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In the absence of cognitive tasks and external stimuli, strong rhythmic fluctuations with a frequency ≈10 Hz
emerge from posterior regions of human neocortex. These posterior α-oscillations can be recorded throughout
the visual cortex and are particularly strong in the calcarine sulcus, where the primary visual cortex is located.
The mechanisms and anatomical pathways through which local \alpha-oscillations are coordinated however,
are not fully understood. In this study, we used a combination ofmagnetoencephalography (MEG), diffusion ten-
sor imaging (DTI), and biophysical modeling to assess the role of white-matter pathways in coordinating cortical
α-oscillations. Our findings suggest that primary visual cortex plays a special role in coordinatingα-oscillations in
higher-order visual regions. Specifically, the amplitudes ofα-sources throughout visual cortex could be explained
by propagation of α-oscillations from primary visual cortex through white-matter pathways. In particular,
α-amplitudes within visual cortex correlated with both the anatomical and functional connection strengths to
primary visual cortex. These findings reinforce the notion of posterior α-oscillations as intrinsic oscillations of
the visual system. We speculate that they might reflect a default-mode of the visual system during which
higher-order visual regions are rhythmically primed for expected visual stimuli by α-oscillations in primary
visual cortex.

© 2014 Elsevier Inc. All rights reserved.
Introduction

The most salient feature of electrical activity in human neocortex in
the absence of explicit cognitive tasks is strong ≈10 Hz oscillations
(Berger, 1875; Hari and Salmelin, 1997). These posterior α-oscillations
are typically recorded over occipital and posterior-parietal regions and
are particularly strong within and around the calcarine fissure—where
the primary visual cortex (V1) is located—as well as in the occipito-
parietal fissure (Hari and Salmelin, 1997; Ciulla et al., 1999). Although
initially regarded as functionally irrelevant, evidence is now accumulat-
ing that posterior α-oscillations do not merely reflect passive idling of
visual areas but correlate with allocation of visuo-spatial attention
(Yamagishi et al., 2005; Jensen et al., 2010; Capilla et al., 2012). For ex-
ample, during anticipatory cue-stimulus intervals, α decreases in those
regions of V1 that correspond to attended locations in the visual field
and increases in unattended or distractor regions (Kelly et al., 2006;
Rihs et al., 2007). Moreover, these modulations do not only pertain to
spatial attention tasks but extend to feature-based attentional processes
).
in higher-order visual areas including the dorsal and ventral projection
systems (Jokisch and Jensen, 2007; Snyder and Foxe, 2010). Thus,
power fluctuations in posterior α-oscillations seem to reflect modula-
tions in cortical excitability, constituting a fundamental mechanism for
flexible routing of visual attention (Jensen et al., 2002; Romei et al.,
2008; Spaak et al., 2012). Research on the neuronal mechanisms under-
lying attention-driven α-modulation is expected to benefit from a char-
acterization of the resting-state organization of posterior α-oscillations.

Magnetoencephalographic (MEG) recordings in human subjects and
local field potential (LFP) recordings in dogs andmacaques have shown
that posterior α-oscillations can be recorded throughout the visual
system (Lopes Da Silva and Storm van Leeuwen, 1977; Salmelin and
Hari, 1994; Hari and Salmelin, 1997; Ciulla et al., 1999; Bollimunta
et al., 2008, 2011; Spaak et al., 2012). In addition to cortical sources of
α, recordings in behaving dogs and slice preparations of cat lateral
geniculate nucleus (LGN) have observed α-sources in thalamic nuclei,
particularly the LGN and pulvinar (Lopes da Silva et al., 1973; Hughes
et al., 2004).Moreover, the time-courses of sources in LGN and in partic-
ular the pulvinar were correlated with various α-sources in occipital
cortex (Lopes Da Silva et al., 1980). Furthermore, EEG-fMRI recordings
in humans have found resting-state fluctuations in posterior α-power
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to be correlated with fluctuations in blood-level-oxygenation-level
(BOLD) signal throughout the visual system and in several subcortical
nuclei (Goldman et al., 2002; Moosmann et al., 2003; Feige et al.,
2005). Thus, although posterior α-oscillations seem to involve
large-scale thalamo-cortical networks, the nature of their involvement
remains controversial (Silva et al., 1991; Karameh et al., 2006).

In particular, it is unclear if α-oscillations are generated at the source
locations identified by MEG or if they are generated at other locations
and propagate through white-matter pathways. For example,
α-oscillations in V1 might be generated within V1 itself (Liley et al.,
1999), reflect propagated oscillations that are generated in the LGN
(Lopes da Silva et al., 1974; Hughes et al., 2004), which is densely
connected to V1 via the optic radiation, or reflect reverberation within
thalamo-cortical loops (Robinson et al., 2001; Rennie et al., 2002).
Similarly, α-oscillations in different regions of the visual system might
be generated locally or reflect propagated oscillations from distant
cortical or thalamic regions. In this study, we assessed the contribution
of white-matter pathways in the propagation and coordination of pos-
terior α-oscillations. To this end, we combined MEG source-modeling
(Woolrich et al., 2011), diffusion tensor imaging (DTI) based probabilis-
tic fiber tracking (Behrens et al., 2003b), and biophysical modeling.

The kindof biophysicalmodelwe used in this study is referred to as a
neural mass model. Neural mass models have a long tradition (Wilson
and Cowan, 1973; Lopes da Silva et al., 1974; Freeman, 2004) and
have been applied to several EEG phenomena, including \alpha-oscilla-
tions (Lopes da Silva et al., 1974), event-related potentials (Jansen and
Rit, 1995), and epileptic seizures (Suffczynski et al., 2004). Neural
mass models describe the electrical behavior of a piece of neural tissue
in terms of macroscopic quantities and ignore the spatial extendedness
of the tissue (Deco et al., 2008). An extension of neural mass models are
so-called neural field models which can be thought of as consisting of a
sheet of neuralmasses and describe the electrical behavior of neocortex
in a spatially continuousmanner (Deco et al., 2008). Neuralfields have a
long tradition as well (Wilson and Cowan, 1973; Nunez, 1974; Wright
and Liley, 1995) and also have been applied to several EEG phenomena
including delta, alpha, beta, and gamma oscillations (Nunez et al., 2001;
Liley and Cadusch, 2002; Rennie et al., 2000, 2002; Robinson et al.,
2001), sleep (Robinson et al., 2002; Steyn-Ross et al., 2005), and general
anesthesia (Bojak and Liley, 2005; Hutt and Longtin, 2010; Hindriks and
van Putten, 2012). They provide a theoretical framework in which
different EEG phenomena can be integrated and their relationships be
investigated (Robinson et al., 2001; Breakspear et al., 2006).

