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a b s t r a c t 

During the sleep-wake cycle, the brain undergoes profound dynamical changes, which manifest subjectively as transitions between conscious experience and un- 

consciousness. Yet, neurophysiological signatures that can objectively distinguish different consciousness states based are scarce. Here, we show that differences 

in the level of brain-wide signals can reliably distinguish different stages of sleep and anesthesia from the awake state in human and monkey fMRI resting state 

data. Moreover, a whole-brain computational model can faithfully reproduce changes in global synchronization and other metrics such as functional connectiv- 

ity, structure-function relationship, integration and segregation across vigilance states. We demonstrate that the awake brain is close to a Hopf bifurcation, which 

naturally coincides with the emergence of globally correlated fMRI signals. Furthermore, simulating lesions of individual brain areas highlights the importance of 

connectivity hubs in the posterior brain and subcortical nuclei for maintaining the model in the awake state, as predicted by graph-theoretical analyses of structural 

data. 
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. Introduction 

Daily life is divided into periods of consciousness with subjective and
eportable experience, which are repeatedly replaced by epochs with ab-
ence of consciousness ( Koch, 2018 ). These different states of conscious-
ess and their transition are generated and tightly regulated by sophis-
icated physiological mechanisms residing in the cortex and subcorti-
al structures (e.g. the thalamus, brainstem nuclei and basal forebrain),
hich orchestrate the sleep-wake cycle ( Scammell et al., 2017 ). In ad-
ition, pharmacological interventions during anesthesia ( Alkire et al.,
008 ) can interfere with the physiology of consciousness and poise the
rain to unconscious dynamics. At the same time, the precise organiza-
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ion of the anatomical connectivity plays a pivotal role in the generation
f conscious experience, as evidenced by loss of consciousness after se-
ere brain damage in patients with coma or unresponsive wakefulness
yndrome ( Gosseries et al., 2014 ). Understanding how such interplay be-
ween the anatomical structure and the physiology of neuronal networks
enerates different levels of consciousness remains a major challenge in
euroscience research. 

To open a window on brain functioning during different levels
f consciousness, researchers have traditionally gained insights from
euronal oscillations that can be captured by recording macroscopic
lectromagnetic activity macroscopically (EEG, MEG) ( Stevner et al.,
019 ), mesoscopically ( Nir et al., 2011 ) or by single cell recordings
 Steriade et al., 1993 ). These studies delineate sleep into REM and
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onREM sleep, which is separated into three different stages (N1, N2,
3), each with a distinct electrophysiological profile ( Hobson and Pace-
chott, 2002 ). 

More recently, electrophysiological findings have been comple-
ented by fMRI studies, which focus on the study of functional rela-

ionships between brain areas, as measured e.g. by BOLD signal corre-
ations ( Mashour and Hudetz, 2018 ). Such functional connectivity (FC)
an be contrasted with the underlying structural connectome (SC) to
xamine how the variety of pathways, constrained by the anatomical
onnectivity, is expressed in the FC during different consciousness lev-
ls. Overall, the strength of the functional connectivity is largely reduced
uring unconscious states, even though specific resting state networks
emain intact ( Boveroux et al., 2010 ; Spoormaker et al., 2010 ). More-
ver, during loss of consciousness structural constraints are more rigidly
xpressed in the FC as opposed to the awake state ( Barttfeld et al., 2015 ;
agliazucchi et al., 2016b ). In addition, fMRI signals tend to display
n organized, wave-like flow across the entire brain with high integra-
ion in the awake state, while propagation remains confined to resting
tate networks with high modularity scores during sleep ( Boly et al.,
012 ; Mitra et al., 2015b ; Tagliazucchi et al., 2013 ). Furthermore, it
as shown that these correlation metrics are dynamic and show fluctu-
tions across time ( Betzel et al., 2016 ; Fukushima et al., 2018a , 2017 ;
hine et al., 2016 ), which are informative about the level of conscious-
ess ( Barttfeld et al., 2015 ; Demertzi et al., 2019 ; Haimovici et al., 2017 ;
hrig et al., 2018 ). 

Here, we study how large-scale synchronization of the resting state
MRI signal changes across conscious and unconscious states (sleep
tages N1, N2, N3 and anesthesia), and whether it can serve as an objec-
ive marker for the state of consciousness. Coherence across large parts
f the brain has been observed previously in fMRI recordings of humans
 Deco et al., 2017b ) and monkeys ( Liu et al., 2018a ; Turchi et al., 2018 ),
nd is accompanied by activity changes in neuromodulatory nuclei. We
nvestigate how various degrees of shared large-scale fluctuations re-
ate to metrics such as FC, SC-FC relationship ,integration and modular-
ty. The empirical findings are then contrasted with simulations from a
hole-brain model and we further examine whether it can reproduce the
attern of global fluctuations seen across different consciousness condi-
ions. Finally, the impact of brain lesions on global dynamics is studied
ia in-silico modeling. 

. Results 

In this study, we analyzed brain activity of different vigilance states
n two different fMRI datasets, which contain both conscious and un-
onscious experimental conditions. One dataset was recorded in hu-
ans ( N = 18) and comprises awake, resting state activity together with
ifferent stages of sleep (N1-N3) with a parcellation of 90 brain areas
Supplementary Table 1). The other dataset stems from monkey record-
ngs ( N = 3) during wakeful resting and two different levels of propofol
nesthesia (moderate and deep) with a spatial resolution of 432 regions
Supplementary Table 2). We searched for a physiological metric that
an differentiate conscious from unconscious states and can be explained
echanistically by a whole-brain computational model. Our hypothesis

evolved around differences in brain-wide synchronization patterns, in-
icating fluctuations of fMRI activity shared across many brain areas
 Scholvinck et al., 2010 ). To visualize synchronization, we first trans-
ormed the fMRI signals into a point process by representing all positive
MRI peaks as discrete events ( Tagliazucchi et al., 2012 ) ( Fig. 1 A). This
pproach takes the entire signal across all brain areas into account, ir-
espective of inter-areal variations of oscillation power in different fre-
uency bands. The raster plots revealed pronounced differences between
he awake and unconscious states ( Fig. 1 B). Awake brain dynamics was
haracterized by frequent large-scale population events that spanned
arge parts of the brain in both human and monkey resting state data
e.g. Fig. 1 B top left, red rectangle). Interspersed were periods with local
ynchronization and absence of brain wide activity. In contrast, during
nconscious states large-scale synchronization was entirely absent with
ominant local synchronization between a few areas (e.g. Fig. 1 B bot-
om left, blue rectangle) in both human and monkey datasets. 

To quantify these varying patterns of global and local synchroniza-
ion, we calculated the Fano factor (FF), a measure widely applied in
he analysis of population spiking activity ( Brunel and Hakim, 1999 ;
ahn et al., 2017 ; Kumar et al., 2008 ), which captures higher order
orrelation and global synchrony between discrete events ( Fig. 1 C, see
ethods for a detailed definition). The FF equals ~1, when there is

o correlation across brain areas, resembling a random Poisson process
 Fig. 1 C, right). Synchronization across brain regions increases the FF
o values > 1, with brain wide synchronization events being associated
ith FF >> 1 ( Fig. 1 C, left). 

We subsequently computed FFs for sliding windows of different sizes
nd their distribution for each vigilance state. The distributions de-
ayed exponentially for small window sizes ( Fig. 1 D), while they gener-
lly followed a gamma distribution for larger window sizes in human
nd monkey datasets ( Fig. 1 E, KS-test; human: window size = 5TR,
 = 0.02 ± 0.006, p < 0.001; window size = 25TR, D = 0.03 ± 0.01, p
 0.001; monkey: window size = 5TR, D = 0.06 ± 0.006, p < 0.001; win-
ow size = 25TR, D = 0.23 ± 0.07, p < 0.001). The shape parameter (beta)
f these gamma distributions, increasing for higher right skewness, was
ubsequently used to quantify the level of synchronization. 

