Supplementary Table 9). 
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ious reports ( Barttfeld et al., 2015 ; Uhrig et al., 2018 ; Demertzi et al.,
019 ). Our results ( Fig. 1 ) are in line with these previous studies, and
dditionally indicate that the spatial and temporal dimensions of hier-
rchical organization change under anesthesia, while keeping different
ypes of the same graded non-uniform hierarchy through all conditions.
ifferent regions occupy different levels on those hierarchies, indicating

hat different anesthetic paths may indeed act differently, however, gen-
rating the same hierarchical disruption. Everything together supports
he hierarchical breakdown hypothesis and places the local and global
isruption of the hierarchy as a possible common signature to reconcile
eemingly different types of loss of consciousness. 

Reports from non-REM sleep also provide evidence for a partial
reakdown of the hierarchical organization of large scale networks
 Boly, Perlbarg, et al. 2012 ). In order to quantify these disruptions,
ntrinsic Ignition ( Fig. 3 ), was applied in two hierarchical dimensions:
patial and temporal. The awake condition in monkeys presents maxi-
al hierarchical organization ( Fig. 3 ), while different concentrations of

nesthetics range from middle to lower values of Intrinsic Ignition, un-
er light and deep anesthesia ( Fig. 3 b and d). Changes observed on the
patial dimension (Intrinsic Ignition per node), recognized three groups:
7 
wake, light (propofol and sevoflurane) and deep (propofol, sevoflu-
ane, and ketamine). On the other hand, changes observed on the tem-
oral dimension (Intrinsic Variability per node) seems more sensitive,
istinguishing among all the conditions ( Fig. 3 b and c) and suggesting
ore complex hierarchical disruptions across time. Interestingly, light

onditions presented middle values on both Intrinsic Ignition (spatial)
nd Ignition Variability (temporal), while ketamine was closer to deep
onditions under spatial dimension but near to light conditions when
ompared across the temporal aspect. This suggests that the previous
vidence on the dynamical disruptions is related to more complex mul-
idimensional disruptions given by at least two dimensions: structural
rganization (spatial) and dynamical organization (temporal). It sup-
orts the idea that spatial and temporal hierarchies are affected differ-
ntly among conditions. 

The degree of Hierarchy seems disturbed among all the different se-
ations (with the exception of light sevoflurane). It may imply that hi-
rarchical disruptions are indeed more complexly related to possible
ocal mechanisms. The Hierarchy quantifier recognizes that light and
eep sevoflurane anesthesia might be affecting similarly but in different
egrees the hierarchical organization, in turn that estimates that light
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Fig. 5. Local tendency Ignition Variability among conditions. The red vertical line corresponds to the mean value of the distribution ( 𝜇) and black vertical 
lines are the limits given by 𝜇 ± 𝜎, with 𝜎 the standard deviation for each condition. The global tendency was translated into three logical propositions: 𝑛𝑜𝑑𝑒𝑠 ≥ 𝜇for 
awake, 𝜇 + 𝜎 ≥ 𝑛𝑜𝑑𝑒𝑠 for light conditions and 𝜇 ≥ 𝑛𝑜𝑑𝑒𝑠 for deep conditions. Only 4 regions (Tempolar polar right, Central temporal cortex right, Subgenual cingulate 
cortex right, Dorsomedial prefrontal cortex left) survived the three propositions simultaneously (Supplementary Tables 6, 7 and 8), becoming candidates for areas 
which follow the global tendency of ignition variability changes. These regions are signaled by red arrows and correspond to the indexes 1, 7, 17, and 76 respectively 
(Supplementary Table 9). 
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evoflurane anesthesia may have weaker effects on that disruption and
till be closer to an awake organization. If this interpretation is right, ke-
amine, light, and deep propofol anesthesia would break similarly the hi-
rarchical organization, since they present similar distributions in terms
f Hierarchy. Moreover, spectrum hierarchies reveal similar spatial dis-
uptions between ketamine, light, and deep propofol anesthesia ( Fig. 3 e
pper) and partially similar ones in the temporal dimension ( Fig. 3 e
ower). It indicates that different mechanisms disrupt one or another
spect of hierarchical organizations: the spatial dimension conveys the
mpression that some anesthetics are distinguished but not others, while
n the temporal dimension it happens among different anesthetics. Plot
urves ( Fig. 3 a and c) and spectrum plots ( Fig. 3 e, Supplementary Fig.
) show that graded non-uniform type of hierarchy is maintained across
onditions. Disturbing one of the two dimensions may be enough to
ause loss of consciousness and different anesthetics target differently
hese two aspects of the neural organization: ketamine and propofol
ould target spatial aspects, while sevoflurane would disturb temporal
spects of that configuration. 