Themotivation for using a neural massmodel in the present study is
that they make more feasible an initial investigation into how posterior
\alpha-oscillations might emerge from the topology of white-matter
pathways and provide a direction for more extented modeling studies.
It is of interest to note though, that the combination of neural mass
models with white-matter topological data has proven effective in
modeling the emergence of resting-state networks (RSNs) in blood-
oxygenation level-depend(BOLD) functional magnetic resonance imag-
ing (fMRI) imaging (Ghosh et al., 2008; Deco et al., 2009, 2011, 2013;
Honey et al., 2009; Cabral et al., 2011). Thus, the current study should
be regarded as an initial orientation that provides a startingpoint for
constructing more extended models of the spatio-temporal behavior
of \alpha-oscillations in human cortex.

We found that the assumption of a single α-source in the calcarine
sulcus (V1) could explain the source-strengths of α-oscillations
throughout the occipital lobe,medial posterior–parietal cortex and tem-
poral lobes. Furthermore, the source-strengths of α-oscillations in these
regions correlated with both the functional and anatomical connections
to V1, consistent with the assumption of a generator in V1. Although
this study does not rule out the possibility that α-oscillations are
generated throughout the cortex (Robinson et al., 2001; Rennie et al.,
2002; Nunez and Srinivasan, 2006), it establishes a central role of
V1-connectivity in coordinating α-oscillations in the visual system at
rest.
Materials and methods

MEG recordings

Ten subjects (3 males, 20–39 years old, mean 27.9) underwent an
eyes-closed resting-state MEG scan lasting 5 min on an Elekta
Neuromag (Elekta Neuromag Oy, Helsinki, Finland). Data preprocessing
included signal space separation, de-noising with independent compo-
nent analysis (ICA), source reconstruction and bandpass filtering of the
MEG signal. External noise was removed using Signal-Space Separation
(SSS) and the data was down-sampled to 200 Hz, using the MaxFilter
software (Elekta-Neuromag). Signal space separation is a spatial filter-
ing applied to the sensor space data that compensates for external inter-
ference and sensor artifacts. Thisworks by projecting theMEGdata onto
a basis set of spherical harmonics, followed by the removal of the basis
functions that correspond to sources originating fromoutside the sensor
array, before reconstructing the data (Taula et al., 2005). Harmonics
corresponding to sources originating from within the sensor array
were preserved whilst interfering sources from outside the environ-
ment surrounding the sensor array were rejected. The sensor-space
MEG data were de-noised using temporal ICA to remove cardiac,
50 Hz mains and, in some subjects, eye movement artifacts.

Specifically, the data were decomposed into 64 components using
fastICA (Hyvarinen, 1999) (64 is the rank of the MEG data after signal
space separation). Prior to the ICA decomposition, each sensor type
was normalized by its smallest eigenvalue to give an unbiased noise es-
timate across sensor types. Eye-blink, cardiac and mains interference
ICA components were manually identified by the combined inspection
of spatial topography and time course, kurtosis of the time course, and
frequency spectrum for all components. The artifact components are re-
moved by subtracting them from the data (Mantini et al., 2011). This
enabled simultaneous de-noising of the data and correction of the lead
fields (via the montage function in SPM8).

Each dataset was then co-registered into the Montreal Neurological
Institute (MNI) space by registering the canonical MNI template to the
Polhemus head shape data. A local sphere forward model (Huang
et al., 1999)was then estimated using the head shape and sensor geom-
etry. Before acquisition of the MEG data, a three-dimensional digitizer
(Polhemus Fastrack) was used to record each subject's head shape
relative to the position of the head position indicator (HPI) coils, with
respect to three anatomical landmarks, or fiducials, which could be
registered on the MRI scan (the nasion, and the left and right
preauricular points). A structural MRI was also acquired. Individual
meshes (including scalp, inner skull and cortical surfaces) are generated
froman individual subjects structuralMRI by applying the inverse of the
same deformation field needed to normalize the individual structural
image to an MNI template, to the canonical meshes derived from the
MNI template (Mattout et al., 2007). Coregistration of the MEG sensor
positions with the structural MRI and the meshes is then carried out
via an approximatematching of thefiducials in the two spaces, followed
by a more accurate surface-matching routine that fits the head-shape
function (measured by Polhemus) to the scalp mesh. This procedure
was carried out using scripts in the SPM8 package. Lead fields were
computed using a single-shell head model (Nolte, 2003) based on the
inner skull mesh using scripts in the SPM8 package.

Subsequently, the MEG data were bandpass filtered between 1 and
80 Hz. A LCMV beamformer was used to transform the original sensor
time-series into source-space time-series, that is, to reconstruct the ac-
tivity at the 90 center locations defined by the AAL brain parcellation.
The beamformer uses the forward model and sensor-space covariance
matrix to calculate a set of weights which spatially filter the signal so
that activity from outside the source is suppressed and the activity
from the chosen sources is extracted (Woolrich et al., 2011). The mag-
netometers and gradiometers were combined during beamforming by
normalizing the data and lead fields for each sensor type by its respec-
tive minimum eigenvalue; this effectively gives both classes of sensor
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equal noise levels. We discarded the reconstructed time-series of all
subcortical regions because their lower reliability and subsequently fil-
tered the remaining time-series in the α frequency band (7 − 13) Hz
and computed their standard-deviations. This resulted in source-
strength estimates for all cortical AAL regions, which are shown in
Fig. 1A.
Diffusion tensor imaging