Notably, the distributions clearly differed between levels of con-
ciousness in the human and monkey data with the exception of awake
nd N1 states in humans, which showed a similar synchronization pro-
le (window size = 5TR, one-way rm-ANOVA: F3, 51 = 1.9 × 10 3 , p <
.001, 𝜀 = 1 in the human and F2,28 = 1.48 ∗ 10 3 , p < 0.0001, 𝜀 = 0.6
n the monkey; posthoc test: p < 0.001 for all pairs except for awake
s. N1 with p = 0.99). In the awake state, the distributions were more
hallow and right skewed ( Fig. 1 D and E) with higher beta values due
o a higher prevalence of large-scale synchronization between brain ar-
as. Unconscious states were associated with steeper and more narrow
istributions due to missing large-scale synchronization (Fig. 1 D and E)
nd reduced beta values. Importantly, the beta parameter also distin-
uished between different levels of unconsciousness as it progressively
ecreased when subjects drifted into deeper levels of sleep or anesthe-
ia. The same results held, when negative fMRI peaks were used for the
alculation of FF distributions (Supplementary Fig. 2). To test the ro-
ustness of this novel marker, we calculated beta for different window
izes and indeed found that the separation of consciousness states re-
ained unchanged up to a window size = 50 TR ( Fig. 1 F). Additionally,

hese findings suggest that the varying levels of large-scale synchroniza-
ion, as indexed by the FF distribution, could serve as a robust marker
or different vigilance states and the depth of unconsciousness. 

.1. Computational model 

What might be the origin of these declining levels of large-scale
ynchronization as brain dynamics traverses from awake to gradually
eeper levels of unconsciousness? To tackle this question, we devised
 whole-brain computational model that aimed at reproducing these
hanges in global dynamics. This model simulated local fMRI signals
or each brain area of two different parcellations (human: N = 90 areas
 Tzourio-Mazoyer et al., 2002 ), monkey ( Paxinos et al., 2009 ): N = 432
reas), using the normalized Hopf bifurcation model (see Methods). The
rain areas were connected on the basis of diffusion-tensor imaging
ata from humans and monkeys ( Adluru et al., 2012 ; Zakszewski et al.,
014 ). The core parameter of the model is the bifurcation parameter
alpha), which captures the excitability of each node, i.e. its responsive-
ess to incoming input from other brain areas (Supplementary Fig. 3A).
e uniformly varied alpha across all brain areas mimicking changes

n global excitability mediated by diffusely projecting neuromodulator
ystems (e.g. acetylcholine, noradrenaline), whose activity is known to
hange across the sleep-wake cycle ( Scammell et al., 2017 ). Depending
n the values of alpha, the model displayed three qualitatively different
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Fig. 1. Defining and analyzing global synchroniza- 

tion between BOLD signals. (A) fMRI time series 

with positive peaks (red asterisks). (B) Examples 

raster plots of peak time stamps (dots) for a human 

and monkey dataset, and for two different con- 

sciousness levels. Red rectangle: global synchro- 

nization event. Blue rectangle: local synchroniza- 

tion event. (C) Raster plots with (left) and without 

(right) global events for a duration of 5 TR and the 

corresponding Fano Factor values. (D) Fano factor 

distributions (dashed lines) of human and monkey 

recordings and all consciousness levels for a small 

window size of 5 TR. A fitted gamma distribution 

(solid lines) is shown for each Fano factor distribu- 

tion. (E) Same as in (D) with a larger window size 

of 25 TR. (F) Mean ( ± SD) beta values for Fano dis- 

tributions of all consciousness levels as a function 

of window size for human and monkey recordings. 
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ctivity states. When alpha was kept small, the dynamics of the model
as governed by synchronization between a few brain areas, but re-
ained free of large-scale synchronization ( Fig. 2 A, left). This dynami-

al regime was strikingly similar to the empirical pattern of unconscious
tates in the monkey and human data ( Fig. 1 A, bottom). At intermediate
alues, the dynamics was characterized by periods of asynchronous ac-
ivity, as seen with smaller alpha, but sporadically interrupted by events
f global synchrony ( Fig. 2 A, center). This activity mode was reminis-
ent of the dynamics seen in the awake humans and monkeys ( Fig. 1 B,
op). Further increase of alpha was accompanied by a dynamical state
ith highly synchronized and oscillatory activity across the entire model
rain ( Fig. 2 A, right). More generally, the behavior of the model char-
cterizes a bifurcation from exclusively local synchrony (alpha < bifur-
ation) to global synchronization (alpha > bifurcation) with elements
f both types of synchronization being present close to the bifurcation
oint (alpha ~ bifurcation). 

Next, we computed Fano factor distributions for the simulated fMRI
ignals. These distributions were also governed by gamma distribu-
ions, which approached an exponential function with small time win-
ows, similar to the empirical counterpart, for alpha < or ~ bifurca-
ion ( Fig. 2 B). The highly synchronized regime, however, deviated from
his behavior and showed a clear peak in the FF-distribution caused by
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Fig. 2. Whole brain model of different consciousness levels. (A) Example raster plots of positive peaks obtained from model simulations of human data with a 

window size of 5 TR. The results are depicted for three different instances of the bifurcation parameter alpha, placing the model below, close or above the bifurcation 

point. (B) Fano factor distributions for the three different bifurcation parameters shown in (A). Note the pronounced peak in the distribution caused by the global 

oscillation, when the model was set above the bifurcation point. (C) Fitting of the model to match the Fano factor observed from the empirical human data, expressed 

as the difference of empirical and model beta values, for different bifurcation parameters and consciousness levels. (D) Same as in (C) for monkey data. (E) Value 

of the adapted bifurcation parameter as a function of consciousness state in humans. The empirical beta-values of the FF distributions are shown for each state. (F) 

Same as in (E) for the monkey data. 

t  

p  

g  

b  

t  

n  

a  

o  

f  

t  

n  

n  

o  

s  

g  

s

2

 

v  

e  

c  

s  

(  

I  

F  

c  

c  

r  

F  

<  

a  
he global oscillation. After normalization, such that the bifurcation ap-
eared at alpha = 0 (see Methods, Supplementary Fig. 3B), we fitted
amma distributions for alpha values < 0 and showed that the obtained
eta values increased monotonically as alpha approached the bifurca-
ion point (Supplementary Fig. 3C). Thus, different levels of synchro-
ization in the model mapped directly onto the FF distribution. This
llowed us to find the alpha values of the model, where the beta values
f empirical and simulated FF distribution were identical, i.e. their dif-
erence was close to zero. We found that the awake state was close to
he bifurcation point with both locally and globally dominated synchro-
ization in both human and monkey data. As subjects lost conscious-
ess, the alpha values dropped progressively with deeper levels of sleep
r anesthesia, indicating a gradual shift in the dynamics towards smaller
ynchronization events ( Fig. 2 C-F). These results suggest that changes in
lobal excitability are the main determinant of different levels of large-
cale synchronization in the simulated and empirical data. 
.2. Model predictions 

The present findings demonstrate that the model can mirror the time-
arying properties of global versus local synchronization across differ-
nt levels of consciousness. We therefore tested whether the simulations
an also correctly predict the change of other metrics across vigilance
tates. First, we calculated the grand-average functional connectivity
FC) of fMRI signals for each state of the empirical and model data.
n accordance with previous findings ( Barttfeld et al., 2015 ), average
C between brain areas was highest in the awake state and signifi-
antly decreased with onset and progression into deeper levels of un-
onsciousness in both human and monkey data ( Fig. 3 A, left, one-way
m-ANOVA: F3,51 = 0.99 ×10 3 , p < 0.0001, 𝜀 = 0.42 in the human and
2,28 = 1.81 ∗ 10 3 , p < 0.0001, 𝜀 = 0.78 in the monkey; posthoc test: p
 0.001 for all pairs). Importantly, the model also showed higher aver-
ge FC during the awake state and lowest FC during the deepest levels
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Fig. 3. Comparison between empirical data 

and model predictions for various measures 

and across different consciousness levels. (A) 