To deal with these structural differences, local analyses were per-
ormed. According to our results, organizational disruptions cannot be
educed to only global effects but also local differences ( Figs. 4 , 5 , 6 and
8 
upplementary Tables 2 and 3). Globally, some anesthetics may act sim-
larly in terms of concentration, such as light propofol and light sevoflu-
ane anesthesia, however, locally, different anesthetics may also present
ifferences given mainly in terms of Ignition Variability curves ( Fig. 3 ).
his is clearly noticed from the different distributions of values for In-
rinsic Ignition and Ignition Variability per node presented in Figs. 4 and
 . Once observed which areas followed the global tendency as candi-
ates for driving these changes, Subgenual cingulate cortex and Intra-
arietal cortex presented a consistent occurrence in terms of Intrinsic
gnition, and Central temporal cortex in terms of Ignition Variability.
dditionally, Posterior cingulate cortex, Inferior and Superior parietal
ortex, Parahippocampal cortex, and somatosensory cortex among other
refrontal regions appeared as relevant areas for spatial aspects of igni-
ion. Most of these regions have been previously associated with GNW
 Uhrig et al., 2014 ; Uhrig et al., 2016 , 2018 ). In terms of the tempo-
al component, Temporal polar cortex, Subgenual cingulate cortex, and
orsomedial prefrontal cortex also seem to play a role in the global dis-

uptions among the six conditions. 
These local findings are in line with previous reports. For instance,

tudies on anesthesia and early stages of sleep have identified that
he precuneus and lateral temporoparietal components of DMN per-
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Fig. 6. Global and local aspects of the brain functional network . A graphical way to observe how local and global disruption are intrinsically connected but 
probably differently driven under dissimilar anesthetics. A) Intrinsic Ignition driven network. For each condition and node, the values of Intrinsic Ignition are plotted 
as the size of the node, while the links correspond to the functional correlation only for the nodes identified as relevant from Fig. 4 . Changes among both sizes as 
well as the number of links at different anesthetics are observed, suggesting interdependency between the local (nodes) and global (network) changes. B) Similar 
plots for Ignition Variability driven network with the functional correlation only for the relevant nodes from Fig. 5 . In this case, changes among node sizes seem 

more relevant than among the number of links, suggesting that Ignition Variability may be more sensitive to these local (node) changes. 

9 
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isted under anesthesia ( Vincent et al., 2007 ), but the connectivity
f the posterior cingulate cortex (PCC) is reduced during sedation
 Kaisti et al., 2002 ; Greicius et al., 2008 ; Uhrig et al., 2018 ). Moreover,
tudies using light propofol point out changes among PCC connectivity
ith other areas, such as somatomotor cortex, the anterior thalamic nu-

lei and the reticular activating system ( Stamatakis, Adapa, Absalom,
nd Menon, 2010 ). According to our results, the PCC is following the
lobal tendency among conditions and therefore, is a candidate for glob-
lly driving the hierarchical changes observed. An fMRI meta-analysis
f resting-state activity in disorders of consciousness concluded that a
eduction of activity in midline cortical (PCC, precuneus, medial tem-
oral lobe, middle frontal lobe) and subcortical sites (bilateral medial
orsal nuclei of the thalamus) is associated with conscious impairments
 Hannawi, Lindquist, Caffo, Sair, and Stevens, 2015 ), with a more pro-
ounced reduction in the vegetative state than in the minimally con-
cious state. Moreover, medial parietal cortex, PCC and precuneus are
he first regions to reactivate when patients recover ( Laureys, Boly, and
aquet, 2006 ). Due to the current parcellation, our method cannot tar-

et all these areas, nevertheless, according to intrinsic ignition, some of
hem may be related to the global changes observed. 