Diffusion tensor imaging (DTI) data were acquired for 21 healthy
participants (10 females, age range 22–45 years) on a Philips Achieva
1.5 Tesla Magnet in Oxford. Diffusion weighted imagingwas performed
using a single-shot echo planar sequence with coverage of the whole
brain. DTI datawere acquiredwith 33 optimal nonlinear diffusion gradi-
ent directions (b=1200 s/mm2) and 1 non-diffusionweighted volume
(b = 0). The scanning parameters were echo time (TE) = 65 ms and
repetition time (TR) = 9390 ms. For 9 of the 21 participants the
reconstructed matrix size was 176 × 176 with voxel size of 1.8 × 1.8 ×
2.0 mm, while the remaining 12 participants used a reconstructed ma-
trix of 128 × 128with voxel size of 2.5 × 2.5 × 2.5mm. The construction
of structural brain networks consisted of a two-step process. First, the
nodes of the network were defined using brain parcellation techniques.
Secondly, the connections between nodes (i.e. edges) were estimated
using probabilistic tractography (see Fig. 1). In the followingwe outline
the details involved in each step.
Fig. 1. Reconstruction of MEG source-strengths and DTI probabilistic tractography. A. Color-cod
(7–13 Hz) for all cortical AAL regions. The colorscale ranges from yellow to red. B. Based on T1-
template, consisting of 90 regions-of-interest (colors are random). White-matter tracts are rec
bilistic tractography algorithm. The reconstructed tracts between the (centers of) the AAL regi
First, we used the automated anatomical labeling (AAL) template to
parcellate the entire brain into 90 cortical and subcortical regions (45
for each hemisphere), where each region represents a node of the
brain network (Tzourio-Mazoyer et al., 2002). In addition, we created
a new AALThal parcellation by combining the AAL atlas with the Oxford
Thalamic Connectivity Probability Atlas (Behrens et al., 2003a, 2003b).
The AALThal atlas replaces the thalamus with 7 thalamic subregions
and thus has 102 cortical and subcortical regions. The parcellations
were conducted in the diffusion MRI native space. The parcellation
was conducted in the diffusion MRI native space. We used the Flirt
tool (FMRIB, Oxford) (Jenkinson et al., 2002) to linearly coregister the
b0 image in diffusion MRI space to the T1-weighted structural image.
The transformed T1-weighted image was then mapped to the T1 tem-
plate of ICBM152 inMNI space (Collins et al., 1994). The resulting trans-
formation was inversed and further applied to warp the Automated
Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002) from MNI
space to the diffusion MRI native space, where interpolation used the
nearest-neighbormethod ensuring the preservation of discrete labeling
values.

Secondly, we created the brain connectivity matrix from diffusion
tensor data using our standard data pipeline (see e.g. Van Harteveld
et al., 2014) which uses tools from FMRIB's Diffusion Toolbox as part
of FSL (FMRIB's Software Library, http://www.fmrib.ox.ac.uk/fsl/). The
various processing stages of the diffusion MRI data are specified in
the following. The initial preprocessing involved coregistering the
diffusion-weighted images to a reference volume using an affine
ed standard-deviations of the source-projected MEG time-series in the α frequency band
weightedMRI images, grey matter is segmented and parcellated using the AAL volumetric
onstructed from diffusion-weigthed images via estimated diffusion tensors using a proba-
ons constitute the white-matter network used in this study.

http://www.fmrib.ox.ac.uk/fsl/
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transformation for the correction of head motion as well as eddy cur-
rent induced image distortion. Following this preprocessing, we esti-
mated the local probability distribution of fiber direction at each
voxel (Behrens et al., 2003b). We then used the probtrackx algorithm
allowing for automatic estimation of two fiber directions within each
voxel, which can significantly improve the tracking sensitivity of non-
dominant fiber populations in the human brain (Behrens et al., 2007).
We estimated the connectivity probability by applying probabilistic
tractography at the voxel level using a sampling of 5000 streamline
fibers per voxel. The connectivity probability from a seed voxel i to
another voxel j was defined by the proportion of fibers passing
through voxel i that reach voxel j (Behrens et al., 2007). This was
then extended from the voxel level to the region level, i.e. in a
brain region consisting of n voxels, 5000n fibers were sampled. The
connectivity probability density Pij from region i to region j is calcu-
lated as the number of sampled fibers in region i that connect the
two regions divided by 5000n, where n is the number of voxels in re-
gion i. The use of connectivity probability per volume unit, calculated
by normalizing the connectivity probability by the number of voxels
in each region, is required since the MEG data was projected onto
the centers of the AAL regions, rather than onto their entire volumes.
For each brain region, the connectivity probability density to each of
the other 101 regions was calculated, yielding a 102 × 102 matrix
P. Following (Cabral et al., 2011), we symmetrized the structural ma-
trix by averaging the probability densities Bij and Bji for each pairs of
regions (i, j), since any knowledge of directionality is absent.

To simplify the structural matrix, we excluded all thalamic segments
except for the occipital segment, which projects mainly to the occipital
lobe (Behrens et al., 2003a). This segment contains the lateral geniculate
nucleus (LGN) which is possibly involved in the generation of posterior
α (Lopes da Silva et al., 1973;Hughes et al., 2004) aswell as the pulvinar,
andmost likely several intra-laminar nuclei (Behrens et al., 2003a). This
yielded a 90× 90 structural probabilitymatrix B.We subsequently aver-
aged B over both hemispheres yielding yielding a 45 × 45 connectivity
matrix. The regions are listed in Table 1 (Appendix A). Justification for
this comes from the fact that left and right intra-hemispheric connec-
tions are correlated with ρ = 0.92 (p = 0.0000, two-sided t-test). Fur-
thermore, given the fact that there were no significant differences
between MEG α-amplitude between homologue cortical areas (the
minimum p-value over homologue cortical areas obtained from 104

hemispherically-randomized amplitudes equals p = 0.7461) we aver-
aged the amplitudes over hemispheres. The hemispheric symmetry of
α amplitudes is also evident from a correlation coefficient of ρ = 0.97
(p = 0.0000, two-sided t-test) between the amplitudes in left and
right hemispheres. Fig. 1A shows the topographies of left and right cor-
tical α-amplitudes.

Dynamical meanfield model

The electrical activity in individual AAL regions is modeled by
adopting a meanfield approach to neuronal dynamics (Nunez and
Srinivasan, 2006; Deco et al., 2008). Specifically, and adopting
the same formalism as used in (David et al., 2006; Moran et al.,
2007), each region is assumed to comprise excitatory and inhibito-
ry neural populations. For cortical and thalamic regions, the excit-
atory and inhibitory populations correspond to pyramidal (PY) and
inhibitory (IN) populations and thalamo-cortical (TC) and reticular
(RE) populations, respectively. Membrane excitability is modeled
by the function

S vð Þ ¼ 1
1þ e−ρ1 v−ρ2ð Þ ;

which converts average membrane potentials into average firing-
rates. The parameters ρ2 and ρ1 denote the average spike-
threshold and dispersion of spike-thresholds over the population,
respectively. Furthermore, the populations are assumed to
integrate incoming spike-rates linearly through synaptic responses
parameterized by

h tð Þ ¼ Hκte−tκ
;

where H and κ denote the synaptic efficacy and rate-constant,
respectively. Efficacies and rate-constants depend on the type of
synapse (excitatory or inhibitory) and on the types of pre- and
post-synaptic populations (PY, IN, TC, or RE). The excitatory and
inhibitory populations of a given region are coupled through a
number of excitatory→inhibitory and inhibitory→excitatory syn-
apses, which are denoted by γ1 and γ2, respectively.

