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In recent years the study of the intrinsic brain dynamics in a relaxed awake state in the absence of any specific
task has gained increasing attention, as spontaneous neural activity has been found to be highly structured at a
large scale. This so called resting-state activity has been found to be comprised by nonrandom spatiotemporal
patterns and fluctuations, and several Resting-State Networks (RSN) have been found in BOLD-fMRI as well as
in MEG signal power envelope correlations. The underlying anatomical connectivity structure between areas of
the brain has been identified as being a key to the observed functional network connectivity, but themechanisms
behind this are still underdetermined. Theoretical large-scale brain models for fMRI data have corroborated the
importance of the connectome in shaping network dynamics, while the importance of delays and noise differ be-
tween studies and depend on the models' specific dynamics. In the current study, we present a spiking neuron
networkmodel that is able to produce noisy, distributed alpha-oscillations,matching the power peak in the spec-
trumof group resting-stateMEG recordings.We studied howwell themodel captured the inter-node correlation
structure of the alpha-band power envelopes for different delays between brain areas, and found that themodel
performs best for propagation delays inside the physiological range (5–10 m/s). Delays also shift the transition
from noisy to bursting oscillations to higher global coupling values in the model. Thus, in contrast to the
asynchronous fMRI state, delays are important to consider in the presence of oscillation.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

It is an astonishingly hard task to do, think, and attend nothing;
thoughts, observations, and feelings naturally arise from within us,
more or less at random. Without any specific external stimulation, we
fluctuate in our mental states as the brain fluctuates between different
activity patterns. While in the study of cognitive tasks, these fluctua-
tions seem to be a nuisance that necessitate averaging over many trials,
they are themselves structured and informative in many ways. fMRI
and, more recently, neurophysiological imaging studies have found
that the brain's spontaneous activity patterns decompose into networks
of brain areas, defined primarily not by their mean activity level but by
the functional connectivity between them (Mazoyer et al., 2001). This
erms of the Creative Commons
rmits non-commercial use, dis-
original author and source are

awa).
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way, several Resting-State Networks (RSN) with known task-related
functional importance such as sensorimotor, visual and attentional
areas and networks, have been identified in spontaneous brain activity
in the absence of tasks (Biswal et al., 1995, 1997; Cordes et al., 2000,
2002; Damoiseaux et al., 2006; De Luca et al., 2005, 2006; Lowe et al.,
1998). A specific ‘Default Mode Network’ (Buckner et al., 2008;
Damoiseaux et al., 2006; Greicius et al., 2003; Gusnard and Raichle,
2001; van den Heuvel et al., 2008), an RSNwhich shows higher activity
during the resting-state than during various task conditions, has also
been identified. These functional networks and their dynamics are de-
termined both by the underlying anatomical connectivity and the
local neuronal dynamics and interactions, leading to spatiotemporal
patterns and oscillations at different time scales. To understand them
is of key value to understanding the brain's cognitive machinery and
its ability to flexibly control mental states. So, it is of prime interest to
gain deeper insight into the origins and mechanisms of spontaneous
functional connectivity (FC) patterns, and we can apply theoretical
models and numerical simulations of resting-state activity to study
these dynamics.
ved.
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Resting-state models take advantage of recent technical advances
capable of tracking white fiber tracts noninvasively via DTI/DSI in
humans (Cabral et al., 2011; Deco and Jirsa, 2012; Honey et al., 2009,
2010; Izhikevich and Edelman, 2008; Senden et al., 2012) to combine
realistic neuroanatomical long-range connections between brain areas
with themodels' local dynamics (oscillators, neuralmasses, or explicitly
modeled neurons) in order to construct a dynamical cortical model for
the human cortex. The simulated activity patterns from the freely
interacting network have successfully reproduced resting-state dynam-
ics: Anticorrelated functional networks such as found by Fox et al.
(2005) in cortex have been observed to emerge inmodelswith different
local dynamics (e.g. Honey et al., 2007: chaotic oscillators; Deco et al.,
2009: Wilson–Cowan oscillators). Slow fMRI rhythms below 1 Hz ob-
served by several authors in fMRI resting-state recordings (Biswal
et al., 1995; Cordes et al., 2001; Damoiseaux et al., 2006; De Luca et al.,
2006; Fransson, 2005) can also be found in Wilson–Cowan (Deco et al.,
2009), Kuramoto oscillator (Cabral et al., 2011), neural mass (Honey
et al., 2007), and spiking neuron models (Deco and Jirsa, 2012). In all
these models, the underlying network structure is crucial in shaping
the network dynamics and maintaining the system close to criticality
(see Deco et al., 2013a, 2013b). Further, delays were found to shape
the emerging spatial patterns and modes in oscillatory networks much
more in directed graphs (Ghosh et al., 2008a,b) than in undirected
graphs (Knock et al., 2009). In general, the extent to which delays (and
noise) critically influence the global dynamics and interactions, depends
also on the nature of local network dynamics (Deco and Corbetta, 2011;
Deco et al., 2009). Consequently, the choice of local dynamics depends
on various factors and goals that are pursued by the studies, as for exam-
ple, the desired level of abstraction/physiological realism, the time- and
spatial scales, and the network mechanisms to be investigated.