Our results, however, are not free of limitations. The data analyzed
as with a parcellation of only 82 cortical regions of interest (Co-
omac) and therefore does not allow to infer the disruption of the
hole brain hierarchical organization. A subcortical parcellation and
etter definition for SC (although not mostly used here) are desirable
or these effects ( Kennedy, Knoblauch, and Toroczkai, 2013 ). The pre-
rocessing pipeline can be improved ( Tasserie et al., 2019 ) in order
o avoid the extra cleaning procedure. Although our results indicate
imilar global hierarchical disruptions as a common signature driven
y locally different re-organizations, these results need modelling and
imulations to give a full answer about the casual driving disruptions.
or example in ( Chaudhuri, Knoblauch, Gariel, Kennedy, and Wang,
015 ) and ( Joglekar, Mejias, Yang, and Wang, 2018 ) the ignition ca-
ability was explored as an inter-areal balanced amplification signal
hrough large scale circuits, supporting ignition models of conscious-
ess ( Joglekar et al., 2018 ). Moreover, temporal hierarchies naturally
merged from the heterogeneity of local networks ( Chaudhuri et al.,
015 ), with slower prefrontal and temporal regions having a strong im-
act on global brain dynamic. Therefore, in order to link intrinsic igni-
ion and mechanistic models, large scale models Breakspear (2017) are
xpected as future steps to give light on part of the neuronal mecha-
isms involved. It may help to connect our results with other studies on
leep ( Jobst et al., 2017 ) and disorders of consciousness, as well as the
imulation and exploration of manipulated brain states using deep brain
timulation ( Saenger et al., 2017 ). 

Another relevant question is about our understanding of hierarchy
 Hilgetag and Goulas, 2020 ). Hierarchical brain structures might refer
o i) topological sequence of projections, ii) a gradient of structural or
unctional cortical features, iii) a progression of scales or iv) a lami-
ar projection pattern. These hierarchies can be nested or non-nested
 Feinberg, 2011 ; Northoff et al., 2011 ). In the first case, the low lev-
ls are incorporated into the higher ones, forming intertwined relation-
hips Feinberg (2011) . As such, higher levels on the hierarchy weakly
onstrain low levels. It defines an embodied system lacking a clear “con-
rol zone ”. Contrary, non-nested hierarchies convey strong control hubs.
ome examples of non-nested hierarchies involve the anatomical hier-
rchical organization of a rich club where the brain region’s topological
onnectivity exceeds the connectivity given by random networks ( Honey
t al., 2010 ; van den Heuvel & Sporns, 2011, 2013 ). Another example
s the dynamical core, a hypothetical functional cluster in which the
egions inside are connected between them much more than with the
est of the brain under conscious processing ( DePasquale et al., 2018 ;
ononi and Edelman, 1998 ). This dynamical core also resembles the

dea of a workspace of neurons allowing conscious access. In both cases,
tructural or functional, hierarchy is quantified with topological mea-
ures such as degree of centrality. In our case, Intrinsic Ignition measure
10 
uantifies a type of function hierarchy. However, hierarchy is not de-
ned by the anatomical or functional connectivity, as in the case of the
ich club and dynamical core respectively. Here, the hierarchical struc-
ure is defined by dynamical signal processing, where upper regions may
rigger activity on lower ones more frequently than in the opposite direc-
ion. In this line, our findings suggest that the brain hierarchical organi-
ation is not uniformly graded ( Deco and Kringelbach, 2017 ), contrary
o dynamical core and GNW implies, but probably a more complex com-
ination of functionally nested and anatomically non-nested hierarchies
 Feinberg, 2011 ; Northoff et al., 2011 ). 

Finally, the intrinsic character of our measurement raises the ques-
ion of embodied and interoceptive signals ( Tanabe et al., 2020 ;
ignorelli & Meling, 2020 ). Physiological fluctuations may have sub-
le but important cognitive effects. In this case, it is important to high-
ight two types of contributions, the “first-order ” and the “second-order ”
ontribution of physiological signals ( Breakspear, 2017 ). The first or-
er (e.g. respiration and heart rate) contribute to many cofounds in the
lood oxygen level-dependent (BOLD) signal. In our analyses, these con-
ributions were avoided by our regression method and the preprocessing
f the data. Regarding the second-order effects, for example, heart rate
ariability, it is known that some of these effects co-vary with a spe-
ific activity in the interoceptive cortex, such as the insula. Some of
hese spontaneous fluctuations locked to heartbeats seemed to predict
nd shape conscious visual detection ( Park et al., 2014 ). Other authors
emonstrated that the interoceptive activity of heartbeats sent to the
nsula has a systemic effect on conscious perception, modulating exte-
oceptive awareness ( Nguyen et al., 2016 ; Salomon et al., 2016 ). Ex-
licit cardiac perception also influences activity in regions such as the
osterior and anterior insula, dorsal anterior cingulate, somatomotor
ortices, among others, supporting interoceptive awareness ( Critchley
t al., 2004 ). If all these effects are removed, the nonstationarities ob-
erved in neural data are also removed ( Laumann et al., 2017 ), i.e. it
ight also remove true neuronal fluctuations. As such, we did not in-