The synaptic organization of the model is illustrated in Fig. 2A.
Cortico-cortical pathways are modeled by excitatory PY → PY projec-
tions and the thalamo-cortico-thalamic loop consists of excitatory
thalamo-cortical projections TC → PY and excitatory cortico-thalamic
projections PY → TC which leave collaterals PY → RE to the reticular
population. We thus simplify the synaptic organization and do not
study the effect of TC → IN projections as done for example in
(Robinson et al., 2001). The coupling strengths are assumed to be pro-
portional to the corresponding entries of the connectivity probability
density matrix B. In addition, the excitatory populations in both cortex
and thalamus are driven by a constant afferentfiring-ratewhichmodels
non-specific background activity. We use independent global coupling
strengths K1 and K2 for cortico-cortical and cortico-thalamo-cortical
connections, respectively. Thus, K1 corresponds to the overall strength
of cortico-cortical connections andK2 to the overall strength of feedback
within the cortico-thalamo-cortical loop. They are incorporated into the
model by using them as weights in the connectivity density matrix B
(see Appendix B). Following previous modeling studies (Ghosh et al.,
2008; Deco et al., 2009; Cabral et al., 2011; Deco and Jirsa, 2012) K1

and K2 are considered free parameters and are used to tune the
model. Source-projected MEG signals are assumed to be proportional
to the average dendritic activity of the pyramidal populations in the cor-
responding cortical AAL regions (Nunez and Srinivasan, 2006; Deco
et al., 2008). The model equations are given in Appendix B. With some
minor modifications, the parameter values are taken from (Moran
et al., 2007) and are listed in Table 2 (Appendix B).

The parameter values determining the dynamics of cortical and tha-
lamic regions were chosen to be identical and such that the excitatory
populations had a stable equilibrium voltage and resonated at a fre-
quency≈10 Hz. Hence we assume that the local circuitry of all regions
is tuned to resonate at α-frequency when driven by excitatory synaptic
input. Fig. 2B provides an illustration.We investigated two scenarios for
α-generation, namely, local generation in V1 and distributed generation
throughout the cortex. An α-generator in V1 was modeled by driving
the excitatory population by excitatory synaptic input, modeled as
white-noise with standard deviation σ = 1 s−1. Distributed α-
generation were modeled by setting σ = 1 s−1 for all cortical regions.

Results

Dynamical workingpoint

To obtain a dynamical workingpoint for the model, we first deter-
mined the models' stability boundary in the plane spanned by the
cortico-cortical and thalamo-cortical connection-strengths K1 and K2,
respectively. In terms of dynamics, restricting the workingpoint to the
stable region means that we assume resting-state α-oscillations to
emerge from stochastic perturbations of a stable equilibrium state, in
agreement with empirical studies (Stam et al., 1999; Hindriks et al.,
2011) and in linewithmodeling studies on fMRI resting-state dynamics
(Ghosh et al., 2008; Deco et al., 2013). To determine the stability bound-
ary, we compute the models' Jacobian at the steady-state and numeri-
cally calculate its eigenvalues (see Appendix C). Each eigenvalue λ is
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complex-valued and describes the resonance behavior of one of the
state-variables. Specifically, the response of the state-variable upon an
instantaneous perturbation is an exponentially damped oscillation eλ,
where the damping-rate Re(λ) and frequency Im(λ) describe the char-
acteristic time-scale and angular frequency of the response. The stable
regime corresponds to the values of (K1, K2) for which the damping-
rate Re(λ) b 0 for all state-variables. Fig. 3A shows color-coded
damping-rate and frequency of the least-damped eigenvalue as a func-
tion of (K1, K2). The boundary in the images corresponds to the stability
boundary. Note that approaching the stability boundary leads to
increased \alpha-frequency. When crossed, the system destabilizes
through a supercritical Hopf bifurcation, giving rise to self-sustained
α-oscillations, a scenario that is more likely to be related to epileptic
dynamics, in particular tonic-clonic seizures (Robinson et al., 2002;
Breakspear et al., 2006).

To find a dynamical workingpoint (K1
∗ , K2

∗), we placed a generator in
V1 and computed the Pearson correlation coefficient between the pre-
dicted and observed cortical α-amplitudes, that is, between the
standard-deviations of the modeled time-series and the corresponding
source-projected MEG time-series filtered in the α frequency band.
We did this as a function of (K1, K2) in the entire stable regime. The pre-
dicted amplitudes were computed semi-analytically (see Appendix D).
The correlation coefficients reached a local maximum of ρ = 0.80 at
(K1

∗ , K2
∗) = (66, 40), which we chose as the dynamical working point.

The dynamical workingpoint is designated in Fig. 3B (left-hand figure)
by a white dot. Importantly, the fact that the model performs best
well away from the horizontal and vertical boundaries, which corre-
spond to the absence of cortico-cortical and thalamo-cortical connec-
tions respectively, suggests the involvement of both cortico-cortical as
well as thalamo-cortical pathways in shaping the distribution of cortical
α-amplitudes. Also note that the model performs best for a value of
(K1, K2) that lies in the interior of the stability region, as opposed to a
best fit on the instability boundary. This shows that the chosen
workingpoint corresponds to a well-defined best fit.

Since in the above simulations, V1 displayedmuch larger oscillations
than other regions—in contrast to the observed oscillations—we exclud-
ed V1 before computing the correlation coefficients. This discrepancy
between model and data might be caused be passive propagation of
the magnetic field generated by cortical sources leading to an offset in
the amplitudes of the source-projected MEG signals which is absent in
the simulated data. Alternatively, it could be that a single generator in
V1 is too restricted and that the datamay be better explained by assum-
ingmultiple α-generators. To test this possibility, we placed a generator
in every cortical region and repeated the above assessment of howwell
the observed α-amplitudes are predicted by the model. The result is
shown in Fig. 3B (right-hand figure). The figure shows that although
there is a well-defined maximum in model performance, the maximal
correlation coefficient is low (ρ = 0.21).

Fig. 3B shows that in both model simulations, the best fit is obtained
for non-zero cortico- and thalamo-cortical coupling strengths, which
suggest involvement of both types of pathways in coordinating cortical
α-oscillations. However, when the workingpoints (white dots) are
projected to the cortico-cortical axis, the correlation with the data re-
mains high,while projection to the thalamo-cortical axis yields substan-
tially lower correlations. Thus, in both simulations, cortico-cortical
pathways contribute more to structuring α-amplitudes than thalamo-
cortical connections do. This is in agreement with the findings reported
in (Lopes Da Silva et al., 1980) using local field potentials simultaneous-
ly recorded from visual cortex and thalamus. Using partial coherence
analysis, it was found that cortico-cortical connections contributed
more to the coherence between α-oscillations in different cortical
regions than thalamo-cortical connections did.