Mean ( ± SD) direct FC for empirical and mod- 

eled human (left) and monkey data (right) of 

different consciousness conditions. (B) Same as 

in (A) for SC-FC similarity. (C). Same as in (A) 

for the level of integration. (D) Same as in (A) 

for the level of functional segregation as mea- 

sured by modularity. 
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f unconsciousness ( Fig. 3 A, right). Next, we examined the relationship
etween structural and functional connectivity, which has been shown
o undergo changes across consciousness states ( Barttfeld et al., 2015 ;
agliazucchi et al., 2016b ). Similarly, we detected an increase of the
C-FC relation with loss of consciousness as compared to the awake
tate. This indicates stronger expression of direct anatomical connec-
ions in the FC during unconscious states, whereas in the awake state
urther network effects emerge beyond pair-wise interactions ( Fig. 3 B,
eft, one-way rm-ANOVA: F3,51 = 1.13 ∗ 10 3 , p < 0.0001, 𝜀 = 0.45 in
he human and F2,18 = 2.56 ∗ 10 3 , p < 0.0001, 𝜀 = 0.92 in the mon-
ey; posthoc test: p < 0.001 for all pairs). Again, the model correctly
eproduced the behavior of the SC-FC relationship for different levels of
onsciousness ( Fig. 3 B, right). Other descriptors that are used to char-
cterize consciousness include the level of integration and segregation,
hich are in general inversely related ( Deco et al., 2015 ). Integrated
ctivity is characterized by synchronization across multiple brain areas,
hile modularity refers to the prevalence of locally confined process-

ng. In the human and monkey data, integration significantly increased,
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s brain activity approached wakefulness ( Fig. 3 C, left, one-way rm-
NOVA: F3,51 = 0.91 ∗ 10 3 , p < 0.0001, 𝜀 = 0.43 in the human and
2,28 = 4.36 ∗ 10 3 , p < 0.0001, 𝜀 = 0.84 in the monkey; ; posthoc test:
 < 0.001 for all pairs) due to rising levels of brain-wide synchroniza-
ion. In contrast, local activation dominated during unconscious states
ith more segregation, quantified by the modularity value that we ob-

ained for the optimal partition when breaking the FC matrix into clus-
ers ( Fig. 3 D, left, one-way rm-ANOVA: F3,51 = 1.04 ∗ 10 3 , p < 0.0001,
 = 0.65 in the human and F2,28 = 4.92 ∗ 10 3 , p < 0.0001, 𝜀 = 0.59 in the
onkey; posthoc test: p < 0.001 for all pairs). The model correctly pre-
icted the change of integration and modularity across vigilance states
 Fig. 3 C and D, right). 

.3. Analysis of different synchronization states 

Previous studies have highlighted that different consciousness levels
an be characterized by the relative prevalence of different functional
onnectivity states ( Barttfeld et al., 2015 ; Demertzi et al., 2019 ) with
arying levels of fMRI signal correlations and SC-FC relationship. Here,
e hypothesize that these states reflect different levels of large-scale

ynchronization with a frequency of occurrence that is determined by
he level of consciousness. To test this hypothesis, we split the data into
hort bins (size = 5 TR) and concatenated bins with similar Fano factor
alues, representing similar global synchronization levels, into a new
ataset. The FF range was chosen to be 1 + n < FF < 5 + n , with n being
ncremented by one for each new dataset. Thus, we obtained datasets
ith increasing large-scale synchronization, each of which was consid-

red a different state. This procedure was repeated for both empirical
nd model data, and for each vigilance state. 

We first examined how the average amplitude of the fMRI signal,
easured as the mean z-score of the positive peak amplitude, changed

cross different synchronization states for each vigilance state. The anal-
sis of the human data showed that the BOLD amplitude steadily rises
ith increase in global synchronization, indicating that large scale syn-

hronization is associated with stronger local signals ( Fig. 4 A, left). Im-
ortantly, these results were accurately predicted by the model. A sim-
lar behavior was found in the empirical and modeled monkey data for
he awake state, while the fMRI signal amplitude slightly dropped with
tronger synchronization in the two anesthetized states of the empirical
ata ( Fig. 4 A, right). 

Next, we studied how the mean FC evolves across the different syn-
hronization states. As the global synchronization increased in the em-
irical human data, the mean FC also grew stronger for all vigilance
onditions ( Fig. 4 B, left). However, the mean FC for most large-scale
ynchronization states was higher in the awake state as compared to
he unconscious conditions. Likewise, highly synchronized states also
howed the highest FC and were only found in the awake condition.
he model was able to replicate the empirical findings. In the empiri-
al and modeled monkey data, similar results were obtained with more
ronounced FC differences between awake and unconscious conditions
 Fig. 4 B, right). 

We then studied to what extent the SC is expressed in the FC as a
unction of different global synchronization states. We found that with
ncreasing levels of large-scale synchrony, the similarity between em-
irical FC and SC in humans decreases and reaches minimum values
uring highly synchronized states prevalent only during the awake con-
ition ( Fig. 4 C, left). A similar decrease was seen in the model, even
hough very small SC-FC correlation values were also found in uncon-
cious states. The same results held in the monkey data, with the ex-
eption that high SC-FC similarity was found predominately in weakly
ynchronized states during anesthesia ( Fig. 4 C, right). 

The integration measure also increased with rising levels of global
ynchronization across all consciousness conditions in humans and mon-
eys, a result that was accurately reproduced by the model ( Fig. 4 D).
n contrast, modularity decreased with large-scale synchrony in human
mpirical and simulated data ( Fig. 4 E, left). Interestingly, modularity in
he monkey initially decreased with larger FF values and subsequently
ncreased again in the anesthetized states, showing a U-shaped behav-
or in both empirical and modeled data. In contrast, the awake state
as characterized by a monotonic decrease of modularity with higher
F values as seen in humans. 

Overall, this analysis suggests that different global synchronization
tates with varying levels of FC, expression of SC, integration and modu-
arity exist across different vigilance conditions. The level of conscious-
ess can then be distinguished based on the composition of synchro-
ization states, which, as the model shows, is a function of the global
xcitability level across the entire brain. 

.4. Single trial analysis 

The previous results were obtained by computing synchronization
etrics from data merged across all trials and subjects of a conscious-
ess state. To test whether the composition of synchronization states
an also delineate consciousness states at the single-trial level, we com-
uted FF distributions and the other FC-based metrics for each trial sep-
rately. In humans, we recorded one trial per consciousness state with
 duration that ranged between ~90 and 1000 TR (see Supplementary
ig. 4 for details). We found significant beta value differences between
he awake state and unconscious states (N2 and/or N3) (one-way rm-
NOVA: F3,51 = 5.7, p < 0.002, 𝜀 = 0.93), which was repeated for the
ther measures except modularity, while the separation between un-
onscious states was not consistent across sleep stages ( Fig 5 A, Supple-
entary Fig. 5). Moreover, when comparing consciousness states within

ingle subjects, there was a monotonic decrease of beta values from the
wake state to N3 sleep only in a few cases, while most subjects did
ot show a consistent change of beta across consciousness states (Sup-
lementary Fig. 6). Notably, the beta values and other measures were
ighly overlapping across states, prohibiting an unambiguous identifi-
ation of consciousness states. As we have shown above, each conscious-
ess state can be defined by a distribution of synchronization events, in
hich reduced global synchrony occurs across all states, while larger

vents are mainly prevalent during the awake state and N1 sleep. Thus,
isambiguation of states requires sufficient sampling to provide accu-
ate statistics, which may not be the case in our single trial analysis due
o short trial duration. 

To test whether these findings can be replicated by the human model,
e simulated several short trials (250 TR) and averaged across trials
 Fig. 5 B). Similar to the empirical counterpart, the beta values mono-
onically decreased with the depth of sleep and with statistical differ-
nces across states as seen in the empirical data, while they remained
ighly overlapping. In contrast, when we performed simulations with
ong trials (10,000 TR), the overlap disappeared and each trial could be
nequivocally assigned to a particular consciousness state ( Fig. 5 C). 

In monkeys, where the trial duration was fixed at 500 TR, the
wake state was significantly different from the two unconscious states
or all measures ( Fig. 5 D, Supplementary Fig. 5, one-way rm-ANOVA:
2,60 = 8.6, p < 0.0001, 𝜀 = 0.45 in the human and F2,18 = 2.56 ∗ 10 3 ,
 < 0.0001, 𝜀 = 0.6 in the monkey). Yet, the values were overlapping
etween the states, which we reproduced in simulations with short trials
500 TR, Fig. 5E ). Similar to humans, the overlap vanished with longer
rials ( Fig. 5 F). 

Overall, these results suggest that short trials are less suited for an
nambiguous separation of different consciousness states due to insuf-
cient sampling of large-scale synchronization events across time. 