end to remove those effects. The remaining contributions of the second-
rder effects might be also intrinsic to the true neuronal fluctuations and
onstationarities of a brain embodied in a physiological body. While a
ery interesting question, in this paper we do not intend to answer the
uestion about all the sources of these intrinsic fluctuations, but only
dentify the main regions that are participating in those intrinsic inter-
ctions. 

. Conclusion 

In conclusion, the global values of hierarchical organization indi-
ate similar global organization (disruptions) under anesthesia, while
ocal analyses on which areas habit hierarchical levels inform on the
ifferent ways that anesthetics affect spatial and temporal aspects of
hat organization. Our study provides a common brain signature of
nesthesia-induced loss of consciousness beyond molecular pharmacol-
gy, also called “common anesthetic endpoint ” ( Hudetz and Mashour
016 ). This is in line with the idea that disruptions in long-distance net-
ork dynamics are a common signature of anesthesia-induced loss of

onsciousness, but adding the breakdown of hierarchical organization
nd its two dimensions, space and time. The hierarchical organization
s characterized by internal ignition activity, reconciling the observed
ommon global changes (hierarchies) with different local changes (ig-
ition power by node). 

Our local results suggest that areas proposed by GNW, such as fronto-
arieto-cingular networks, which underpin conscious access ( Dehaene
 Changeux, 2011 ), and regions considered by IIT as the parietal-
osterior cortical zones (supporting phenomenal or subjective experi-
nce ( Siclari et al., 2017 )), are both participating in changes of hier-
rchical organization. These hierarchical changes find their common
round in cingulate and parietal regions. Under other theoretical frame-
orks such as temporo-spatial theory of consciousness ( Northoff and
uang, 2017 ), embodiment theories ( Varela et al., 2016 ) and intero-
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eptive approaches ( Tallon-Baudry et al., 2018 ), our funding might be
iscussed in light of intrinsic space and time dimensions of neural ac-
ivity. In those cases, spontaneous activity given by intrinsic local activ-
ty triggering global patterns may become a common signature for con-
ciousness. It may imply, that under the hierarchical hypothesis, these
heories are complementary to each other, and approaching compatible
spects of the same conscious phenomenon ( Aru, Bachmann, Singer, and
elloni, 2012 ; Block, 2005 ; Dehaene et al., 2014; Tagliazucchi, 2017 ;
orthoff & Lamme, 2020 ; Mashour et al., 2020 ). This solves in part the

equirement of a desirable common and global signature to explain how
rain dynamics are similarly affected under anesthetics, at the same time
han recovering the specificity of affecting and modulating correlations
nd couplings of brain regions. 

. Methods 

.1. Animals 

The acquisition of this data set is previously reported in
 Barttfeld et al., 2015 ) and ( Uhrig et al., 2018 , http://links.lww.com/
LN/B756 ). Five rhesus macaques were included for analyses ( Macaca
ulatta , one male, monkey J, and four females, monkeys A, K, Ki, and
, 5-8 kg, 8-12 yr of age), in a total of six different arousal conditions:
wake state, ketamine, light propofol, deep propofol, light sevoflurane,
nd deep sevoflurane anesthesia. Three monkeys were used for each
ondition: Awake (monkeys A, K, and J), Ketamine (monkeys K, R and
i), Propofol (monkeys K, R, and J), Sevoflurane (monkeys Ki, R, and
). Each Monkey had fMRI resting-state acquisitions on different days
nd several monkeys were scanned in more than one experimental con-
ition. Only one monkey, monkey A was scanned in one experimental
ondition, the awake state. This experimental design ensures (under the
imitations of current regulation), that our data set is as representative
s possible. All procedures are in agreement with the European Conven-
ion for the Protection of Vertebrate Animals used for Experimental and
ther Scientific Purposes (Directive 2010/63/EU) and the National In-

titutes of Health’s Guide for the Care and Use of Laboratory Animals.
nimal studies were approved by the institutional Ethical Committee

Commissariat à l’Énergie atomique et aux Énergies alternatives; Fonte-
ay aux Roses, France; protocols CETEA #10-003 and 12-086). 