While modeling studies have so far been mostly focused on fMRI
FC and slow oscillations that were empirically observed, recent neuro-
physiological studies have investigated the resting-state with increas-
ing temporal resolution. Using combined EEG/fMRI and source-
reconstructed MEG recordings to increase spatial resolution, these
studies have found that alpha and beta band-limited power (BLP) enve-
lopes retrace fMRI based FC patterns and slow fMRI rhythms (Brookes
et al., 2011a, 2011b; de Pasquale et al., 2010; Hipp et al., 2012; Liu
et al., 2010; Mantini et al., 2007). So far, the various anatomically in-
formed, oscillatory dynamics network models have been limited to
fMRI, and have not yet been validated with empirical neurophysiologi-
cal data,which can capture faster oscillations. InMEG recordings, for ex-
ample, alpha-oscillations are especially predominant in, and have
always been associated with the resting-state. They are readily identifi-
able and robustly found in electrophysiological recordings since thefirst
human EEG studies by Hans Berger a century ago (for a historical over-
view, see Shaw, 2003). The origin of this typical alpha-activity is not com-
prehensively determined yet, though self-sustaining sources have been
identified both in cortex (Silva et al., 1991) and in the thalamocortical
loop (Lopes da Silva et al., 1974). In fact, alpha-activity ismost likely a col-
lection of rhythms from several sources (Ben-Simon et al., 2008; Freyer
et al., 2011; Neymotin et al., 2011; Shaw, 2003), which may contribute
to the variability of alpha-rhythm characteristics (e.g. peak frequency,
amplitude, topography) found in the brain both over time (Freyer et al.,
2009, 2011, 2012) and between subjects (Chiang et al., 2011).

In the present study, we focused on the influence of noisy oscilla-
tions on band-limited connectivity patterns in a biophysical setting. As
the integrity of a model always depends on the spatial connectivity
structure, but not in all cases on the temporal structure (e.g. in the
case of chaotic oscillators, Honey et al., 2007, 2009; or in the asynchro-
nous state (Deco and Jirsa, 2012)), it is unclear towhat extent the brain's
effective connectivity is affected by, and sensitive to the delays intro-
duced by long fibers and limited transmission velocities in the brain,
when considering complex neuronal population dynamics (Knock
et al., 2009).Wehere aimed to study the effect of delays on the FC struc-
ture and model performance in a neurophysiologically detailed model
by recreating the irregular oscillations evident in MEG recordings in
the alpha-band and relating the numerical simulations for different de-
lays and the empirical data. For this, we employed a leaky-integrate-
and-fire (LIF) spiking neuron model with realistic NMDA, AMPA and
GABA synapses (Deco and Jirsa, 2012), and an oscillation-inducing
calcium-dependent hyperpolarization current (triggering Spike-
Frequency-Adaptation SFA; e.g. Fuhrmann et al., 2002; Liu and Wang,
2001; Meech, 1978). In the following, we will show that the presented
model exhibits network oscillations in the alpha-range when the
model nodes are coupled, and that it successfully captures alpha-band
FC. It does so most robustly in the presence of delayed large scale con-
nectivity, suggesting a functional importance for long-range delays in
sustaining interaction patterns between areas and resting-state net-
works in the healthy brain.

Methods

Neuroanatomical connectivity matrix

Weighted neuroanatomical connectivity matrices were extracted
from the diffusion tensor imaging (DTI) data of 21 healthy, normal par-
ticipants (11 males, aged 22–45 years). Extraction methods were based
on Gong et al. (2009). Diffusion MRI was acquired by using a single-
shot echo planar imaging-based sequence with coverage of the whole
brain; repetition time (TR), 9390 ms; echo time (TE), 65 ms. DTI images
utilized 32 optimal nonlinear diffusion weighting directions (b =
1200 s/mm2) and 2 non-diffusion weighted volumes; reconstructed
matrix = 128x128x45; reconstructed voxel size 2.0 mm × 2.0 mm ×
2.0 mm. We also acquired T1-weighted structural images with a three-
dimensional ‘FLASH’ sequence (TR = 12 ms, TE = 5.6 ms, flip
angle = 19°, with elliptical sampling of k-space, giving a voxel size of
1 × 1 × 1 mm in 5.05 min). All scans were performed on the same
Philips Achieva 1.5 Tesla Magnet. Weighted brain networks were con-
structed by first parcellating the brain, and then extracting the network
from interregional connectivity analysis. Brain parcellation was con-
structed using the automated anatomical labeling (AAL, Tzourio-
Mazoyer et al., 2002) template. The brain was parsed into 45 regions
per hemisphere (90 in total), each region representing a node of the
brain network. For each participant, parcellation was conducted in the
diffusion MRI native space, and the b0 image was coregistered linearly
to the T1-weighted structural image with the Flirt Tool (FMRIB, Oxford,
Jenkinson et al., 2002). The transformed T1-weighted image was next
mapped to the T1 template of ICBM152 in Montreal Neurological Insti-
tute (MNI) space (Collins et al., 1994), inversed, and further applied to
warp the AAL mask from MNI space to the diffusion MRI native space,
where interpolation using nearest-neighbor method ensured that the
discrete labeling values were preserved. For the analysis of interregional
connectivity (via Fdt toolbox in FSL, Oxford), diffusion MRI data was
preprocessed by coregistering the diffusion-weighted images to a refer-
ence volume using an affine transformation for the correction of head
motion as well as eddy current induced image distortion.