.5. Model lesions and global synchronization 

The correspondence between measures of the empirical and model
ata suggests that the model may be a viable tool to investigate the
mpact of specific brain areas on consciousness. We thus employed a le-
ion approach in which the excitability (i.e. the bifurcation parameter
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Fig. 4. Various metrics change with the level of global synchronization (FF states) across different consciousness conditions. (A) Average peak amplitude (z-score) 

within a time window of 5 TR as a function of FF state in empirical and modeled human (left) and monkey data (right). (B) Mean direct FC as a function of global 

synchronization states for human and monkey data. (C) SC-FC similarity for different global synchronization states in humans and monkeys. (D-E) Same as in (C) for 

integration and modularity, respectively. 
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lpha) of individual nodes in the model was strongly reduced, mimick-
ng damage after stroke or mechanical trauma ( Adhikari et al., 2017 ).
o quantify the consequences of node damage on model dynamics and

ts associated level of consciousness in the empirical data, we intro-
uced a lesion index ( 𝜆), which indicates the loss of global synchro-
ization in the simulations with respect to the synchronization level
een in the awake state of the empirical recording (see Methods for
etails). A value of 𝜆 = 1 reflects model synchronization equivalent
o the awake data, while we consider 𝜆 < 0.85 as equal to loss of
onsciousness. 
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Fig. 5. Beta values of the FF distribution for single trials (A) Boxplot (median, 25th and 75th percentile) for beta of single trials across consciousness states in 

humans. Horizontal bars represent statistical significance ( p -value < 0.05). (B) Same as in (A) for human model simulations with short trials (250 TR). (C) Boxplot 

for human model simulations with long trials (10,000 TR). (D-F) Monkey empirical and model beta values for short and long trials. 
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When each area was lesioned separately, the impact on large-scale
ynchronization was modest for most regions and yielded a lesion in-
ex that remained above the threshold for dynamics associated with
onsciousness in both human and monkey data ( Fig. 6 A). However, the
esion of a few areas strongly reduced brain-wide synchronization with
descending to values ~0.4 in some cases. In humans, these areas were
ll found in the posterior brain, with the precuneus and posterior cingu-
ate cortex having the most pronounced effect ( Fig. 6 B, left panel). This
s in striking congruence with previous experimental findings pointing
t a posterior hotspot for consciousness ( Koch et al., 2016 ). Notably, in
imulations of monkey data the strongest influence on global synchro-
ization was also found in the posterior cingulate cortex (area 23) and
he precuneus (area PGM) together with subcortical nuclei, in particular
igher order thalamic nuclei ( Fig. 6 B, right panel), which according to
mpirical studies play an important role in modulating consciousness
 Schiff, 2008 ). 

To gain a better understanding of how these nodes contribute to
lobal dynamics and putatively to the maintenance of consciousness,
e conducted a graph theoretical analysis of the human and monkey

tructural connectomes. We first tested the structural matrices for the
resence of a rich club, i.e. network hubs that are highly interconnected
ith other brain areas and also strongly linked between themselves.
ased on the k-density metric (see Methods, Supplementary Fig. 7), we
ound several rich club nodes in the human, including the precuneus
nd posterior cingulate cortex, and monkey connectome, which were
ainly located in subcortical nuclei and area PMG (precuneus) ( Fig. 7 A
nd B, asterisks). Even though a majority of these areas had a strong
mpact on the level of large-scale synchronization, a large number of
rain regions with a low lesion index did not belong to the rich club
etwork ( Figs. 6 B and 7 A,B). We thus searched for a metric that would
etter reflect the role of each node in maintaining brain-wide synchro-
ization and the awake state. The node communicability, a measure that
aptures the propagation of activity across the network after the stimu-
ation of a given node, proved to be a good predictor of synchronization
evels ( Fig.7A and B). In general, we found an inverse relationship such
hat areas with a lower lesion index typically had higher communica-
ility values in human and monkey datasets. Surprisingly, however, in
umans we found two separate linear relationships between commu-
icability and lesion index, one with a steep slope where the impact
f a lesion was high and another with a shallower slope. We hypoth-
sized that this finding is rooted in the difference of node communi-
ability between different hemispheres, since taking out a node in one
emisphere influences large-scale synchronization both ipsilaterally and
ontralaterally only if strong interhemispheric connections exist. Thus,
 node may have strong communicability in the presence of only ipsi-
ateral connections, but a lower impact on large-scale synchronization,
s its activity does not spread to the other hemisphere. We thus calcu-
ated communicability separately for each hemisphere and quantified
he asymmetry between both communicability values. A value of ~1
ndicates high asymmetry with a node exclusively impacting activity in
ne hemisphere, while asymmetry ~ 0 indicates a strong propagation
ithin both hemispheres. We indeed found that high communicability
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Fig. 6. Global synchronization changes after model lesions of specific brain ar- 

eas. (A) The lesion index ( 𝜆) indicates the degree of global synchronization with 

respect to the awake state (normalized to 1) after the lesion of individual model 

nodes (abscissa). Dashed red line: threshold for global synchronization levels 

comparable to conscious (above line) and unconscious states (below line). (B) 

Brain areas (red circles) that cause a drop below the red line in (A) after lesion. 

Circle diameter is scaled to the value of the lesion index of a given area. See 

Supplementary Tables 1–2 for full labels. 
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reas can show different degrees of asymmetry across the two hemi-
pheres (Supplementary Fig. 8). Despite their similar communicability,
reas with reduced asymmetry such as the precuneus and posterior cin-
ulate cortex influence brain-wide synchronization strongly, while other
odes with very high asymmetry such as the putamen influence syn-
hronization primarily in one hemisphere with an attenuated impact on
rain-wide synchrony ( Fig. 7 C). 

. Discussion 

Here, we have shown that the pattern of large-scale synchronization
cross the brain is a new signature of consciousness and can readily dis-
inguish different consciousness conditions in human and monkey fMRI
ata. It separates awake from unconscious conditions and also delineates
arious degrees of non-REM sleep and propofol anesthesia. Changes in
rain-wide synchrony are accompanied by alterations of other measures
f consciousness such as FC, the SC-FC relationship, integration and
odularity. Strikingly, the statistics of these metrics were accurately re-
roduced by a whole-brain model and explained by different global ex-
itability levels that naturally generate different configurations of large-
cale synchrony. Additionally, graph theoretical analyses together with
odel lesion simulations show that the anatomical properties of specific

rain areas in the posterior brain play a crucial role in maintaining the
evel of large-scale synchronization typical of the awake state. 

The existence of brain-wide synchronization in fMRI data natu-
ally raises the question whether it reflects a physiological signal
 Scholvinck et al., 2010 ) or should be considered as an artifact caused
y e.g. head movements that are usually regressed out ( Liu et al., 2017 ),
s was also done here. However, recent studies have demonstrated that
arge-scale synchrony of fMRI signals not only respect precisely orches-
rated electrophysiological changes ( Liu et al., 2018a , 2015 ), but is also
ightly linked to acetylcholine release of the basal forebrain, since its le-
ion abolishes brain-wide synchronization ( Turchi et al., 2018 ). Changes
n global synchrony were also found in schizophrenia ( Hahamy et al.,
014 ; Yang et al., 2014 ). Moreover, the fMRI signal shows wave like
ropagation ( Majeed et al., 2011 ; Mitra et al., 2014 , 2015a ) across the
ntire brain during the awake state with large-scale synchronization
 Mitra et al., 2015b ), while waves remain confined to specific resting
tate networks during slow-wave sleep ( Mitra et al., 2015b ). Lastly, both
mpirical and model distributions decay exponentially and lack a peak
t their tail, where highly widespread synchrony due to artifacts would
e expected. 

Previous studies have highlighted that fMRI signal synchronization
etween brain areas fluctuates over time, creating different functional
onnectivity states ( Barttfeld et al., 2015 ; Keilholz et al., 2017 ). These
C states are tied to different levels of modularity ( Betzel et al., 2016 ;
ukushima et al., 2018a ), integration ( Shine et al., 2016 ), varying SC-FC
elationship ( Barttfeld et al., 2015 ; Fukushima et al., 2018b ), behavior
 Shine et al., 2016 ) and the level of consciousness ( Barttfeld et al., 2015 ;
emertzi et al., 2019 ). Here, we show that large-scale synchronization
volves at a fine-grained temporal scale and changes strength across a
ide range in the awake state, but a largely reduced range during un-

onscious conditions in both empirical and modeled human and monkey
ata. We show that global synchrony is related to other measures such
s mean FC strength, SC-FC relationship, modularity and integration.
hese metrics move along a continuum with a range that changes with
he consciousness level, rather than reflecting a few discrete states that
re correlated with behavior ( Shine et al., 2016 ; Wang et al., 2016 ).
uring the awake state, consciousness is maintained over a large range
f synchronization states including those that are primarily seen during
oss of consciousness with a lack of global synchrony. Such absence of
lobal synchrony, which we found to dominate during the N3 state, is
lso consistent with reports that during sleep both the BOLD signal and
low waves/spindles in electrophysiological recordings propagate only
ocally ( Mitra et al., 2015b ; Nir et al., 2011 ; Vyazovskiy et al., 2011 ). The
emporary absence of large-scale synchrony and integration may indi-
ate a low arousal state with drowsiness, which is not yet low enough to
uppress consciousness, even though a clear correlation with microsleep
as not found ( Demertzi et al., 2019 ). On the other hand, highly in-

