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a b s t r a c t 

Brain dynamics depicts an extremely complex energy landscape that changes over time, and its characterisation 

is a central unsolved problem in neuroscience. We approximate the non-stationary landscape sustained by the 

human brain through a novel mathematical formalism that allows us characterise the attractor structure, i.e. the 

stationary points and their connections. Due to its time-varying nature, the structure of the global attractor and the 

corresponding number of energy levels changes over time. We apply this formalism to distinguish quantitatively 

between the different human brain states of wakefulness and different stages of sleep, as a step towards future 

clinical applications. 
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. Introduction 

High-dimensional complex systems usually exhibit a large number

f attractors or stable steady states, and are thus far from thermody-

amic equilibrium. The energy or attractor landscape (AL) characterizes

ll these states, limits the possible future behavior of the system, defines

tates with greater or smaller probability, and establishes the propensity

f a system for more or less probable changes. 

In Engineering and Mathematics, the AL can be represented within

he Dynamical System Theory (DST) by means of a Lyapunov function,

hile in Physics the so-called energy landscape is usually expressed by

eans of a Potential function. Progress has recently been made in con-

ecting both points of view ( Yuan et al., 2014; Zhou et al., 2012 ). 

However, to date this has not been applied to brain dynamics. Here,

e develop a novel mathematical framework that allows us to capture

or the first time the non-stationarity character of the attractor landscape

f brain dynamics in different brain states. 

A dynamical system is usually described by ordinary or partial dif-

erential equations -continuous time- or difference equations -discrete

ime-. Generally, the phase space of the system comprises the values of
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he dynamical variables. In DST, the global attractor is identified with

 compact invariant subset of the phase space ( Hale, 1988; Robinson

t al., 2001 ). The global attractor determines the global asymptotic be-

avior of a dynamical system , i.e. it describes the past and the future of

he system. The structure of the global attractor can be given in terms

f isolated invariant subsets (typically, stationary points or periodic or-

its) and the trajectories in phase space connecting them ( Bortolan et al.,

020; Carvalho et al., 2012 ). According to DST, if the dynamical system

upports a Lyapunov function, all isolated invariant subsets of the global

ttractor can be ordered by their level of attraction or stability. Then, a

equence of energy levels can then be defined ( Aragao-Costa et al., 2012 ),

nd, for instance, dynamical systems with billions of stationary points

n which detailed descriptions of the global attractor and the AL would

ot be available, can be characterized by just a few tens of energy lev-

ls. Indeed, the number of energy levels (NoEL) allows us to characterize

he attractor landscape without having to calculate the explicit expres-

ion of a Lyapunov function or to estimate the Potential function (see

aterials and Methods for details). 

Traditional DST analysis focuses on the existence and local proper-

ies of a given steady state, but it does not explain the global dynamics
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n complex systems in which transitions between attractors constitute

he characteristic behavior. Brain dynamics do not converge or stabi-

ize around a fixed set of invariants and might be described as a con-

inuous flow of quick and irregular oscillations ( Deco and Jirsa, 2012;

olos et al., 2016 ). Here, we propose to characterize the transitions be-

ween attractors by means of a non-stationary attractor landscape , that

s, how the set of steady states and their connections evolve with time.

hus, a mathematical method to approximate the non-stationary attrac-

or landscape is developed. To do this, we must rethink one of the central

uestions in computational neuroscience: the relationship between the

uman brain as a complex empirical system and the theoretical models

xpressed by means of equations. Usually, the parameters of the models

re fitted in order to simulate general characteristics of the brain such as

ts functional connectivity or its metastability. However, whatever the

alues of the fitted parameters are, the attractor landscape offered by

hese models is static and the empirical transitions between attractors

re still not well characterized. 

Here we propose a new relationship between the model and the em-

irical data by means of the model transform (MT), which constitutes

 useful tool to approximate the non-stationary landscape of complex

ystems. The MT is a newly developed concept ( Galadí, 2020 ) which

llows for the application of simple theoretical models to complex em-

irical systems in each short interval of time, and can be seen as a gen-

ralization of trivial concepts (such as the instantaneous velocity, the

urvature or the torsion) when trivial models (the uniform motion in

 straight line, the circumference or the helix) are applied in a small

eighbourhood of the trajectory (see Materials and Methods for more

etails). 

In summary, we search for the simplest model that will help us find

n answer to the questions “towards which state is the brain attracted to

t a given time point? ” and “how do the corresponding attractor land-

cape surroundings look like? ”, and we do so with help of DST. In the

ection Materials and Methods, we show that the model obtained is well

nown and called the Lotka-Volterra (LV) model. 