Spatial extent of posterior alpha oscillations

Fig. 4A shows the scatterplot of the observed α-amplitudes versus
those predicted by the model in the chosen workingpoint (K1

∗ , K2
∗).

They are correlated with Pearson correlation coefficient ρ = 0.80. To
determine the spatial extent of posterior α-oscillations, we selected
the regions that were anatomically connected to V1 with a connection
strength≥ h and computed the Pearson correlation coefficient between
the predicted and observed amplitudes within the selected regions. The
regions were determined by computing the correlation coefficients as a
function of h and subsequently selecting the value of h for which the
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Fig. 3. Linear stability and dynamicalworkingpoint. A. Left: Damping-rate of the least-damped eigenvalue as a function of cortico-cortical and thalamo-cortical coupling strength K1 and K2.
Right: Frequency of the least-damped eigenvalue as a function of cortico-cortical and thalamo-cortical coupling strength K1 and K2. B. Left: Pearson correlation coefficients between the
observed α-amplitudes and those predicted by themodel by assuming a single α-generator in the Calcarine sulcus (V1). The correlation is maximal at (K1

∗ , K2
∗) = (66, 40) and is denoted

by a white dot. Right: Pearson correlation coefficients between the observed α-amplitudes and those predicted by the model by assuming α generators to be distributed throughout the
cortex. The correlation is maximal at (K1

∗ , K2
∗) = (66, 40) and is denoted by a white dot. The correlation coefficients in the right-hand-side figure were predicted by the model in which

α-generators were assumed to be distributed throughout the cortex. The correlation is maximal around (K1
∗ , K2

∗) = (53, 20) and is denoted by a white dot. Note the difference in
colorscaling between the figures. In all figures, K1 and K2 range from 0 to 80 and from 0 to 150, respectively, in steps of 1 and 2, respectively and the curved white boundary coincides
with the (linear) stability boundary.
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correlation coefficient attained a local maximum. This gave a threshold
of h= 0.03. Propagation was found to pervade the entire occipital lobe,
with extensions to posterior–parietal and temporal regions. Specifically,
α propagated to the inferior, medial, and superior occipital gyri (IOG,
MOI, SOG), cuneus (CUN), lingual gyrus (LING), posterior cingulate
gyrus (PCG), hippocampal gyrus (HPG), parahippocampal gyrus
(PHG), fusiform gyrus (FFG), and precuneus (PCUN) and are displayed
on a glass brain in Fig. 4B.

In the sequel, we collectively refer to these regions as the posteriorα-
network. Note that the posterior \alpha-network roughly comprises vi-
sual cortical regions, including the dorsal and ventral projection sys-
tems, and thus reinforces the notion of posterior α-oscillations as
intrinsic oscillations of the visual system. The Pearson correlation coef-
ficient betweenpredicted and observed amplitudeswithin theposterior
α-network was ρ= 0.93, which demonstrates themodel's ability to re-
produce the relative α-amplitudes. The amplitudes within the visual
system are denoted by red dots in Fig. 4A. Interestingly, the regions
comprising the posterior \alpha-network largely coincide with those
in which resting-state BOLD-fluctuations are (negatively) correlated
with simultaneously recorded posterior α-power fluctuations (Feige
et al., 2005). This might suggest that resting-state BOLD-fluctuations
within the visual system are driven by fluctuations in V1.
Involvement of primary visual pathways

If the hypothesis that posterior α-oscillations propagate from
V1 to higher-order visual areas through excitatory white-matter
pathways is correct, one might suspect a positive correlation between
α-amplitudes of regions within the posterior α-network and
corresponding structural connection-strengths to V1. Fig. 5A, left-
hand-side, shows the scatterplot between predicted posterior α-
amplitudes and corresponding connection-strengths, indeed predicting
a positive correlation. The correlation coefficient between observed α-
amplitudes and connection-strengths to V1 was ρα,sc = 0.95
(p b 0.0001, two-sided t-test), thereby confirming this prediction.

To factor out spurious correlations due to (weak) dependence of
observed α-amplitudes and connection-strengths to V1 on Euclidean
distance to V1 (ρα,dist = −0.80, p = 0.0050 and ρsc,dist = −0.71, p =
0.0204, two-sided t-tests), which also holds for the predicted ampli-
tudes, we conditioned ρα,sc on Euclidean distance, which yielded a
partial correlation coefficient of ρα,sc|dist = 0.89 (p = 0.0012, two-
sided t-test), which shows that the correlation between α-amplitude
and connection-strength cannot be explained by their common depen-
dence of distance to V1. In contrast, ρα,dist vanished when conditioned
on connection-strength (ρα,dist|sc = −0.57, p = 0.1112, two-sided
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t-test), which shows that the correlation between α-amplitude and
distance reflects the dependence of structural connection-strength to
V1 on distance.
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This is illustrated in Fig. 5B, left-hand-side, which shows that themodel
indeed predicts the existence of such a correlation. Functional correla-
tions from the model were measured by the Pearson correlation coeffi-
cients between the theoretical time-series and were computed semi-
analytically from the linearized model equations (see Appendix E).
Fig. 5B, right-hand-side, shows that this prediction holds for the data
aswell (ρfc,sc = 0.94, p= 0.0001, two-sided t-test). Observed function-
al correlations were quantified by the bandlimited power (BLP) corre-
lations between the source-projected MEG signals, that is, by the
Pearson correlation coefficients between the corresponding Hilbert
envelopes. Although the predicted functional correlations were quan-
tified differently than in the model, allowing for a semi-analytical
computation without the need for numerical simulations, the two
kinds of correlations are approximately proportional within the
model, justifying their use in linear correlation analysis. To factor
out spurious correlations due to the negative dependence of function-
al correlation on distance (ρfc,dist = −0.87, p = 0.001, two-sided
t-test) we conditioned the correlation on Euclidean distance. The par-
tial correlation remained significant (ρfc,sc|dist = 0.92, p = 0.0004,
two-sided t-test) showing that ρfc,sc can only partially be explained
by a common dependence of functional correlation and connection-
strength of distance.