egrated states have been associated with accurate task performance
 Shine et al., 2016 ) and are predicted by both the integrated information
nd global neuronal workspace theories of consciousness ( Dehaene and
hangeux, 2011 ; Tononi et al., 2016 ), as conscious processing would re-
uire large-scale integration and spread of neuronal activity (‘ignition’)
 Deco et al., 2017b ; van Vugt et al., 2018 ). In contrast, other studies
uggest that such strong global synchrony is accompanied by a drop
f arousal as defined by a reduction of alpha activity and enhanced
elta/theta oscillations in simultaneously recorded electrophysiological
ignals ( Chang et al., 2016 ; Wong et al., 2013 ), which is reversed by
lertness-promoting caffeine ( Wong et al., 2013 ), and putatively caused
y reduced ACH concentrations after a large-scale synchronization event
 Liu et al., 2018b ). It is possible that such brain-wide synchronization
ith high Fano factors reduces functional differentiation of neuronal ac-

ivity, another hypothesized prerequisite for consciousness ( Naci et al.,
018 ; Tononi et al., 2016 ). Even though systems close to a bifurcation,
s seen in our study for the awake state, theoretically maximize their
umber of possible states ( Shew et al., 2011 ; Shew and Plenz, 2013 ), the
ccasional undifferentiated and more homogeneous activation of large
arts of the brain would thus diminish alertness. A key component of en-
anced differentiation during the awake state might be enhanced inhi-
ition ( Rudolph et al., 2007 ), which allows competition between differ-
nt neuronal representations and fine-grained activity patterns. Indeed,
ctive suppression of activity has only been found during the awake
tate, as evidenced by a specific FC configuration, containing strong
orrelation and anticorrelations between brain areas ( Barttfeld et al.,
015 ; Demertzi et al., 2019 ; Fox et al., 2005 ; Wong et al., 2013 ). A
ossible scenario is that such inhibition is reduced during strong global
ynchrony, which triggers a large-scale propagation of excitation with
ower levels of differentiation. An important limitation of our marker is
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Fig. 7. Graph-theoretical properties determine impact of nodes on global synchronization. (A) The lesion index ( 𝜆) for each brain area in the human dataset is 

shown as a function of node communicability computed from the SC matrix. Asterisks indicate brain areas with rich club properties. Straight lines reflect regression 

lines calculated for two different sets of areas. (B) Same as in (A) for the monkey dataset. (C) Asymmetry of node communicability computed for each hemisphere 

separately for the areas of the human connectome with high communicability labeled in (A). Blue bars denote areas falling in the steep slope set, red bars for areas 

in the shallow slope set. 
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hat the global synchronization index is not sensitive to anticorrelations.
ikewise, the presented model does not incorporate mutual inhibition
etween brain areas and can thus not reproduce the anticorrelated FC
tates seen during the awake state, a problem which will be addressed
n future studies. 

Another limitation of our marker of consciousness is that it is based
n a distribution, which requires sufficient sampling across time to give
 robust separation of consciousness states. If sampling is too short the
stimation of distribution parameters is inaccurate and consciousness
tates can have similar marker values, as shown by our single-trial anal-
sis. Yet, our model results suggest that with sufficient recording time
tates can be distinguished with high fidelity. In addition, the existence
f distributions of synchronization strength, which differ in their tail of
arge-scale synchronization across consciousness states, but otherwise
verlap in terms of small-scale synchronization, imply that in both con-
cious and unconscious states there are epochs of neuronal activity in
arcellated fMRI data, which are statistically not distinguishable. Thus,
ore research is needed to overcome this limitation of distribution-

ased markers and correctly detect consciousness at any given moment
n time. 

What is the origin of the fluctuations in large-scale synchrony, in-
egration and separation seen in empirical data ( Deco et al., 2015 ;
ukushima and Sporns, 2018 )? There are two scenarios: First, the cortex
nherits excitability fluctuations originating in neuromodulatory nuclei
r second, fluctuations are created intrinsically in the cortex. 
Our whole-brain model creates fluctuations intrinsically and can
aithfully reproduce the statistics of global synchronization and connec-
ivity measures at a fine temporal scale, given a fixed level of global ex-
itability, and across a variety of consciousness conditions. Such fluctu-
tions within a continuum of largely synchronized and desynchronized
tates is an expected property of a dynamical system close to a Hopf
ifurcation point ( Jobst et al., 2017 ), which resembles the awake state
n humans and monkeys. This idea is similar to the concept of critical-
ty and neuronal avalanches ( Beggs and Plenz, 2003 ; Hahn et al., 2017 ;
ahn et al., 2010 ; Liang et al., 2020 ; Shew and Plenz, 2013 ), where
 system poised to the critical point generates fluctuations at various
patial scales with occasional avalanches that spread across the entire
ystem, akin to the fMRI waves seen in awake humans ( Mitra et al.,
015a ). Moving away from the bifurcation or to the subcritical regime
y reducing global excitability levels reduces the size of fluctuations
nd avalanches are restricted to local propagation within strongly con-
ected resting state networks ( Tagliazucchi et al., 2016a ). Our model
ndeed suggests that the transition from awake to deeper stages of sleep
r anesthesia is linked to a gradual decrease in global excitability and
arge-scale functional connectivity. 

However, there is also experimental evidence that the variability of
unctional connectivity is at least partly driven by changes in neuro-
odulation. One study showed that integrated FC states appear during

ognitive tasks and are accompanied by a dilation of pupil diameter in-
icative of enhanced activity of subcortical neuromodulator nuclei, in
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articular the noradrenergic locus coeruleus ( Shine et al., 2016 ). An-
ther study linked the occurrence of global synchronization during rest-
ng state to a decrease in cholinergic basal forebrain activity suggesting
hat a decreased ACH tone is causally related to widespread propaga-
ion of neuronal activity ( Liu et al., 2018a ). Furthermore, inactivation of
he nucleus basalis disrupts the presence of large-scale synchronization,
hile keeping the structure of local resting state network synchroniza-

ion intact ( Turchi et al., 2018 ). This finding is reminiscent of our model
esult where reduced global excitability diminished global synchrony.
hus, it remains to be studied how fluctuations in neuromodulation are
ausally related to individual connectivity and synchronization states.
t is unclear to what extent neuromodulatory changes are stochastic and
ndependent of cortical activity or are to some extent under the control
f cortical dynamics. 

Our whole-brain modeling also allowed us to mimick lesions of indi-
idual areas due to e.g. stroke, and study their effect on global synchrony
s seen during the awake state. We found a few key areas that are cru-
ial for maintaining the model in a condition akin to the awake state
nd their damage resulted in a transition into model dynamics in which
rain-wide synchronization events were absent similar to unconscious
tates. Surprisingly, these areas were located in the back of the brain,
entered around the ‘posterior hotspot’ of consciousness described in
he literature ( Boly et al., 2017 ; Koch et al., 2016 ; Tagliazucchi, 2017 ;
ogt and Laureys, 2005 ). The most influential areas in the model were

he precuneus and posterior cingulate cortex in both humans and mon-
eys, which have been previously found to be key areas in maintaining
onsciousness ( Alkire et al., 2008 ; Cavanna, 2007 ). In the monkey, tha-
amic nuclei had a large impact, as described previously in empirical
tudies ( Schiff, 2008 ). In the human parcellation the thalamus was only
epresented by one node per hemisphere with less impact on conscious-
ess, explained by its weaker node communicability of the anatomi-
al connections as compared to highly influential areas ( Fig. 7 A). Us-
ng graph theoretical analysis, we identified a few areas with large im-
act on large-scale synchrony that are part of the structural rich-club, a
ighly interconnected network of hubs that define the default node net-
ork in the posterior brain ( van den Heuvel and Sporns, 2011 ; Zamora-
ópez et al., 2011 ; Zamora-López et al., 2010 ). More generally, the effect
f individual brain areas on global synchronization was attributed to the
egree of node communicability, i.e. how strongly activity initiated in
 given area propagates across the brain. We also found that strong in-
erhemispheric connections play a crucial role in mediating synchrony
cross the entire brain. This effect was most pronounced in humans and
uch less in monkeys. We can only speculate about the causes for this
ifference between species. Aside from existing anatomical differences,
t is also conceivable that the difference in parcellation or tractography,
hich is known to confound interhemispheric connections specifically,
ay play a role. Overall, these results demonstrate that excitability and

nformation transfer through single nodes is not only determined by neu-
omodulation, but also by the activity flowing in and out of crucial nodes
n the network. These nodes then play a paramount role in keeping over-
ll global excitability at a level necessary for conscious processing. 