.2. Anesthesia protocols 

The anesthesia protocol is thoroughly described in previous studies
 Barttfeld et al., 2015 ; Uhrig et al., 2018 ). Monkeys received anesthe-
ia either with ketamine ( Uhrig et al., 2018 ), propofol ( Barttfeld et al.,
015 ) or sevoflurane ( Uhrig et al., 2018 ), with two different levels of
nesthesia depth for propofol and sevoflurane anesthesia (Light and
eep). These levels were defined according to the monkey sedation

cale, based on spontaneous movements and the response to external
timuli (presentation, shaking or prodding, toe pinch), and corneal re-
ex. For each scanning session, the clinical score was determined at the
eginning and end of each scanning session, together with continuous
lectroencephalography monitoring ( Uhrig et al., 2016 ). 

During ketamine, deep propofol anesthesia, and deep sevoflurane
nesthesia, monkeys stopped responding to all stimuli, reaching a state
f general anesthesia. Monkeys were intubated and ventilated as pre-
iously described ( Barttfeld et al., 2015 ; Uhrig et al., 2018 ). Heart
ate, noninvasive blood pressure, oxygen saturation, respiratory rate,
nd-tidal carbon dioxide, and cutaneous temperature were monitored
Maglife, Schiller, France) and recorded online (Schiller). 

Ketamine was applied by intramuscular injection (20 mg/kg; Virbac,
rance) for induction of anesthesia, followed by a continuous intra-
enous infusion of ketamine (15 to 16 mg • kg–1 • h–1) to maintain
nesthesia. Atropine (0.02 mg/kg intramuscularly; Aguettant, France)
as injected 10 min before induction, to reduce salivary and bronchial
11 
ecretions. For propofol, monkeys were trained to be injected an intra-
enous propofol bolus (5 to 7.5 mg/kg; Fresenius Kabi, France), fol-
owed by a target-controlled infusion (Alaris PK Syringe pump, CareFu-
ion, USA) of propofol (light propofol sedation, 3.7 to 4.0 μg/ml; deep
ropofol anesthesia, 5.6 to 7.2 μg/ml) based on the “Paedfusor ” pharma-
okinetic model ( Absalom and Kenny, 2005 ). During sevoflurane anes-
hesia, monkeys received first an intramuscular injection of ketamine
20 mg/kg; Virbac) for induction, followed by sevoflurane anesthesia
light sevoflurane, sevoflurane inspiratory/expiratory, 2.2/2.1 volume
ercent; deep sevoflurane, sevoflurane inspiratory/expiratory, 4.4/4.0
olume percent; Abbott, France). Only 80 minutes after the induction
he scanning sessions started to get a washout of the initial ketamine
njection ( Schroeder et al., 2016 ). To avoid artefacts related to poten-
ial movements throughout magnetic resonance imaging acquisition, a
uscle-blocking agent was coadministered (cisatracurium, 0.15 mg/kg

olus intravenously, followed by continuous intravenous infusion at a
ate of 0.18 mg • kg–1 • h–1; GlaxoSmithKline, France) during the ke-
amine and light propofol sedation sessions. 

.3. Functional magnetic resonance imaging data acquisition 

For the awake condition, monkeys were implanted with a magnetic
esonance–compatible head post and trained to sit in the sphinx posi-
ion in a primate chair ( Uhrig, Dehaene, and Jarraya, 2014 ). For the
wake scanning sessions, monkeys sat inside the dark magnetic reso-
ance imaging scanner without any task and the eye position was mon-
tored at 120 Hz (Iscan Inc., USA). The eye-tracking was performed
o make sure that the monkeys were awake during the whole scan-
ing session and not sleeping. The eye movements were not regressed
ut from rfMRI data. For the anesthesia sessions, animals were posi-
ioned in a sphinx position, mechanically ventilated, and their physi-
logic parameters were monitored. No eye-tracking was performed in
nesthetic conditions. Before each scanning session, a contrast agent,
onocrystalline iron oxide nanoparticle (Feraheme, AMAG Pharmaceu-