Although it is not our intention to model neural activity, the LV

quations have been previously used in neuroscience for this purpose:

 LV equation for mean firing rate was derived from the conventional

embrane dynamics of a neural network with lateral inhibition and

elf-inhibition in Fukai and Tanaka (1997) ; LV equations have been

sed to generate reproducible transient sequences in neural circuits

 Afraimovich et al., 2004 ). It has been also shown that LV equations are

apable of representing switching dynamics between different states of

eural networks ( Cardanobile and Rotter, 2011 ). The joint activity dy-

amics of excitatory and inhibitory populations has been analyzed em-

loying a pair of mutually interacting nonlinear differential equations.

n absence of a voltage leak for individual neurons and for negligible

ynaptic transmission delay, these equations take the form of LV equa-

ions (Lagzi et al., 2019; Lagzi and Rotter, 2015) . 

The Lotka-Volterra Transform (LVT) is the particular case of the MT

hen the harnessed model is the LV model. Thus, assuming time-varying

rowth rate parameters in the LV equations we obtain a time-varying

L (see Materials and Methods). The LVT can also be seen as a mathe-

atical operator defined to exactly reproduce the empirical BOLD fMRI

ignals by finding the growth rate function that tracks their evolution

ver time. However, it is worth noticing that the equations are used to

pproximate the temporal evolution of the global attractor and the non-

tationary attractor landscape, but not to model the temporal evolution

f the system itself. 

In order to explain the difference between modeling and the model

ransform, it should be underlined that each specific MT uses a specific

odel, but it is not modeling the system. Therefore, we do not attempt

o make predictions of the dynamics in the short or long term. MT re-

ounces the predictive power in exchange for defining new variables.

ere, the final objective of MT is to define new measures, in this case

easures of consciousness. MT is a generalization of the fact that there

re simple models that extract certain information from a trajectory.
2 
ne trivial example is the circumference, the simplest model which al-

ows to calculate the curvature (the inverse of the radius of curvature)

f any smooth curve at any point. But this does not mean that the whole

mooth curve is shaped by a circumference. In this work, we do not

tate that the BOLD signals follow a LV system of differential equations.

e just use a transformation to get well characterized non-stationary

ttractors. Non-stationary attractors should distinguish between awake

nd deep sleep states as a first partial validation to create a new measure

f consciousness. 

This innovative view relies on the fact that we are computing an

symptotic attractor at every time instant, i.e., the global attractor the

ystem would achieve in the limit assuming a particular value of the

rowth rate parameter of the LV system. This is a more dynamical view

f the problem not previously used in the literature, which let us adapt

o the rich behaviour of brain dynamics. 

Precisely by characterizing the AL by means of the number of energy

evels, we are able to identify the different brain states. Over the last cou-

le of years, there has been an increasing interest in trying to identify the

ecessary and sufficient properties of different brain states ( Deco et al.,

019 ). Yet, thus far, there has been precious little progress in developing

he necessary mathematical tools. Here, we propose the innovative non-

tationary landscape approach to be assessed distinguishing between

ifferent human brain states as measured with neuroimaging. Develop-

ng such a framework would be a major step forward, potentially leading

ot only to a deeper understanding of the AL in different brain states but

lso to create sensitive and specific biomarkers characterising the brain

tates of individuals in wakefulness, deep sleep, anesthesia, or different

evels of coma ( Deco and Kringelbach, 2014 ). Obviously, this formalism

s not needed to discriminate wakefulness and deep sleep, but the AL

s of interest in itself. Our main aim is not to provide a better method

o discriminate or to describe states of awake and sleep than those al-

eady existing in the scientific literature, but to validate, for the first

ime, a theoretical proposal based on the AL for the study of states of

onsciousness. Our method is justified as a first attempt to approximate

he state the brain is drawn to at each time point and to calculate the

orresponding non-stationary AL. In this sense, we are also interested

ere in characterising human sleep as a previous step towards future

linical applications to coma patients. 

Human sleep is traditionally subdivided into different stages that al-

ernate in the course of the night ( Nir et al., 2013 ), mainly non-rapid-

ye-movement (NREM) and rapid-eye-movement (REM) sleep. NREM

s further subdivided into light sleep (N1), NREM sleep stage (N2) and

REM deep sleep stage (N3). From N1 to N3, traveling brain waves be-

ome slower and more synchronized. 