Discussion

In this study we combined MEG source-modeling (Woolrich et al.,
2011), DTI probabilistic tractography, connectivity-based thalamic
segmentation (Behrens et al., 2003a, 2003b, 2007), and biophysical
modeling to investigate the role ofwhite-matter pathways in coordinat-
ing α-oscillations in human cortex at rest. We focused on two scenarios
for the generation of α-oscillations, namely, local generation within the
Calcarine sulcus (V1) as suggested by MEG inverse-modeling studies
(Salmelin and Hari, 1994; Hari and Salmelin, 1997; Ciulla et al., 1999)
and distributed generation of α-oscillations throughout the cortex.
Both scenarios suggested that α-oscillations propagate through
cortico-cortical as well as thalamo-cortical pathways, although
cortico-cortical pathways seemed to play a larger role, in line with
local field potential recordings in dogs (Lopes Da Silva et al., 1980).
The assumption of a single α-generator in V1 however, led to a much
better fit with the data than the distributed scenario. While this finding
does not rule out the existence of distributed α-generators, nor the ex-
istence of a single spatial eigenmode (Nunez and Srinivasan, 2006), it at
least suggests that V1 plays a central role in coordinating posterior
α-oscillations. Furthermore, the models' ability of predicting MEG
source-strengths of α-oscillations was limited to the occipital lobe and
parts of the temporal andmedial-posterior parietal lobe, namely the in-
ferior, medial, and superior occipital gyri, cuneus, lingual gyrus, posteri-
or cingulate gyrus, hippocampal gyrus, parahippocampal gyrus,
fusiform gyrus, and precuneus. This reinforces the notion that posterior
α-oscillations are intrinsic to the visual system. Both the anatomical and
functional connections to V1 correlated with the source-strengths of α-
oscillations within this network, as predicted by the model.

Equivalent-dipole modeling of resting-state MEG α-oscillations has
shown that the strongest α-sources are located in the calcarine sulcus
(V1) and occipito-parietal fissure. The relative source-strengths howev-
er, differ from subject to subject (Salmelin and Hari, 1994; Hari and
Salmelin, 1997; Ciulla et al., 1999). In line with these observations, the
group-averaged MEG source-strength of our data was highest in the
calcarine sulcus, followed by the cuneus, which extends into themedial
part of the posterior wall of the occipito-parietal fissure. However, both
in the data and model, cortical source-strengths only correlated with
white-matter connections to the calcarine sulcus and not with the
cuneus. Since calcarine was most strongly connected to the cuneus,
this suggests that propagation of oscillationswithin the calcarine sulcus
might contribute to the strong α-sources within the occipito-parietal
fissure.
Since for all subjects, the α-amplitudes in the calcarine sulcus and
occipito-parietal fissure were of similar magnitude, we suspect that
the estimated MEG source-strengths are attenuated by partial cancel-
ation of coherent oscillations in opposite banks of the calcarine sul-
cus 2 (Salmelin and Hari, 1994; Hari and Salmelin, 1997; Nunez and
Srinivasan, 2006). This remains speculative however, and the use of
MEG alone might not be sufficient to provide a definite answer,
because MEG is primarily sensitive to the tangential component of
current sources (Hamalainen et al., 1993). A more complete picture
of the organization of cortical α-sources likely has to come from com-
bined EEG-MEG source-imaging methods (Baillet et al., 1999) as they
exploit the complementary information of MEG and EEG, which is
primarily sensitive to the radial component of current sources. In ad-
dition to combining EEG and MEG, the inverse-solution space might
be reduced further by assuming the current densities to be restricted
to the cortical surface and their orientation to be perpendicular to it
(Dale and Sereno, 1993). This would, however, require using a
more fine-grained parcellation of the cortical surface and higher-
resolution structural matrices.

Several studies have shown that posterior α-oscillations can be
actively increased and decreased in visual attention paradigms in a
retinotopically specific way (Yamagishi et al., 2005; Kelly et al.,
2006; Rihs et al., 2007; Jensen et al., 2010; Capilla et al., 2012)
both in primary as well as in higher-order visual areas (Jokisch
and Jensen, 2007; Snyder and Foxe, 2010). Based on our results,
we might speculate that in resting-state, propagation of α from
lower to higher-order visual areas might provide a default organi-
zation of visual cortex in which modulation of α in V1 induces co-
herent modulations of α in higher-order visual areas through
retinotopically-organized pathways. Through such a mechanism,
retinotopical-specific priming of V1 might automatically prime
corresponding locations in higher-order areas. Such a mechanism
could coexist together with top-down modulating signals, which
are known or be broadcasted by several regions, most notably
frontal and parietal areas (Kelly et al., 2006) as well as several sub-
cortical nuclei (Feige et al., 2005), in particular the pulvinar
(Shipp, 2003; Saalmann et al., 2012), whose connections to visual
cortex are known to be organized in a retinotopic way (Shipp,
2003). Most likely, the spatio-temporal organization of posterior
α emerges from coordinated modulating influences through both
top-down and bottom-up cortico-cortical and pulvinar-cortical
pathways.

In this study, we focused on occipital \alpha-oscillations (Ciulla
et al., 1999), which are but one example of a family of ≈10 Hz oscil-
lations that can be recorded from human neocortex. Besides occipital
\alpha-oscillations, which are associated with the visual system, mu
and tau oscillations are associated with the somato-sensory and audi-
tory systems, respectively (Baar et al., 1997; Hari and Salmelin, 1997).
In addition, a line of experiments suggests the existence of several
types of oscillations within the classical \alpha-frequency band
(7–13 Hz) that might subserve different cognitive roles (Klimesch
et al., 1998; Klimesch, 1999; Lopes Da Silva, 2013). An interesting di-
rection for future research therefore, would be to study the distribu-
tion of generators of these different kinds of \alpha-oscillations, how
they propagate through white-matter pathways, and interact with
one another and with occipital \alpha-oscillations through shared
anatomical pathways.

The data used in this study are limited in several respects. The
most important limitation is that thalamic voxels were classified
based on the abundance of their structural connections with the
major anatomical regions in cerebral cortex, namely occipital, parietal,
temporal, frontal, motor, pre-motor, and somato-sensory regions,
hence did not allow delineation of the lateral geniculate nucleus
(LGN) and the isolation of higher-order visual thalamic nuclei
(Behrens et al., 2003a). As a consequence, our findings do not allow
to distinguish the different scenarios of α-generation, namely



Table 1
Descriptions and abbreviations of the AAL regions used in
this study.