The local probability distribution of fiber direction and voxel connec-
tivity probability were estimated via probabilistic tractography (Behrens
et al., 2007), and the procedurewas then extended to the level of each re-
gion. The connectivity probability from each of the parcellated brain re-
gions to the other 89 regions was calculated. It must be noted that
because of the dependence of tractography on the seeding location, the
probability from i to j is not necessarily equivalent to that from j to i.
However, these two probabilities are highly correlated across the brain
for all subjects (the least Pearson r = 0.70, p b 10−50). Therefore, the
undirectional connectivity probability Pij between region i and jwas de-
fined by averaging these two probabilities. Calculations of regional con-
nectivity probability were implemented using in-house Perl scripts.

Finally, a weighted network graph was constructed by defining a
distance and weight associated with each edge. The high connectivity
probability between brain regionswere taken here to be short distances
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in a graph. Specifically, Wij = 1 − Pij was computed as the distance/
weight between brain region i and j, as used in previous literature
(Achard and Bullmore, 2007). Note that the distance here does not cor-
respond to the physical length of the white matter pathway linking the
brain regions. For each subject, a 90 × 90 weighted cortical network/
graphW was constructed, representing the anatomical organization of
cerebral cortex.

MEG data collection and analysis

Data collection
MEG data were recorded from ten healthy participants who

underwent a five minutes resting-state scan with their eyes closed. Re-
cordings were performed at 1000 Hz sampling frequency on an Elekta
Neuromag (Elekta Neuromag Oy, Helsinki, Finland) with 102 magne-
tometers and 102 pairs of orthogonal radial gradiometers. Subjects'
head shape was recorded using a Polhemus Isotrack system, and four
head position indicator (HPI) coils allowed for the head to be localized
in the scanner.

Data analysis
Data preprocessing included signal space separation (Taulu et al.,

2005), de-noisingwith independent component analysis, source recon-
struction and bandpass filtering of the MEG signal. Signal space separa-
tion compensates for external interference and sensor artifacts by
projecting the MEG data onto a basis set of spherical harmonics.
Harmonics corresponding to sources originating fromwithin the sensor
array are preserved while interfering sources from outside the environ-
ment surrounding the sensor array are rejected. The sensor space MEG
data were de-noised using temporal independent component analysis
(ICA) to remove cardiac, 50 Hz mains and, in some subjects, eye move-
ment artifacts.

Each dataset was then co-registered into the MNI space by register-
ing the canonical MNI template to the Polhemus head shape data. A
local sphere forward model (Huang et al., 1999) was then estimated
using the subject's head shape. Both co-registration and forward
model estimation were performed with the Matlab SPM8 package
(FIL,UCL). The MEG data were then bandpass filtered into delta
(1–5 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), low
gamma (30–48Hz) and high gamma (52–80 Hz) bands. An LCMV
beamformer was used to transform the original sensor time series for
each frequency band into source space time series, that is, to reconstruct
the activity at the 90 locations defined by the AAL brain parcellation.

Functional connectivity scores between node pairs were estimated
by taking the band-limited power envelopes of a pair of nodes,
regressing one out from the other to orthogonalize the time series and
thereby removing any zero-lag correlations. We then calculated the
Pearson correlation between the orthogonalized time series. Since the
orthogonalization can be performed in both directions (X from Y and
Y from X), the mean of both resulting correlation values was taken as
the final correlation value. The full approach is described in detail and
discussed in Brookes et al. (2012) and is the same as in Hipp et al.
(2012). Functional connectivity scores between node pairs were esti-
mated in the following way. For a given frequency band, a pair of
nodes was selected. The first node of the pair was regressed from
the second to orthogonalize the two time series, removing any zero-
lag correlations induced by field spread. The correlation between the
low pass filtered envelopes of the two orthogonalized time series was
estimated.

This procedure was repeated but instead regressing the second
voxel from the first and estimating the envelope correlation (Brookes
et al., 2012; Hipp et al., 2012). The two different correlation values
were then averaged to give a single correlation score. Here, we consider
mainly the MEG signal's alpha BLP based on findings that, along with
beta, it best captures the functional connectivity of RSN in MEG data
(Brookes et al., 2011a, 2011b; Hipp et al., 2012; Luckhoo et al., 2012).
Global cortical model

The global model consists of 90 model nodes, each comprising an in-
hibitory and an excitatory pool of neurons, whose properties are de-
scribed in detail below. Each node of the model represents one brain
area, and the connections between any two nodes are implemented by
interconnecting the respective neurons between the excitatory pools
via NMDA and AMPA synapses. Transmission strengths are weighted
by the corresponding value in the neuroanatomical connectivity matrix
described above. As the DTI measure used to extract the structural con-
nectivity is symmetrical, so are the connectivities in the model. Connec-
tions between nodes are limited to act between excitatory pools as they
are here considered to represent long-range axons of pyramidal neurons.
These connections areweighted by a global coupling factorW,which de-
termines the overall connectivity strength in the resulting network. W,
and the propagation velocity v are the main parameters to be varied in
the simulations to find an area of parameter space where the correspon-
dence between empirical andmodel data becomesmaximal. In the brain,
delays depend on axonal transmission times, which are determined by
axon diameter, myelinization, and distance. The delay between two
brain areas in the model was determined by their Euclidean distance in
MNI-templated source space (max = 160 mm)divided by v,with prop-
agation speed v in m/s and inter-area distance D in mm. The Euclidean
distances are necessarily a lower bound estimate of fiber tract lengths,
therefore propagation speeds would here be somewhat underestimated.