In conclusion, we described a novel marker for different conscious-
ess states that is based on large-scale synchronization of the fMRI sig-
al across the brain and can be solidly explained by changes of global
xcitability in a whole brain model. This model also suggests that the
aintenance of consciousness is dependent on graph theoretical proper-

ies of individual brain areas, making conscious experience vulnerable
o lesion of specific nodes. 

. Methods 

.1. Human study 

.1.1. Participants 
For this study, approved by the local ethics committee, we collected

ata from 63 young healthy subjects, who provided written informed
onsent and were reimbursed for their participation. Eight subjects re-
ained awake during scanning and were not included in the study, leav-

ng five subjects who reached at least N1 sleep (36 females, mean ± SD
ge of 23.4 ± 3.3 years). Simultaneous EEG-fMRI was recorded in the
vening after a regular sleeping schedule. For this study, we only in-
luded 18 participants, who went through all three sleep stages (N1, N2
nd N3). 

.1.2. Acquisition of fMRI and EEG and artifact processing 
We simultaneously recorded EEG via a cap (modified BrainCapMR,

asycap) and fMRI (1505 vol of T2 ∗ -weighted echo planar images,
R/TE = 2080 ms/30 ms, matrix 64 × 64, voxel size 3 × 3 × 2 mm 

3 ,
istance factor 50%; FOV 192 mm 

2 ) with a 3T Siemens Trio scanner.
olysomnography was performed, recording chin and tibial EMG, ECG,
OG bipolarly (sampling rate 5 kHz, low pass filter 1 kHz) and EEG with
0 channels using FCz as the reference (sampling rate 5 kHz, low pass
lter 250 Hz); We recorded pulse oxymetry and respiration with sen-
ors from the Trio (sampling rate 50 Hz) and MR scanner compatible
evices (BrainAmpMR + , BrainAmpExG; Brain Products), which aided
leep scoring during fMRI recordings ( Jahnke et al., 2012 ). MRI and
ulse artifacts were removed with the average artifact subtraction (AAS)
ethod ( Allen et al., 1998 ) as implemented in Vision Analyzer2 (Brain
roducts) and thereafter by objective (CBC parameters, Vision Analyzer)
CA-based rejection of residual artifact components, after which the EEG
ad a sampling rate of 250 Hz ( Jahnke et al., 2012 ). Likewise, motion
rtifacts in the EEG were removed based on ICA using the Vision An-
lyzer2 software. An expert scored sleep stages manually according to
he AASM criteria ( Iber et al., 2007 ). 

.1.3. fMRI preprocessing 
Using Echo planar imaging (EPI) data were realigned, normalized

MNI space), spatially smoothed (Gaussian kernel, 8-mm 

3 full width
t half maximum) with the Statistical Parametric Mapping software
SPM8, www. fil.ion.ucl.ac.uk/spm) and resampled to a 4 × 4 × 4 mm 

3 

esolution for artifact removal. Then we regressed out cardiac, respi-
atory (both estimated using the RETROICOR method ( Glover et al.,
000 )) and motion-induced noise. For data analysis, the data were first
andpass filtered in the range of 0.01–0.1 Hz ( Cordes et al., 2001 ) us-
ng a second order Butterworth filter or between 0.07 and 0.09 Hz to
ompare empirical with model data (see below). All voxels were then
rojected onto the automated anatomic labeling (AAL) atlas ( Tzourio-
azoyer et al., 2002 ) (90 areas, 76 cortical regions, 14 subcortical re-

ions, excluding cerebellar regions, Supplementary Table 1) by averag-
ng their time courses within each AAL cluster. Alternatively, we also
omputed the first principal component of the voxel time-series and
ompared it with the averaged time course. The results show that the
wo time series are highly similar (Supplementary Fig. 1A) with a cor-
elation coefficient of 0.96 ± 0.04 (Supplementary Fig. 1B). 

.1.4. Anatomical dataset acquisition in humans with DTI 
The human SC-matrix was obtained at Aarhus University, Denmark

sing DTI (3T Siemens Skyra scanner) in 16 healthy right-handed par-
icipants (11 men and five women, mean age: 24.75 ± 2.54). Subjects
ith a history of psychiatric or neurologic disorders were not included

n this study. The T1 acquisition of the structural MRI was performed
ith a voxel size of 1 mm 

3 , a reconstructed matrix size of 256 × 256,
cho time (TE) of 3.8 ms and repetition time (TR) of 2300 ms. The DTI
ata were acquired using TR = 9000 ms, TE = 84 ms, flip angle = 90°,
econstructed matrix size of 106 × 106, voxel size of 1.98 × 1.98 mm
ith slice thickness of 2 mm and a bandwidth of 1745 Hz/Px. Moreover,

he data collection was carried out with 62 optimal nonlinear diffusion
radient directions at b = 1500 s/mm 

2 and roughly one nondiffusion
eighted image (DWI; b = 0) per 10 diffusion-weighted images was ob-

ained. In addition, DTI images were taken with opposing phase encod-
ng directions (anterior to posterior or posterior to anterior). Similar to
he fMRI data, we parcellated the structural scans into 90 areas using the
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AL template. We used the linear registration tool from the FSL toolbox
 www.fmrib.ox . ac.uk/fsl, FMRIB ( Jenkinson et al., 2002 )) to coregister
he EPI image to the T1-weighted structural image. The T1-weighted
mage was coregistered to the T1 template of ICBM152 in MNI space
 Collins et al., 1994 ). The resulting transformations were concatenated
nd inversed and further applied to warp the AAL template ( Tzourio-
azoyer et al., 2002 ) from MNI space to the EPI native space, where

nterpolation using nearest-neighbor method ensured that the discrete
abeling values were preserved. SC maps for each participant using the
TI data were acquired and processed based on the two datasets with
ifferent phase encoding. To construct the SC matrix, we estimated con-
ections between nodes defined by the AAL atlas using probabilistic
ractography and averaged across subjects. 

.2. Monkey study 

.2.1. Animals 
Three rhesus macaques ( Macaca mulatta , 1 male, 2 females, weight

–8 kg, age 6–12 years) were tested for each arousal state (awake, mod-
rate propofol sedation, deep propofol anesthesia). All procedures were
onducted in accordance with the European convention for animal care
86–406) and the National Institutes of Health’s Guide for the Care and
se of Laboratory Animals. Macaque studies were approved by the in-

titutional Ethical Committee (protocols #10-003). 

.2.2. Propofol anesthesia protocol 
Detailed methodology was described in our previous studies

 Barttfeld et al., 2015 ; Uhrig et al., 2018 ). The propofol anesthesia lev-
ls (moderate and deep anesthesia) were defined using a clinical score,
he monkey sedation scale (spontaneous movements, response to juice
resentation, shaking/prodding, toe pinch and corneal reflex), deter-
ined at the beginning and the end of each scanning session and contin-
ous electroencephalography (EEG) monitoring ( Barttfeld et al., 2015 ;
hrig et al., 2018 ). Under deep propofol anesthesia (general anesthesia),
onkeys did not respond to any stimuli. EEG Propofol anesthesia levels
ere defined as follows ( Barttfeld et al., 2015 ; Uhrig et al., 2018 ): level
, awake state, posterior alpha waves and anterior beta waves; level 2,
ight propofol sedation, increasing of the amplitude of alpha waves and
nterior diffusion of alpha waves; level 3, moderate propofol sedation,
iffuse and wide alpha waves, and anterior theta waves; level 4, deep
ropofol anesthesia (general anesthesia), diffuse delta waves, waves of
ow amplitude and anterior alpha waves (10 Hz); level 5, very deep se-
ation (deeper then level of general anesthesia), burst suppression. 

The awake monkeys were trained to be injected with an intravenous
ropofol bolus (5–7.5 mg/kg i.v.; Fresenius Kabi, France) to induce anes-
hesia, followed by target-controlled infusion (Alaris PK Syringe pump,
areFusion, CA, USA) of propofol (moderate propofol sedation: 3.7–4.0
icrog/ml; deep propofol anesthesia 5.6–7,2 microg/ml) based on the

Paedfusor’ pharmacokinetic model ( Absalom and Kenny, 2005 ). During
oderate propofol sedation sessions, a muscle-blocking agent was co-

dministered (cisatracrium, 0.15 mg/kg bolus i.v. followed by continu-
us i.v. infusion at a rate of 0.18 mg/kg/h, GlaxoSmithKline, France)
o prevent artifacts related to potential movements during the fMRI
cquisition. Monkeys were intubated and ventilated. Heart rate, non-
nvasive blood pressure, oxygen saturation, respiratory rate, end-tidal
O2, cutaneous temperature was monitored (Maglife, Schiller, France)
nd recorded online (Schiller, France) ( Barttfeld et al., 2015 ; Uhrig et al.,
018 ). Temperature, hemodynamic and ventilation parameters were
ept constant during each experiment ( Barttfeld et al., 2015 ; Uhrig et al.,
018 ). 