icals, USA; 10 mg/kg, intravenous), was injected into the monkey’s
aphenous vein ( Vanduffel et al., 2001 ). Monkeys were scanned at rest
n a 3-Tesla horizontal scanner (Siemens Tim Trio, Germany) with a
ingle transmit-receive surface coil customized to monkeys. Each func-
ional scan consisted of gradient-echoplanar whole-brain images (repe-
ition time = 2,400 ms; echo time = 20 ms; 1.5-mm3 voxel size; 500
rain volumes per run). Monkeys were scanned with F-W phase encod-
ng direction to avoid the major axis of distortion since no visual task
as performed. 

.4. Functional Magnetic Resonance Imaging Preprocessing 

A total of 157 functional magnetic imaging runs were acquired
 Barttfeld et al., 2015 ; Uhrig et al., 2018 ): Awake, 31 runs (monkey A,
 runs; monkey J, 18 runs; monkey K, 9 runs), Ketamine, 25 runs (mon-
ey K, 8 runs; monkey Ki, 7 runs; monkey R, 10 runs), Light Propofol,
5 runs (monkey J, 2 runs; monkey K, 10 runs; monkey R, 12 runs),
eep Propofol, 31 runs (monkey J, 9 runs; monkey K, 10 runs; mon-
ey R, 12 runs), Light Sevoflurane, 25 runs (monkey J, 5 runs; mon-
ey Ki, 10 runs; monkey R, 10 runs), Deep Sevoflurane anesthesia,
0 runs (monkey J, 2 runs; monkey Ki, 8 runs; monkey R, 11 runs).
or details, check the supplementary tables for ( Uhrig et al., 2018 )
 http://links.lww.com/ALN/B756 ). 

Functional images were reoriented, realigned, and rigidly coreg-
stered to the anatomical template of the monkey Montreal Neuro-
ogic Institute (Montreal, Canada) space with the use of Python pro-
ramming language and Oxford Centre Functional Magnetic Reso-
ance Imaging of the Brain Software Library software (United King-
om, http://www.fmrib.ox.ac.uk/fsl/ ; accessed February 4, 2018)
 Uhrig et al., 2014 ). From the images, the global signal was regressed
ut to remove any confounding effect due to physiologic changes ( e.g. ,
espiratory or cardiac changes). If this regression is not performed, the

http://links.lww.com/ALN/B756
http://links.lww.com/ALN/B756
http://www.fmrib.ox.ac.uk/fsl/
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unctional connectivity artificially increases, and preliminary results do
ot recover the previously observed SC vs FC correlations changes un-
er anesthetics. Voxel time series were filtered with a low-pass (0.05 Hz
utoff) and high-pass (0.0025 Hz cutoff) filters and a zero-phase fast-
ourier notch filter (0.03 Hz) to remove an artifactual pure frequency
resent in all the data ( Barttfeld et al., 2015 ; Uhrig et al., 2018 ). 

Furthermore, an extra cleaning procedure was performed to ensure
he quality of the data after time-series extraction (Supplementary Fig.
). The procedure was based on a visual inspection of the time series
or all the nodes, the Fourier transform of each signal, the functional
onnectivity for each subject and the dynamical connectivity computed
ith phase correlation. Trials were kept when the row signal did not
resent signs of artifactual activity, functional connectivity was coher-
nt with the average and dynamical connectivity presented consistent
atterns across time. 

Finally, a total of 119 runs are analyzed in subsequent sections:
wake state 24 runs, ketamine anesthesia 22 runs, light propofol anes-

hesia 21 runs, deep propofol anesthesia 23 runs, light sevoflurane anes-
hesia 18 runs, deep sevoflurane anesthesia 11 runs. 

.5. Anatomical Parcellation and Structural Connectivity 

Anatomical (structural) data were derived from the CoCoMac
.0 ( Bakker, Wachtler, and Diesmann, 2012 ) database ( cocomac.g-
ode.org ) of axonal tract-tracing studies using the Regional Map par-
ellation ( Kötter and Wanke, 2005 ). This parcellation comprises 82 cor-
ical ROIs (41 per hemisphere; Supplementary Table 4). Structural ( i.e. ,
natomical) connectivity data are expressed as matrices in which the
2 cortical regions of interest are displayed in x-axis and y-axis. Each
ell of the matrix represents the strength of the anatomical connection
etween any pair of cortical areas. The CoCoMac connectivity matrix
lassifies the strength of the anatomical connections as weak, moderate,
r strong, codified as 1, 2, and 3, respectively ( Barttfeld et al., 2015 ). 