Local dynamics
Each node's local dynamics are modeled with 200 spiking neurons,

featuring a biophysically realistic neural network model, consisting of
leaky-integrate-and-fire (LIF) spiking neurons with NMDA, AMPA, and
GABAA receptors (Brunel andWang, 2001). The model was first adapted
formodeling resting-state dynamics by, and is described in detail in Deco
and Jirsa (2012). Their detailed global attractor model combines a realis-
tic mechanistic model at the level of each single brain area with the
large-scale cortical network structure. In the model, every node consists
of an excitatory (index E, NE = 160) and an inhibitory pool (index I,
NI = 40). The local dynamics are described by combining the dynamical
equations of each neuron and the synaptic variables with all connected
neurons. Excitatory/inhibitory neuron ratio and conductivities were bal-
anced to reflect empirically realistic values and low spontaneous firing
rates (DeFelipe, 1993; Destexhe et al., 1998) in each node (Fig. 3,
inlay). Neurons inside a node were all-to-all connected in order to keep
neuron numbers low and simulations feasible. There were NE excitatory
and NI inhibitory presynaptic connections for every neuron, in addition
to the excitatory inputs from long-range connections from pyramidal
cells of other nodes and background input from 800 external neurons
as described at the end of this paragraph. The neurons are modeled as
LIF units that are characterized by the dynamics of their membrane po-
tential.When themembrane voltage crosses a threshold Vthr, the neuron
generates a spike, which is transmitted to connected neurons via its
AMPA and NMDA or GABA synapses, and the membrane voltage is set
to Vreset, where it is held fixed for the neuron's refractory period τref.
The subthreshold equation for the membrane potential is given by:

CE;I
m

dV tð Þ
dt

¼ −gm V tð Þ−VLð Þ þ Itotal tð Þ; ð1Þ

describing a basic RC-circuit with the cell membrane capacitance
Cm in parallel with membrane resistance Rm, leak conductance
gm = 1 / Rm, resting potential VL = −70mV, and synaptic and after-
hyperpolarization (AHP) currents. Membrane time constants are given
in Table 1. The total current Itotal is the sumof synaptic external excitatory
AMPA currents, AMPA and NMDA recurrent excitatory currents,
GABAergic inhibitory currents and an after-hyperpolarization current

Itotal tð Þ ¼ IAMPA;ext tð Þ þ IAMPA tð Þ þ INMDA tð Þ þ IGABA tð Þ þ IAHP tð Þ: ð2Þ



Table 1
Membrane and synaptic parameters.

Parameter Excitatory (NE = 160) Inhibitory (NI = 40)

Cm 0.5 nF 0.2 nF
gm 25 nS 20 nS
VL −70 mV 70 mV
Vthr −50 mV 50 mV
Vreset −55 mV 55 mV
Tref 2 ms 1 ms
gAM PA, ext 2.496 nS 1.944 nS
gAM PA, rec 0.104 nS 0.081 nS
gNM DA, rec 0.327 nS 0.258 nS
gGABA 4.375 nS 3.4055 nS
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The synaptic currents and their mediation through gating variables
si
j(t) are described by:

IAMPA;ext tð Þ ¼ gAMPA;ext V tð Þ−VEð Þ
XNext

j¼1

s jAMPA;ext tð Þ; ð3Þ

dsjAMPA;ext tð Þ
dt

¼ s jAMPA;ext tð Þ
τAMPA

þ
X
k

δ t−t jk
� �

; ð4Þ

IAMPA;rec tð Þ ¼ gAMPA;rec V tð Þ−VEð Þ
XNE

j¼1

wjs
j
AMPA;ext tð Þ; ð5Þ

dsjAMPA;rec tð Þ
dt

¼ s jAMPA;rec tð Þ
τAMPA

þ
X
k

δ t−t jk
� �

; ð6Þ

INMDA;rec tð Þ ¼ gNMDA;rec V tð Þ−VEð Þ
1þ γe−βV tð Þ

XNE

j¼1

wjs
j
NMDA;rec tð Þ; ð7Þ

dsjNMDA;rec tð Þ
dt

¼ s jNMDA;rec tð Þ
τNMDA;decay

þ αxj tð Þ 1−s jNMDA;rec tð Þ
� �

; ð8Þ

dxj
NMDA;rec tð Þ

dt
¼ xj

NMDA;rec tð Þ
τNMDA;rise

þ
X
k

δ t−t jk
� �

; ð9Þ

IGABA tð Þ ¼ gGABA V tð Þ−VIð Þ
XNI

j¼1

wjs
j
GABA tð Þ; ð10Þ

dsjGABA tð Þ
dt

¼ s jGABA tð Þ
τGABA

þ
X
k

δ t−t jk
� �

; ð11Þ

with indices over neurons j, synaptic conductances g, excitatory and in-
hibitory reversal potentials VE and VI, respectively, the Dirac-delta func-
tion δ, and synaptic weight parameter wj (determining the connection
strengths between and within neural populations). NMDA currents are
voltage dependent and modulated by intracellular calcium concentra-
tions (Eq. (7)). Connections between excitatory and inhibitory pools
were set to 1, and recurrent self-excitation tow+ = 1.5. Synaptic param-
eters were VE = 0 mV, VI = -70 mV, τAMPA = 2 ms, τNMDA,rise = 2 ms,
τNMDA,decay = 100 ms, τGABA = 10 ms, α = 0.5 kHz, β = 0.062, and
γ = 0.28. The remaining constant neural parameters are given in Table 1.

The adaptation-inducing calcium-dependent AHP current IAHP is
given by:

IAHP tð Þ ¼ −gAHPCa tð Þ V tð Þ−VKð Þ; ð12Þ

dCa tð Þ
dt

¼ −Ca tð Þ
τCa

þ αCA

X
i

δ t−tið Þ; ð13Þ
where αCa = .2, τCa = 70 ms, gAHP = 100 nS, and were chosen to in-
duce alpha-range oscillations in the presence of network input. For a
more detailed discussion on the dependency of adaptation-induced os-
cillations on the input and the time constant, see Augustin et al.
(2013). Note thatwe here focused on the implementation of noisy oscil-
lations as opposed to fixed frequency oscillators or to the asynchronous
state, andmanually adjusted the SFA values to introduce heterogeneous
alpha-activity into the model. Parameters were based on previously
established values (Brunel and Wang, 2001; Ermentrout et al., 2001)
guided by physiological measurements (Ahmed et al., 1998; Helmchen
et al., 1996; Svoboda et al., 1997).

All neurons in the network received an external background input
from Next = 800 external AMPA signaling excitatory neurons injecting
uncorrelated Poisson-distributed spike trains, representing the noisy
fluctuations that are typically observed in vivo. Specifically, for all neu-
rons inside a given population p, the rate vext

p of the resulting global
spike train is described by:

τn
dvpext tð Þ

dt
¼ − vpext tð Þ−v0

� �þ σv

ffiffiffiffiffiffiffiffi
2τn

2
p

np tð Þ ð14Þ

where tn = 300 ms, v0 = 2.4 kHz, σv is the standard deviation of
vext
p (t), and np(t) is normalized Gaussian white noise. Negative values

of vextp (t) that could arise due to the noise term are rectified to zero.
The resulting simulated time series was calculated by summing up all
synaptic input currents (AMPA, GABA and NMDA). This signal more di-
rectly corresponds to a simulated LFP signal (as in e.g. Mazzoni et al.,
2008) than to the dendritic currents the MEG signal originates in, but
some evidence from simultaneous intracortical recordings and MEG
during tactile stimulation suggests good correspondence between LFP
and MEG signals (Zhu et al., 2009). This may be due to the fact that
though dendritic integration of synaptic input may be highly nonlinear
due to dendrite shape, this effectmay be balanced by ion channel distri-
bution and synaptic properties,which can cancel dendritic signal distor-
tion (Magee, 2000). Power envelopes were calculated analogously to
those of MEG recordings.

Results

We present a theoretical model of spontaneous brain activity that
specifically considers the noisy oscillatory nature evident in MEG
resting-state recordings. The model is based on local LIF-neuronal dy-
namics of populations of inhibitory and excitatory neurons, combined
with a structural connectivity matrix that determines inter-areal con-
nection strengths. Oscillations emerge in the model from the recurrent
input between nodes, paired with neural adaptation in each node. Con-
sidering the noisy oscillations of the empirical data and the model, we
show in the following that themodel captures the network connectivity
of the MEG resting-state data in an optimal limited range of global cou-
pling strengths. The inclusion of neurophysiologically realistic delays
shifts the working point to higher mean coupling values and increases
the concordance between model and empirical data.

MEG data

In the literature, resting-state activity has been associated primarily
with BLP in the alpha- and beta-bands (Brookes et al., 2011a, 2011b;
Mantini et al., 2007). In line with these findings, the power spectrum
of the MEG data set from the present study had a peak around 10
(8–12) Hz (Fig. 2, first panel). Though typically the characteristics (e.g.
peak location, frequency differences between areas, peak amplitude)
vary across persons, age and sex groups, its appearance is a very robust
finding (Chiang et al., 2011). In our group of 10 healthy adult subjects,
the mean power spectral peak was centered at 8.7 Hz (±2.25). The
data was low-passedfiltered and freed from artifacts as described in de-
tail in themethods section.When filtering the time series in 15 bands of
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4 Hz width from 0 to 60 Hz, the alpha-band also carries the highest
mean BLP connectivity between nodes.