.2.3. Awake state protocol for the monkeys 
For the awake state acquisitions, monkeys were implanted with an

R-compatible headpost and trained to sit in the sphinx position in a
rimate chair ( Uhrig et al., 2014 ; Wang et al., 2015 ). Monkeys sat in the
ark inside the MRI without any task ( Barttfeld et al., 2015 ; Uhrig et al.,
018 ). 

.2.4. Monkey fMRI acquisition 
Monkeys were scanned with a customized single transmit-receiver

urface coil on a 3-T horizontal scanner (Siemens Tim Trio, Erlangen,
ermany). Before each scanning session, monocrystalline iron oxide
anoparticles (MION, Feraheme; AMAG Pharmaceuticals; 10 mg/kg,
.v.) were injected into the monkey’s saphenous vein ( Barttfeld et al.,
015 ; Uhrig et al., 2018 ). Each functional scan contained 500 gradient-
choplanar whole-brain images (TR = 2400 ms; TE = 20 ms; and 1.5-
m 

3 voxel size;). 27 awake runs, 25 moderate propofol sedation runs
nd 31 deep propofol anesthesia runs were acquired. 

.2.5. Monkey fMRI preprocessing 
Monkey fMRI images were reoriented, realigned and rigidly co-

egistered to the anatomical template of the monkey Montreal Neuro-
ogical Institute space (MNI) ( Frey et al., 2011 ; Uhrig et al., 2014 ). We
lso regressed out movement parameters resulting from rigid body cor-
ection for head motion. We removed the global signal from the images
o minimize the potential respiratory and cardiac effects associated with
he propofol administration. Voxel time series were parcellated accord-
ng to the Paxinos atlas ( Paxinos et al., 2009 ) (see Supplementary Table
), encompassing 432 cortical and subcortical areas. The signals were
hen band-pass filtered between 0.01 and 0.1 Hz or in the range of 0.07–
.09 Hz to compare empirical with model data (see below). 

.2.6. Anatomical dataset acquisition in monkeys with diffusion tensor 
maging (DTI) 

DTI data collected in 271 young rhesus macaques in the age-range
f 0.7370 to 4.2027 years ( Adluru et al., 2012 ) were used for the cre-
tion of a macaque SC matrix. Data collection in macaques was per-
ormed using protocols approved by the University of Wisconsin In-
titutional Animal Care and Use Committee (IACUC). Before undergo-
ng MRI acquisition, the monkeys were anesthetized using ketamine
15 mg/kg). MRI scanning was performed using a GE SIGNA 3T scan-
er. MR scanning was performed using a two-dimensional, echo-planar,
iffusion-weighted, spin-echo sequence with the following parameters:
epetition time = 10 s; echo time = 77.2 ms; field of view = 14 cm;
atrix = 128 × 128; 2.5 mm thick contiguous slices; echo-planar echo

pacing = 800 𝜇s. Diffusion imaging ( b = 1000 s/mm 

2 ) was performed
n 12 non-collinear directions with one non-diffusion weighted image
nd the acquisition was repeated six times and averaged. The volumes
ere eddy-current corrected using FSL and then brain extraction was
erformed in a semi-automated manner ( Adluru et al., 2012 ). Follow-
ng spatial normalization of the single-monkey DT images to monkey
NI space ( Frey et al., 2011 ) using DTI-TK, an advanced DTI spatial

ormalization tool ( http://www.nitrc.org/projects/dtitk ), a DTI tem-
late was computed as their Log-Euclidean mean. A brain parcellation
ith 432 distinct areas in MNI space, defined according to the Pax-

nos atlas ( Paxinos et al., 2009 ) was used for probabilistic tractogra-
hy ( Behrens et al., 2003 ). Accordingly, an SC matrix, representing the
trength of connectivity between pairs of network nodes (i.e., atlas re-
ions), was estimated. 

.3. Analysis of global synchronization 

For the analysis of global synchronization we first extracted discrete
vents from all empirical and modeled data by assigning a time stamp
o each positive peak of the z-scored data, similar to previous studies
 Deco et al., 2017b ; Tagliazucchi et al., 2012 ). As a control we also
epeated subsequent analysis on events that were based on negative
eaks, which yielded the same results (Supplementary Fig. 1A-B). Next,
e chunked the data into sliding windows with different sizes ranging
etween 5 and 50 TR. The window was advanced in steps of 1TR. To
uantify global synchronization, we took advantage of the Fano factor,

http://www.fmrib.ox
http://www.nitrc.org/projects/dtitk
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hich was used in classical point process analysis to assess the presence
f globally synchronized spiking activity in E-I networks ( Brunel and
akim, 1999 ; Hahn et al., 2017 ; Kumar et al., 2008 ). To this end, we
alculated the sum of all events found within 1 TR of a window, which
esulted in a sequence of counts with length equal to the window size.
he Fano factor (FF) of the count sequence was then derived based on
he following relationship: 

 𝐹 = 

𝑣𝑎𝑟 ( 𝑐𝑜𝑢𝑛𝑡𝑠 ) 
𝑚𝑒𝑎𝑛 ( 𝑐𝑜𝑢𝑛𝑡𝑠 ) 

(1)

The value of the Fano factor gives insight into the correlation struc-
ure of the events within each time window. FF ~ 1 indicates that all
he events appear independently from each other and seem to have been
rawn from a random Poisson process (Fig. 1F). In the presence of large-
cale synchronization of events across many brain areas, the FF increases
trongly (FF >> 1), as the synchrony now confines most events to a short
eriod of time (1–2 TRs), which is followed by a period with only few
vents due to synchronization of the negative peaks. FFs were computed
or each time window and summarized in a FF distribution. To quantify
he overall level of global synchronization, we fitted a Gamma distribu-
ion which is defined as follows: 

 ( F , β, θ) = 

F β−1 e − θ∕F 
Γ( β) 

; 𝜃𝛽 β > 0 , θ > 0 (2)

here 𝛽 denotes the shape parameter, 𝜃 the scale parameter and Γ repre-
ents the gamma function. Subsequently, we used the shape parameter
to quantify the level of consciousness by assigning a single number to

ach condition that reflects the overall distribution of large-scale syn-
hrony. 

.4. Statistical analysis 

To test for significant differences between beta values and other met-
ics across different consciousness conditions at the group level, we ap-
lied a jackknife approach and created N datasets ( N = number of sub-
ects in humans and trials in monkeys) for each vigilance condition,
ach time concatenating N-1 subjects/trials and leave one out. The new
atasets were then assessed using a one-way repeated measure (rm)
NOVA and posthoc tests with Bonferroni correction. The significance

evel was set to p < 0.05. In case the sphericity ( 𝜀 ) assumption of the
m-ANOVA was violated, as assessed by a Mauchly test, the p -values and
egrees of freedom were adjusted by the Huynh-Feldt estimate of 𝜀 . To
ompute the goodness of fit for the gamma distributions fitted to the
ano factor distributions, we used a one-sample Kolomogorov-Smirnov
est. 

.5. Functional connectivity 

To quantify statistical dependencies between empirical and mod-
led fMRI time series, we calculated the Pearson correlation coefficient
cross all brain area pairs, which were subsequently averaged for each
onsciousness condition or Fano factor state. 

.6. SC-FC relationship 

The structure-function relationship for each consciousness condition
as assessed by computing the Pearson correlation coefficient between

he structural and functional connectivity matrices (human and mon-
ey) for different consciousness levels or Fano factor states. 

.7. Integration 

We useed an integration measure based on the largest connected
omponent of the FC matrix, as defined previously ( Deco et al., 2015 ). As
 first step, the FC matrix was binarized by setting connections above a
hreshold 𝜃 to 1 and discarding connections below the threshold, which
as a range between 0 and 1. We then searched for the largest connected
ubgraph, i.e. the nodes that are connected without further connections
o the remaining nodes of the entire matrix. The size of the largest com-
onent (i.e. the number of nodes pertaining to the subgraph) was cal-
ulated for each 𝜃 and integrated across all tested thresholds. To obtain
ntegration values between 0 and 1, the result was normalized by the
umber of areas N and integration steps. This integration measure was
alculated for all consciousness levels and Fano factor states. 