Region Abbr

Precentral PreCG
Frontal Sup SFGdor
Front Sup Orb ORBsup
Front Mid MFG
Front Mid Orb ORBmid
Front Inf Ope IFGoperc
Front Inf Tri IFGtriang
Front Inf Orb ORBinf
Rolandic Oper ROL
Supp Motor Ar SMA
Olfactory OLF
Front Sup Med SFGmed
Front Med Orb ORBmid
Rectus REC
Insula INS
Cingulum Ant ACG
Cingulum Mid DCG
Cingulum Post PCG
Hippocampus HPG
ParaHippocamp PHG
Amygdala AMYG
Calcarine CAL
Cuneus CUN
Lingual LING
Occipital Sup SOG
Occipital Mid MOG
Occipital Inf IOG
Fusiform FFG
Postcentral PoCG
Parietal Sup SPG
Parietal Inf IPL
SupraMarginal SMG
Angular ANG
Precuneus PCUN
Paracentr Lob PCL
Caudate CAU
Putamen PUT
Pallidum PAL
Thalamus THA
Heschl HES
Temporal Sup STG
Tempr Pol Sup TPOsup
Temporal Mid MTG
Tempr Pol Mid TPOmid
Temporal Inf ITG
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generation in cortical (Liley et al., 1999) or thalamic (Lopes da Silva
et al., 1974; Hughes et al., 2004) tissue, or reverberation within
thalamo-cortical loop (Robinson et al., 2001; Rennie et al., 2002),
nor allows to assess the role of higher-order thalamic nuclei in mod-
ulation of cortical α-oscillations (Feige et al., 2005; Saalmann et al.,
2012). A more fine-grained structural segmentation of thalamus
might allow for a more detailed study of the role of different thalamic
nuclei in generation and modulation of cortical α. A second limitation
is that the MEG recordings and MRI scans were obtained from
different subject groups. Remarkably, the observed correlations
between the anatomical and functional organization of posterior α-
oscillations on the group-level reflect their robustness. Paired MEG-
DTI recordings obtained in a subsequent study will allow further
validation of the findings reported in the current study.

Although themodelwas able to reproduce the relative amplitudes of
\alpha-sources in visual cortex, there remains a discrepancy between
the predicted and observed amplitudes. Specifically, the observed am-
plitudes have an off-set which is absent in the predicted amplitudes
(see Fig. 4A). Moreover, and possibly related, the predicted amplitude
in V1 is relatively large as compared to the amplitudes in higher-order
visual regions. A possible explanation for this is the existence ofmultiple
α-generators, which would lead to a smoother spatial arrangement of
the amplitudes (Robinson et al., 2001, 2002). Assuming multiple α-
generators in the current model, however, did not lead to a good fit
with the data (see Fig. 3D). Possibly, the true scenario is somewhere
in between these two extremes and \alpha-generation has both
focal and distributed characteristics. An alternative explanation howev-
er, is that the off-set is caused by passive propagation of the generated
magnetic field, which has not been incorporated in the model.

The issue raised in the previous paragraph will be better inves-
tigated by treating the cortex as a spatially continuous structure (a
sheet) instead of a discrete network of regions as done in this
study. In modeling terms, this means that the neural mass model
needs to be extended to a neural field model that takes into ac-
count not only the topology of cortico-cortical axons, which is par-
tially homogeneous and partially highy specific, but also the spatial
arrangement of local intra-cortical axons (Robinson et al., 1997;
Deco et al., 2008). Such an approach however, requires MEG
source-modeling to be restricted to a high-resolution triangulation
of the cortical surface (Jirsa et al., 2002), which is challenging in it-
self. Moreover, the computational load of simulating neural field
models on such high-resolution representations on human cortex
is relatively high (Bojak et al., 2011). Steps in this direction how-
ever, have already been taken (Bojak et al., 2010) and are facilitat-
ed by open source simulation packages such as The Virtual Brain
(www.thevirtualbrain.org).

As mentioned above, this study exclusively focused on the role of
white-matter pathways and ignored the role of local intra-cortical
axons in shaping the spatio-temporal behavior of cortical \alpha-oscil-
lations. In a recent paper (Hindriks et al., 2014), Hindriks et al. de-
scribed a complementary approach and exclusively focused on the
role of intra-cortical connectivity in shaping posterior \alpha-oscilla-
tions. In that study, the authors used EEG data-analysis and forward
modeling to argue that posterior \alpha-oscillations propagate
through the cortex via intra-cortical axons. Moreover, they estimated
that the spatial extent of such propagating \alpha-sources is limited
to several centimeters. These two studies, each of which stresses a
complementary aspect of the spatio-temporal dynamics of cortical
\alpha, suggest a view of \alpha as comprising a multitude of local
and intra-cortically propagating sources that are coordinated or syn-
chronized through white-matter fiber pathways. This is reminiscent
of the spatio-temporal behavior of gamma oscillations in sensory cor-
tices, which locally behave as traveling waves (Freeman et al., 2000),
but also can become synchronized over large distances. We expect
that the use of neural field models with heterogeneous white-
matter topologies (Jirsa and Kelso, 2000; Bojak et al., 2011) will
provide a suitable framework to study how local intra-cortical propa-
gation and long-range synchronization interact to shape the spatio-
temporal dynamics of cortical oscillations.
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Appendix B. Model equations

The state-variables of the k-th region (k = 1, ⋯, N) are the average
membrane potentials of excitatory and inhibitory neurons, denoted by
Ve
k and Vi

k, respectively. They satisfy the following equations:

Vk
e tð Þ ¼ −hI⊗ γk

ieQ
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where ⊗ denotes temporal convolution, hE and hI denote the average
excitatory and inhibitory post-synaptic potentials, respectively,
γpq
k denotes the number of synaptic contacts from neurons of type p to

neurons of type qwithin region k, andβpq
lk denotes the number of synap-

tic contacts from neurons of type pwithin region l to neurons of type q
within region k, for k ≠ l. Note that the terms γpq

k and βpq
lk specify the

coupling structure within and between regions, respectively. Further-
more, Qp

l (t) = S(Vp
l (t)) denotes the average firing-rate of neurons of

type p in region l at time t. Moreover, pk ¼ pk þ σ kξk tð Þ models the af-
ferent input to region k, which is comprised of a constant firing-rate

pk and a fluctuating term σ kξk(t) that models the complicated afferent
input under resting-state conditions by awhite-noise process.Weassume
that the incoming fluctuations to different regions are uncorrelated, that
is, b ξkξl N = δkl. The parameter values are listed in Table 2.

To go from these general equations to the specific thalamo-cortical
model described in Dynamical meanfield model, we distinguish two
types of excitatory neuron types, namely cortical pyramidal (PY) neu-
rons, denoted by subscript p, and thalamo-cortical relay (RE) neurons,
denoted by subscript t. We also distinguish two types of inhibitory neu-
rons, namely cortical inhibitory (IN) neurons, denoted by subscript i,
and thalamic reticular (RE) neurons, denoted by subscript r. The synap-
tic organization of these neuron types is illustrated in Fig. 2 (Dynamical
meanfield model). The coupling between cortical pyramidal neurons of
cortical regions l and k is assumed to by symmetric, that is, βpp

lk = βpp
kl ,

where k ≠ l index the cortical regions. Moreover, their values are
taken equal to the DTI-derived connection probability density bkl.
Thus, βpp

kl = K1bkl, where bkl is the (k, l)-th entry of the connection
probability density matrix B (see Diffusion tensor imaging) and K1 is a
dimensionless global cortico-cortical scaling factor. The coupling be-
tween cortex and thalamus is specified by the terms βpr

kl , βpt
kl , and βtp

lk ,
which are all taken equal for given cortical indices k and thalamic indi-
ces l and are fixed by the corresponding DTI-derived thalamo-cortical
connection probability densities and a dimensionless global thalamo-
cortical scaling factor K2.