Brookes et al. (2011b) showed resting-state networks resembling
those previously found in fMRI studies for these MEG recordings.
Using ICA, they independently identified eight RSN in the MEG alpha-
and beta-band power envelopes closely coinciding with RSN also
found in fMRI recordings (their Fig. 1: a) DMN in alpha; b) left lateral
frontoparietal, c) right lateral frontoparietal, d) sensorimotor, e) medial
parietal, f) visual, g) frontal and anterior cingulate, and h) cerebellar
networks). Focusing here on the oscillatory data component and study-
ing the effect of long-range delays on the model FC structure over a
range of coupling and delay parameters, we directly fitted the model
FC to the empirical alpha power FC structure. Graph measures for the
empirical FC matrix are shown in Supplementary Fig. 1.

Model data

Themodel consisted of local nodes connected to each other by long-
range connections. The structure of these long-range connections was
fixed as it was based on neuroanatomical DTI measurements. Addition-
ally, two free parameters shaped the spatiotemporal network structure.
a

Fig. 1.Data processing and analysis: a)MEG time series are recorded by sensors and transformed
for each brain area was then filtered in the alpha-band (8–12 Hz) and its BLP was extracted via
constructed by taking the same AAL brain parcellation used for source-reconstruction of theME
determined the local node dynamics, and DTI-measurements determined the connectionweigh
and the resulting simulated LFP's band-pass filtered alpha-power envelopes were calculated th
Connectivity strength between nodes was varied systematically with
coupling parameter W, and the spatiotemporal pattern of the connec-
tivitywasmodulated by introducing global propagation velocity param-
eter v, which changed the temporal dynamics of the network. W is
unitless and unknown and was the main free parameter in the model,
and we varied v from Infinity (no delays) across a physiological range
of delays (5.10 m/s) to very large delays (1 m/s).

In the model, isolated nodes did not oscillate autonomously or from
the background activity only. Increasing input from other nodes trig-
gered activity-dependent SFA, leading itself to noisy oscillations in the
alpha-band (Fig. 2). The shape of the model frequency spectrum thus
depended on the global coupling parameterW: increasing the coupling
between brain areas caused the network nodes to start oscillating at
around 10 Hz, at a similar frequency as the alpha-peak evident in the
MEG data. When coupling was further increased, the network oscilla-
tions becamemore andmore regular. The transition from the low asyn-
chronous state over noisy oscillations with irregular spiking across all
pools of neurons to the highly regular population spikes for high W
can be seen for one brain area example time series in Fig. 3. Oscillatory
power and peak frequency further depended on the mean input (Fig. 2,
bottom panels).
b

into AAL source-space time serieswith a beamformer algorithm. The resulting time series
Hilbert-envelope computation, resulting in 90 alpha-power time series. b) The model was
G signal, and putting amodel node in the center of each brain area. LIF neuron populations
ts between nodes (seeMethods section). The connected networkwas simulated for 5 min,
e same way as for MEG recordings.
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Model fit

For each simulation in parameter space ofW and v, we extracted the
BL alpha-power and calculated the FC from each node to each other
node (Fig. 4). To judge the model's performance and find the optimal
working point, we systematically varied W and v, and compared the
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Fig. 5. Empirical fit: model performance asmeasured by Pearson correlation between empirical
deviation over 5 trials, top), and a color representation for mean over trials (bottom). Maxima
resulting model FC matrices between model nodes with the corre-
sponding MEG derived FC. After applying a Fisher-Z transform to the
FC measures (due to the non-additivity of correlation coefficients,
Zimmerman et al., 2003), the matrices unique triangular parts were
vectorized and the performance of the model was then calculated
from the Pearson correlation between MEG data and model.

Fig. 5 shows the model performance defined by alpha range power
envelope correlations for a range of W and v parameters. The ability of
the model to capture the empirical functional connectivity depends on
the coupling strength and propagation speed. For weak couplings,
there is no connection between themodel nodes, and all nodes have in-
dependent activity. For intermediate couplings, the network nodes cou-
ple dynamically and trigger the SFA. A performance peak of themodel in
predicting the empirical FC in the alpha-BLP can be found with this in-
termediate coupling range for all delay levels, the maximal fit being
reached at lower coupling levels for smaller delays, and the perfor-
mance curve flattening out for very large delays (1 m/s) (remaining
low for higher couplings, not shown). Also note that delays increase
the region of global coupling values for which the model yields a good
prediction of the empirical FC: the range of global coupling values for
which the fit is systematically rising beyond .10 (orange/yellow in
Fig. 5, bottom) is much wider for intermediate delays at 5 m/s than
for v = Inf. See Supplementary Fig. 2 formodel performance and corre-
lation distances for frequency bands from delta to high gamma-bands,
which shows highest maximal fits for the alpha range, decreasing both
towards lower and higher frequency bands.

Fig. 6 shows the FC pattern of two brain areas pertaining to distinct
networks: the left posterior cingulate (DMN) and left dorsomedial fron-
tal cortex (associated with task control). The functional differences of
the regions are reflected by their embedding in different networks at
rest, and functional connections between nodeswithout direct structur-
al links can be observed both in the MEG data and in the model.