.6. Dynamic analyzes 

Functional connectivity matrices (FC) for each condition are first
omputed for each subject using Pearson correlation and then aver-
ged across subjects. Each FC has 82 cortical regions. The dynamical
unctional connectivity (dFC) is computed using a sliding window tech-
ique (50 TR correlation window and 5 TR sliding size). The chosen
R intervals are better suited for visualization purposes. This proce-
ure results in 90-time partitions and for each one of them, one FC is
omputed. Then, the dFC is the correlation among these 90 FCs. Corre-
ations between FC and Structural connectivity (SC) for each subject
re computed with Pearson correlation and plotted as a violin plot.
or violin plots, the shape describes the distribution density, the white
ot corresponds to the median, the thick inner line is the first quar-
ile (down), and the third quartile (up). The borders are the upper and
ower adjacent values (Hintze & Nelson, 1998). Finally, metastability is
omputed as the standard deviation of the Kuramoto’s order parameter
synchrony). 

.7. Intrinsic ignition analyzes 

The ignition capability can be defined in terms of its spatial and
emporal components, generating two measures: Intrinsic Ignition and
gnition Variability. This procedure generates one value for each node
nd subject that is later averaged to form the Intrinsic Ignition per node
nd Ignition Variability per node value. Therefore, Intrinsic Ignition tells
s about the spatial diversity of a network, while the Ignition Variability,
bout the diversity across time. 

Intrinsic Ignition is a novel technique based on graph and network
heory ( Fig. 2 a). For any node, its inner ignition capability is fully char-
cterized by the Intrinsic Ignition as a measure of its spatial diversity,
nd its variability as a measure of its diversity across time. To compute
12 
oth aspects, any continuous signal can be binarized using a thresh-
ld 𝜃 such that the binary sequence 𝜎𝑖 ( 𝑡 ) = 1 𝑖𝑓 𝑧 𝑖 ( 𝑡 ) > 𝜃, crossing the
hreshold from below, and 𝜎𝑖 ( 𝑡 ) = 0 , otherwise ( Tagliazucchi, Balen-
uela, Fraiman, and Chialvo, 2012 ). This simple method generates a
aster plot with a discrete sequence of events, which is more efficient
n terms of complex computations (see raster plots examples for each
ondition in Fig. 2 b). 

Moreover, a Hilbert transform is performed to the continuous signal,
efining the phases for each time point and node. Using these phases,
 phase correlation or pairwise phase synchronization between regions
and 𝑘 is defined as 𝑃 𝑗𝑘 ( 𝑡 ) = 𝑒 −3 |( 𝜑 𝑗 − 𝜑 𝑘 ) |. For each of these matrices,

nother binarization process is applied for a given absolute threshold 𝜃
etween 0 and 1 (scanning the whole range), and therefore the symmet-
ic phase lock matrix 𝑃 𝑗𝑘 ( 𝑡 ) can be binarized such as 0 𝑖𝑓 𝑃 𝑗𝑘 ( 𝑡 ) < 𝜃, 1
therwise. Then the length of the largest component is computed, gen-
rating a curve with this value for each binarized phase lock matrix. The
rea below the curve is defined as the integration value for that node
ROI) at that time point. Running the same procedure for all time points
reates a table of integration across time for each node. For each event
efined from the first binarization procedure, and a flag window (com-
only 4 TR), the total integration is computed as the average across the
elta time defined by the event and the flag. It builds a matrix of integra-
ion across events. The average integration across events is defined as
he Intrinsic Ignition , while the standard deviation integration across
he same events corresponds to the Ignition Variability . 

Intrinsic Ignition and Intrinsic Variability produce one value for each
f the 82 nodes. The procedure is repeated through subjects and condi-
ions, creating a data matrix 𝐷 𝑖𝑗 for each condition such that 𝑖 corre-
ponds to the nodes and 𝑗 to the subjects ( Fig. 2 c). The mean of these
alues across subjects ( j ) corresponds to the Intrinsic Ignition per node

nd Ignition Variability per node , respectively. The mean across nodes
 i ) is defined as the Mean Intrinsic Ignition and the Mean Ignition

ariability . The standard deviation of the Mean Intrinsic Ignition (in-
rinsic ignition across nodes) returns a quantification value of the shape
f the Intrinsic Ignition curve (considering all the values sorted from
igher to lower), which here is defined as the Hierarchy , a quantifier
or each subject. 