Table 2
Descriptions, symbols, and nominal values of the model parameters.
Parameter
 Symbol
 Nominal value
Average spike-threshold
 ρ2
 1 mV

Dispersion of spike-thresholds
 ρ1
 2 mV−1
Efficacy of PY → IN synapses
 Hpp
 4 mV

Efficacy of IN → PY synapses
 Hip
 32 mV

Efficacy of PY → TC synapses
 Hpt
 8 mV

Efficacy of PY → RE synapses
 Hpr
 0.4 mV

Efficacy of TC → PY synapses
 Htp
 4 mV

Efficacy of RE → TC synapses
 Hrt
 32 mV

Efficacy of TC → RE synapses
 Htr
 4 mV

Excitatory synaptic rate-constant
 κe
 162.5 s−1
Inhibitory synaptic rate-constant
 κi
 κe/4 s−1
Number of synaptic contacts excitatory→inhibitory
 γ1
 64

Number of synaptic contacts inhibitory→excitatory
 γ2
 64

Afferent firing-rate into region k
 pk
 270 s−1
Standard-deviation of p in region k
 σk
 0 or 1 s−1
Global cortico-cortical coupling
 K1
 ≥ 0

Global thalamic feedback
 K2
 ≥ 0
Appendix C. Linear stability

Linear stability was assessed by rewriting the model equations as a
system of N 8-dimensional coupled first-order stochastic differential
equations, which were obtained by rewriting the convolutions hE ⊗
and hI⊗ as second-order differential operators. In this form, the dynam-
ics of region k are governed by
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" #
;

where Ve=Ve,1−Ve,2 andVi=Vi,1−Vi,2,HE andHI denote the efficacy of
excitatory and inhibitory synapses, respectively, and � denotes taking the
derivative with respect to time t. The associated system of steady-state
equations, obtained by setting all derivatives to zero, was solved numeri-
cally, and the solutions are used to evaluate the systems' Jacobian at the
steady-state.

Appendix D. Source-strengths

Assuming the noise-driven fluctuations about the steady-state to be
small, themodel equations can be linearized about the steady-state and
thefluctuations are found to obey the following equations in the Laplace
domain:

Vk
e ¼ −LI γk

ieG
k
i V

k
i þ

X
l≠k

βlk
ieG

l
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l
i

" #
þ LE
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eeG

l
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" #
;
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i ¼ −LI γk

iiG
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i V
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ii G

l
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l
i

" #
þ LE

X
l≠k
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l
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l
e þ γk

eiG
k
eV

k
e

" #
;

where

Gk
e ¼

dS
dv

V k
e

� �

denotes the average gain of excitatory neurons in region k and similarly
for inhibitory neurons, and where

LE sð Þ ¼ HEkE
sþ kEð Þ2 ;

denotes the average transfer function of excitatory synapses and simi-
larly for inhibitory synapses.

To solve this system of equations for the state vector V = (Ve
1,

Vi
1, ⋯, Ve

N, Vi
N)′, we write M1 for the blockdiagonal matrix with k-th

block given by

0 −γk
ieG

k
i LI

−γ k
eiG

k
eLE −γk

iiG
k
i LI

 !
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and M2 for the blockmatrix with (k, l)-th block given by

βlk
eeG

l
eLE −βlk

ieG
l
iLI

βlk
eiG

l
eLE −β lk

ii G
l
iLI

 !
;

for l ≠ k. Note that M1 and M2 relate to the local and global coupling
structure, respectively. Furthermore, by defining Σ = (σ1LE, ⋯, σNLE)′
and M = M1 + M2, the Laplace domain equations can be written in
matrixform as

V sð Þ ¼ MV sð Þ þ Σ sð Þ;

from which we obtain

V sð Þ ¼ I−M sð Þð Þ−1Σ sð Þ;

where I denotes the identity matrix of size 2 N. The entries of V(s)
correspond to the transfer functions of the excitatory and inhibitory
populations in the different regions. If the steady-state is stable, the
Fourier spectra of the excitatory populations can be calculated by
setting s = iω. Thus, the Fourier spectra of the MEG signals from
the k-th region are modeled by

V kð Þ
MEG ωð Þ ¼ Vk

e iωð Þ:

Using the assumption that the afferent fluctuations of the different
regions are uncorrelated, the MEG cross-spectral matrix is given by

SMEG ωð Þ ¼ VMEG ωð ÞDP ωð Þ VMEG ωð ÞDP ωð Þð Þ†;

where DP(ω) denotes the diagonal matrix with the vector P(ω) as the
diagonal and † denotes conjugate-transpose. This expression simplifies
to

SMEG ωð Þ ¼ σ2VMEG ωð ÞVMEG ωð Þ†;

because DP(ω) is a diagonal matrix. The strength Ak of region k, as
measured by its standard-deviation, is now given by

A2
k ¼ 1

2π

Z ∞

−∞
SkMEG ωð Þdω;

where SMEG
k (ω) denotes the k-th entry on the diagonal of SMEG(ω). In

the calculation of source-strengths, we sampled SMEG
k between 0 and

40 Hz with spectral resolution Δω= 0.1 Hz.

Appendix E. Functional correlations

The cross-correlation function ΓMEG
k,l (τ) between the MEG signals at

regions k and l at lag τ is given by the normalized inverse Fourier
transform of the cross-spectrum between regions k and l

Γk;lMEG τð Þ ¼ 1
AkAl

Z ∞

−∞
Sk;lMEG ωð Þeiτωdω;

where SMEG
k,l (ω) denotes the (k, l)-th entry of SMEG(ω). In particular, the

functional connectivity between region k and l as characterized by the
correlation coefficient between the corresponding MEG signals is
given by ΓMEG

k,l (0). In the calculation of the correlation coefficients, we
sampled SMEG

k with spectral resolution

Δω ¼ 2π
4 2N þ 1ð Þ10−3 ;

Hz, which corresponds to a temporal solution of ΓMEG
k,l of

Δt ¼ 2π=Δω 2N þ 1ð Þ;
ms. Setting N = 200, this gives Δt = 4 ms and a maximal observable
delay of ±800 ms.
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