The here presented model is quite different from simpler oscillator
models such as presented by Cabral et al. (2011) and Deco et al.
(2009) where delays play a critical role in maintaining phase heteroge-
neity between the nodes. In the spiking model, complete synchroniza-
tion is prevented for most of parameter space by the heterogeneity
and size of the network, through background noise and a wider distri-
bution in time of individual spike times. Therefore, delays are not
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critically necessary for a good model fit. They do, however, change the
spatiotemporal connectivity pattern. As a result, strong connection in-
puts are more evenly distributed in time and mean firing rate is re-
duced, and with it SFA. Without delays, all inputs into a pool arrive at
the same time, and therefore sum up to higher momentary inputs.
With delays, time differences between the arrival of inputs from other
brain areas are introduced. In theory, in spontaneous activity, this
change in temporal connectivity may also lead to synchronizing strong
inputs in some cases. Effectively, though, the introduction of delays dis-
tributes inputs from different nodes in time. This leads on the one hand
to higher required global coupling to effectuate changes in node activity
in a nonlinear system where single weak activities may drown in the
background noise. On the other hand, due to delays, there is also a less
abrupt accumulation of the AHP-current and a later transition to regular
oscillations for the delayed case (Fig. 3, center row, left vs right column:
while for v = 5, spiking is still quite irregular, the same global coupling
without delays already shows population bursts). For even higher cou-
plings, the system transitions to a high firing regular oscillation regime
for all delays, as visible both in the spike raster plots and the LFP time se-
ries in Fig. 3.
Discussion

In this study, we investigated how spontaneous brain activity, oscil-
lations and functional connectivity as recorded by MEG may be cap-
tured in a neurophysiological resting-state model. To this aim, we
equipped a local LIF-neuron population model (Deco and Jirsa, 2012)
with SFA and implemented it on the nodes of a neuroanatomically
based large-scale brain connectivity graph. Our results demonstrate
that the model captures the network connectivity patterns in band-
limited alpha-power, and that it does so most robustly in the presence
of cortical transmission delays.

Spatial patterns of fMRI resting-state activity have been reproduced
in the last years with a variety of models (Cabral et al., 2011; Deco and
Jirsa, 2012; Deco et al., 2009; Ghosh et al., 2008a,b; Honey et al., 2007,
2009). In these models, network dynamics in resting-state models are
importantly shaped by three key factors: couplings, delays and noise
(Deco et al., 2009). In all the models, the coupling matrix between the
nodes plays a crucial role in shaping the spatial patterns of activity. The
role of delays and noise, however, depend more on the specific local dy-
namics used to model neural activity. For example, neither delays nor
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external noise are necessary to keep the system dynamic and activated
in the case of chaotic dynamics (Honey et al., 2007, 2009). In other
cases, noise is essential to introduce transitions between multistable
states (Deco and Jirsa, 2012; Deco et al., 2009; Ghosh et al., 2008a,
2008b). Noise can be neglected also in a complex network arrangement
of Kuramoto oscillators with delays, whichmay show ongoing dynamics
and transient couplings (so called Chimera states) (Cabral et al., 2011).
Delays, in general, do not influence slow asynchronous dynamics
(Deco and Jirsa, 2012), but become essential in the case of underlying os-
cillatory dynamics on the time scale of the delays (Jirsa, 2009; Jirsa and
Ding, 2004). When assuming intrinsic nonchaotic oscillatory dynamics
in the local nodes (Cabral et al., 2011; Deco et al., 2009; Ghosh et al.,
2008a,b), delays are necessary to prevent full synchronization of the net-
work. In a FitzHugh–Nagumo oscillator model, Knock et al. (2009)
showed that characteristics of the connectivitymatrixmatter for the im-
portance of delays in shaping dynamics and found that the network
structure is less affected by delay magnitude changes for symmetric
than for asymmetric graphs. This is due to real symmetric matrices hav-
ing real eigenvalues, so thenetworks equilibriumpointmay changewith
connectivity, but not the dynamics (though note that DSI matrices may
also show asymmetries due to normalization of connectivity by brain
area size, resulting in larger weights from larger areas to smaller ones
than vice-versa). This may, however, depend on the specific model, as
e.g. in themodel of Cabral et al. (2011), delays shape the spatiotemporal
structure of the oscillators, whose phase interactions, and therefore clus-
tering and frequency suppression, depend on the spatiotemporal layout
in a DSI-derived SC network. In the here presentedmodel, delays are im-
portant to consider as they shape network dynamics and increase the
model fit in a physiological delay range.

We focused on alpha-band activity due to alpha being the most dis-
tinguished oscillatory rhythm during eyes-closed resting-state, and to
exemplarily address the question of how the spatiotemporal connectiv-
ity structure and presence of physiological, noisy oscillations interact to
form network dynamics. Due to these dynamics occurringmainly in the
alpha-range, this is also where the highest fits were found, followed by
the beta- and theta-bands (Supplementary Fig. 2). The advantage of this
model is the spontaneous emergence of noisy oscillations in the net-
work. Oscillations are important to consider when investigating RSN
and resting-state FC in the light of its neuronal dynamics and mecha-
nisms, as we have seen from recent EEG/fMRI andMEG studies. Though
the functions and details of origins of these oscillations are still undeter-
mined, we can study their dynamics and properties with oscillatory
models, where the critical settings and oscillatory dynamics depend
on the specific model applied. In the Kuramoto model, for example,
oscillations emerge due to the tendency of coupled oscillators to syn-
chronize, leading to clusters of nodes transiently synchronizing at re-
duced frequencies, and are based on the intrinsically (gamma-band)
oscillatory nature of the nodes.