To complement these analyses, a Spectrum Hierarchy plot is spec-
fied as a circle plot with different levels. Each level corresponds to a
hreshold of the Intrinsic Ignition (Spatial) and/or Ignition Variabil-
ty (Temporal) curve: 𝑖 ≥ 𝜇 + 𝜎; 𝜇 + 𝜎 > 𝑖 ≥ 𝜇; 𝜇 > 𝑖 ≥ 𝜇 − 𝜎; 𝜇 − − 𝜎 > 𝑖 .
 refers to the index node, 𝜇 the mean value, and 𝜎 the standard devia-
ion of the curve. The distance between level is given by the thickness of
he level and the value of 𝜇 + 𝜎 for level 1, 𝜇 for level 2, 𝜇 − 𝜎 for level
, 𝜇 − 𝜎 − 𝑚𝑖𝑛 ( 𝑛𝑜𝑑𝑒𝑠 ) for level 4 (Supplementary Fig. 2). The thickness
f each level line is the number of nodes on that level; a thicker line
eans more nodes than thinner lines (e.g. red line in the Fig. marks the

hickness of level two). The uniformity of the spectrum hierarchy for one
ondition characterizes the ignition curves in terms of the hierarchical
rganization across nodes Deco and Kringelbach (2017) . 

To explore if some nodes would be locally driving the global changes
bserved, a local analysis was performed on Intrinsic Ignition and Igni-
ion Variability per node. This test consisted of finding which nodes are
ollowing the global tendency measured in the spatial and temporal as-
ects of ignition. As will be discussed in Results, the global tendency
as the highest values of Intrinsic Ignition and Ignition Variability in
wake, medium values in light sedation, and lower values in deep condi-
ions. These tendencies were translated to logical propositions in order
o find the nodes that satisfied all the propositions across conditions.
hese propositions were: 𝑛𝑜𝑑𝑒𝑠 ≥ 𝜇 for awake, 𝜇 + 𝜎 ≥ 𝑛𝑜𝑑𝑒𝑠 for light
onditions and 𝜇 ≥ 𝑛𝑜𝑑𝑒𝑠 for deep conditions. More restricted logical
ropositions do not produce results. Additionally, instead of the mean
 𝜇) , the median was also used as cut off in order to search for consistent
esults. The number of regions obtained from one or another method
hanges slightly for Intrinsic Ignition, but there is a clear overlap of re-
ions, confirming part of the consistency expected. Finally, a subject by

http://cocomac.g-node.org/
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ubject analysis was also performed as a supplementary test. In this case,
he same propositions above were run in each subject to later generate a
istogram of occurrence. A threshold of 60% of occurrence was imposed
o find the regions above the threshold. 

.8. Statistical analyzes 

The main statistical test used in this work was the non-parametric
olmogorov–Smirnov test (unless another test is explicitly stated).

t is due to the characteristics of the data and their distributions
 Rosner, 2012 ), for example in order to compensate for the unbalanced
umber of trials per condition. Therefore, the independence of mea-
ures and conditions is a statistical assumption commonly accepted for
onkey data ( Uhrig et al., 2018 ), together with the continuous nature

f our measures ( Rosner, 2012 ). Confidence intervals (CI) at 95% were
omputed as 𝜇 ± 1 . 96 ∗ 𝜎∕ 

√
𝑛 . As above, 𝜇 is the mean, 𝜎 the standard

eviation and 𝑛 the length of the data points. 
Additionally, effect size analyses were performed to quantify the dif-

erences given by statistical tests on Intrinsic Ignition and Ignition Vari-
bility per node. The method used was the rank-biserial correlation anal-
sis for independent samples (other effect size techniques such as mean
ifference, AUROC and Cohen U1 did not present major differences with
he results of rank-biserial correlation). In this test, ranks between -1 to
 1 correspond to maximal effects and 0 means no effect. To compute a
onfidence interval for effect size analyzes, 10.000 bootstrapping itera-
ions were performed (more details ( Hentschke and Stüttgen, 2011 )). 
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