.8. Modularity 

The activity during different consciousness levels (or Fano factor
tates) is organized into functional communities. Therefore, to quan-
ify the level of segregation in the functional connectivity (FC) matrices
e performed a community detection procedure on them. Partitioning

he networks into clusters was performed using the Louvain method,
hich optimizes the weighted Newman modularity ( Newman, 2006 ).
his measure evaluates the “goodness ” of the partition, giving insights
o what extent the FC matrices can be broken down into nonoverlap-
ing subnetworks. Optimization of modularity implies that the connec-
ivity strength within a group of brain areas is maximized, while the
trength between different groups is minimized. Thus, modularity pro-
ides a quantitative indication of the level of functional segregation in
he FC. This metric was applied to different consciousness conditions
nd Fano factor states. 

.9. Computational whole-brain model 

To study the mechanisms behind global synchronization, we em-
loyed a whole-brain model consisting of either 90 nodes, mimicking
he parcellation of areas in human data, or 432 nodes, corresponding
o the empirical monkey parcellation. The modeled brain areas were
onnected based on the patterns of long-range connections that were
xtracted by DTI from humans and monkeys. We used the measured
ber density as a proxy for the connectivity strength in the model. To
imulate the dynamics of the local fMRI signal, we used the normal-
orm of the Hopf bifurcation ( Deco et al., 2017a , 2017b ; Hahn et al.,
019 ), which corresponds to a transition from a focus equilibrium with
amped, noisy oscillations to a limit cycle behavior with self-sustained
scillations, similar to the behavior of networks of excitatory and in-
ibitory neurons ( Brunel, 2000 ). The dynamics is described by the fol-
owing set of coupled differential equations: 

d x j 
dt 

= 

dRe 
(
z j 
)

dt 
= 

[
a j − x 2 j − y 2 j 

]
x j − ω j y j + G 

∑
i 
C ij 

(
x i − x j 

)
+ βηj ( t ) (3)

d y j 
dt 

= 

dIm 

(
z j 
)

dt 
= 

[
a j − x 2 j − y 2 j 

]
y j + ω j x j + G 

∑
i 
C ij 

(
y i − y j 

)
+ βηj ( t ) (4)

here 𝛽𝜂𝑗 represents additive Gaussian noise with standard deviation
= 0.01 . ω j is the intrinsic node frequency, which was translated to

he BOLD frequency 𝑓 𝑗 via the following expression: f j = 

ω j 
2π . The BOLD

requency for each model node was set to 0.085 Hz and filtered be-
ween 0.075 and 0.095 Hz in the human data simulations, or to 0.04 Hz
n the monkey model with filtering between 0.03 and 0.05 Hz. These
lters were necessary to remove high frequency noise imposed by the
aussian noise and allow comparison with empirical Fano factor distri-
utions. These model frequencies were chosen, since the empirical data
ltered around the same frequency bands can reproduce the same Fano

actor distributions that are seen with a more broadband filtering (0.01
0.1 Hz). The variable x j was used to model the local fMRI signal. The
arameter G scales each connection in the anatomical connectivity ma-
rix by a constant value, which was set to 0.1 in this study. For each
onsciousness level we performed a simulation of 100 min. For the sin-
le trial analysis we simulated 18 trials of 250 TR for each consciousness
tate of the human model. For the monkey model we simulated 21, 26
nd 31 trials of 250 TR for the awake, light and deep anesthesia case,
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espectively. These simulations were compared with ten long trials of a
uration of 10,000 TR. 

In an unconnected node, the dynamical behavior is determined by
he bifurcation parameter 𝑎 𝑗 , which exhibits a supercritical Hopf bifur-
ation at a j = 0 . This means that the activity transitions from a stable fo-
us equilibrium, governed by resonance and noisy oscillations at 𝑎 𝑗 < 0 ,
o a stable limit cycle at 𝑎 𝑗 > 0 with self-sustained oscillations. However,
s soon as a node is embedded in a large scale network, the impinging
onnections change the bifurcation point to negative values. In order
o find 𝑎 𝑗 at the bifurcation for the large-scale anatomical network of
he human and monkey DTI data, we took advantage of the fact that
he Fano factor distributions (see above) for small window sizes (5 TR),
ollowed an exponential distribution when 𝑎 𝑗 was set below the bifurca-
ion ( Fig. 2 B). As soon as 𝑎 𝑗 > bifurcation, the network produced global
scillations, which was visible as a bump in the FF distribution and thus
ndicated a deviation from the exponential FF decay. We thus defined
he bifurcation point as the value of 𝑎 𝑗 , where the exponential fit, as
ssessed by a Kolmogorov-Smirnov distance, increased to values above
.1 ( Fig. 2 C). The 𝑎 𝑗 value at the bifurcation point was ~ -0.66 for the
uman and ~ -0.33 for the monkey. SC matrices where then normalized
o zero ( Fig. 2 D-G). To fit the model to the data, we performed a grid
earch to find 𝑎 𝑗 , where the distance | 𝛽emp ‒ 𝛽mod | of the empirical and
odeled FF distributions was minimized. 

.10. Model lesion analysis 

To study the role of individual brain areas for model dynamics and
lobal synchronization, we conducted lesion simulations by setting the
ifurcation parameter of single nodes j to a value of a j = − 2.65 in hu-
ans and a j = − 1.31 for monkeys, while keeping the other nodes at

alues that correspond to the awake state ( − 0.663 for humans, − 0.329
or monkeys). The impact of a single node lesion on global synchroniza-
ion was then quantified by the lesion index 𝜆, which we defined as
ollows: 

= 

𝛽𝑎𝑤𝑎𝑘𝑒 

𝛽𝑙𝑒𝑠𝑖𝑜𝑛 
(5)

here 𝛽𝑎𝑤𝑎𝑘𝑒 represents the beta value of the FF distribution found in
he awake state (human or monkey) and 𝛽𝑙𝑒𝑠𝑖𝑜𝑛 indicates the beta value
fter the node lesion with a simulation time of 10 min. The lesion index
ranges between 0 and 1, and reflects the fraction of global synchrony

fter the lesion as compared to the awake state in either monkey or
uman data models. Thus, 𝜆~1 indicates that the global synchronization
s barely affected by the lesion, while 𝜆<< 1 is the result of a strong
nfluence of a given node on global dynamics. 

.11. Graph theoretical analysis 

The human and monkey SC matrices were studied using several
raph analysis tools. A rich club was identified in both SC networks.
ich-club identification implies the calculation of the k -density, a re-
ursive calculation that computes the density of the remaining network
fter all nodes with degree k’ ≤ k have been removed, until no nodes
re left ( Zamora-López et al., 2010 ). The case k = 0 corresponds to the
ensity of the original network. If the k -density grows with k, it means
hat the nodes with largest degree are densely interconnected with each
ther. If the k -density decays, it means that the nodes with largest degree
re indeed not connected with each other. The two SC networks display
 growing k-density function and clearly contain a rich-club, taken as
he remaining subset of hubs with node degree k’ > 47 in humans and
’ > 108 in monkeys. 

Communicability (M) is a graph metric that quantifies the “influ-
nce ” one node exerts over another given the path structure of the net-
ork ( Estrada and Hatano, 2008 ). It accounts for the fact that (i) in-

ormation flows along all possible paths, not only across the shortest
nes, and (ii) that shorter paths are more relevant, while they influence
ecays with the length of the path ( Bettinardi et al., 2017 ). Given the ad-
acency matrix A of the matrix, communicability is defined as the matrix
xponential, e A , which can be decomposed as the power series: 

 = 𝑒 𝐴 = 1 + 𝐴 + 

𝐴 

2 

2! 
+ 

𝐴 

3 

3! 
+ 

𝐴 

4 

4! 
+ … , 

here the powers (A 

n ) ij represent the number of paths of length n that
un from node i to node j. The communicability of every node, taken
s the column sum of the matrix C, was then correlated with the lesion
ndex. 

To quantify the asymmetry of communicability between the two
emispheres, we first computed communicability of a given node for
he right (r) and left hemisphere (l) separately and then calculated the
symmetry (S) according to the following expression: 

 𝑟𝑙 = 

||M l − M r ||
M l + M r 

(6) 

Asymmetry values range between 0 and 1, such that 𝑆 𝑟𝑙 ∼ 1 indi-
ates full asymmetry and 𝑆 𝑟𝑙 ∼ 0 complete symmetry. 
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