The here employed SFA mechanism parsimoniously creates alpha-
oscillations based on an easily physiologically interpretable biological
mechanism. Noisy oscillations emerge for the intermediate parameter
rangewhere themodel best fits the data also in terms of functional con-
nectivity, and naturally reproduces some details of empirically observ-
able alpha-rhythms, such as the higher amplitude and frequency
peaks for occipital nodes. This may be due to higher adaptation in visual
areas, but also arises naturally in themodel, as the oscillation frequency
depends on the interplay of neural adaptation and recurrent excitatory
input, and occipital nodes are more interconnected on average. As an
outlook, the reduction of alpha-rhythms typically seen during tasks
could be easily modulated by arousal-related ACh signaling (which re-
duces adaptation). We here focus on simulating the network in a full
spikingmodel to consider the heterogeneous spike times, and their sta-
bilizing effect on the system's oscillatory response, aswell as to allow for
a direct physiological interpretation of the oscillatory source. This, how-
ever, makes it difficult to explore the stability of the network behavior
over a large parameter space, and reduced models are needed to
investigate regime bifurcations and to study parameter interactions in
more detail. These relations (Deco et al., 2013a, 2013b; Jirsa, 2009)
and the origins and dynamics of alpha activities (e.g. Augustin et al.,
2013; Freyer et al., 2011, 2012) are under active investigation, and
will help us in the future to further specify the oscillatory sources of
models and study their impacts and influences on the network
dynamics.

We here implemented SFA as an oscillation-generating mechanism
in order to study the importance of delays in the presence of noisy net-
work oscillations. The detailed origins, dynamics, and modulation of
spontaneous oscillatory activity and causal role of adaptation in the
brain in its different states, however, need to be studied in much more
depth. In the brain, various types of adaptation currents in cortical neu-
rons exist, differing in strength between layers. They are modulated by
various factors such as polarization state (Connors et al., 1982; Llinas,
1988), cortical depth (Ahmed et al., 1998), and cholinergic signaling
(Crook et al., 1998). These interdependencies and more systematic var-
iation of adaptation parameters in (reduced) large-scale cortical models
may be of great help to understand spontaneous brain dynamics and
states in the future.

Though beyond the scope of this study, it is noteworthy that the
bursting mode observed here for sufficiently strong adaptation and
recurrency (Fig. 3), while not resembling the oscillatory dynamics of
the resting-state, are much more reminiscent of up and down states in
sleep dynamics (e.g. Steriade, 1997), though at different frequencies.
The relation between acetylcholine signaling and cortical activation
and cognitive states on one hand (Sarter and Bruno, 1999; Vazquez
and Baghdoyan, 2001) and SFA on the other hand (Stiefel et al., 2009)
may help us in the future to better understand spontaneous brain dy-
namics in wake and sleep. This transition was studied in a layered
model of thalamus and portions of visual cortical areas by Hill and
Tononi (2005), and by Deco et al. (2013a) in a cortical model for slow
waves. A key challenge for future work will be to consider these modu-
lations, and to study the key responsible mechanisms, resulting net-
work dynamics and interactions in whole-brain models for different
frequency bands.

In the presented data, maximal model fit was no higher than .4 for
any delay condition, which leaves room for improvement. Of course,
this may be related to dynamics and communications not captured by
the model, such as, e.g., lateral connections (Spiegler and Jirsa, 2013),
or directionality of fibers between brain areas. Results are also influ-
enced by the quality of the DTI matrix, which is prone to miss inter-
hemispheric connections (Hagmann et al., 2008). There is ongoing
work in our lab to enhance the quality of the DTI by integrating FC
and SC through a modeling approach. The DTI acquisition parameters
from the used dataset at 1.5 T and b = 1200 may also have limited
the SC precision. Another aspect to consider is the choice of brain
parcellation and preprocessing, which may influence connectivity esti-
mates (Cloutman and Lambon Ralph, 2012; Van Essen et al., 2012;
Wang et al., 2009; Zalesky et al., 2010). Here, an AAL parcellation with-
out volume normalization for the DTI was used. From amodel and con-
nectivity perspective, smaller brain areas are favorable, although MEG
signal leakage limits the spatial resolution. Importantly, though these is-
sues need to be studied in more detail, they should not be critical in the
main findings of the current study, as we focus on the relative changes
and effects of including delays rather than the exact network structure.

In conclusion, brain connectivity and resting-state FC investigation is
becoming more and more important, both for understanding basic or-
ganization principles of brain networks as well as for investigating and
potentially diagnosingmedical conditions. With access to neurophysio-
logical recordings of resting-state activity at high temporal resolutions,
we are now in the position to investigate the importance of oscillation
in the brain for spontaneous network patterns. We here propose a
model that offers an implementation of such noisy oscillations com-
bined with large-scale resting-state network connectivity. We demon-
strate that in the presence of these oscillatory dynamics, the model
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best captures the band-limited power connectivity patterns of the
empirical data when considering delays.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.11.009.
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