In this study, we aim to 1) associate brain states with the average and

ariability of the number of energy levels (NoEL) of the AL across time

nd to 2) demonstrate that this mathematical formalism can be applied

o distinguish quantitatively and rigorously between the different brain

tates of wakefulness and deep sleep using state-of-the-art neuroimaging

ata collected from healthy human participants. 

.1. Motivations 

The first motivation for this work is based on the thesis that the fun-

amental information of a dynamical system is expressed in the struc-

ure of its global attractor. One consequence of this thesis is that, in

he case of the human brain as a dynamical system, the structure of the

ttractor could be related to the corresponding states of consciousness.

ence the importance of finding a method to approximate the attractor

f brain dynamics and its testing in different states of consciousness. 

Note that we go from BOLD fMRI signals to a flow of ALs and its

bstract structures. We consider of high interest to show that this flow

f structures is informative about states of consciousness. Thus, another

bjective of our method is to define new measures of consciousness. Al-

hough we are not trying to improve other current methodologies for

lassification to distinguish among states of consciousness, we believe
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Fig. 1. Flowchart illustrating the methods. For this study, we used an automated 

anatomical labelling (AAL) atlas. The Lotka-Volterra transform, constrained by 

the whole-brain model, is a mathematical operator that calculates the growth 

rate as a function that exactly reproduces the filtered empirical BOLD fMRI sig- 

nals. Then, solving the linear complementarity problem (LCP) we calculate the 

globally asymptotically stable stationary solution (GASS) and the number of 

energy levels (NoEL) of the attractor landscape at each time instant. In order 

to assess how different the distributions of the NoEL for awake and for deep 

asleep are, we calculate a statistical hypothesis test (Wilcoxon test) and the 𝐽 ind 

(see Supplementary Materials for a more detailed flowchart) before classifica- 

tion. 
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S  
his new perspective opens the door to further detailed studies, so that

t could serve as the seminal work for a full research plan. The novelty

f this approach is essentially a first transformation of BOLD data into

 non-stationary description of the brain attractor landscape by a dy-

amical system approach. Even beyond neuroscience and on the side of

athematical DST, this way to interpret attractors as an instantaneous

bject is also new. 

Another of the motivations for this work is the search for a method to

alculate the empirical “ghost ” attractors of the resting (and sleep) state

uggested in Deco and Jirsa (2012) , Vohryzek et al. (2020) . The resting

tate dynamics needs to be explained, and these attractors would corre-

pond to distinct foci of high activity in particular brain areas. According

o Deco and Jirsa (2012) , at the edge of the transition from resting state

o task context the local attractors would not exist as stable fixed points

et, since they are either saddle points, or regimes with close to zero flow

n the phase space. However, as a possible neurobiological explanation

f the resting state dynamics, these states could be easily stabilized when

eeded in a given task context or for a given function. We believe that

ur new formalism could be used to detect empirical ghost attractors

ince, in a non-stationary AL, stable attractors are never reached. Thus,

hey are candidates to play the role proposed in Deco and Jirsa (2012) in

he sense that brain dynamics seem to be attracted to them, which can

urther be interpreted as latently attracting the system and potentially

tabilizable in transitions from resting state to specific tasks. 

. Materials and methods 

.1. Overview of the method 

We aim to characterize the different brain states of wakefulness and

eep sleep by approximating the non-stationary attractor landscape (AL)

s shown in Fig. 1 with the flowchart of steps. Briefly, first we enter in
3 
he Lotka-Volterra (LV) equations 

̇  𝑖 = 𝑢 𝑖 

( 

𝛼𝑖 − 𝑢 𝑖 + 

𝑛 ∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑢 𝑗 

) 

, 𝑖 = 1 , … , 𝑛, 

he structural connectivity matrix (SCM) between 𝑛 = 90 standardized

rain areas through an automated anatomical labelling (AAL) atlas

 Tzourio-Mazoyer et al., 2002 ) as the 𝛾𝑖𝑗 parameters, which are obtained

y applying tractography algorithms to diffusion magnetic resonance

maging (dMRI). 

Second, we applied the Lotka-Volterra Transform (LVT) 

𝑖 ( 𝑡 ) = 

�̇� 𝑖 ( 𝑡 ) 
𝑢 𝑖 ( 𝑡 ) 

+ 𝑢 𝑖 ( 𝑡 ) − 𝑔 

𝑛 ∑
𝑗=1 

𝛾𝑖𝑗 𝑢 𝑗 ( 𝑡 ) , 𝑖 = 1 , … , 𝑛. 

o calculate the growth rate 𝛼( 𝑡 ) that reproduces exactly the filtered em-

irical BOLD fMRI signals 𝑢 𝑖 ( 𝑡 ) . Both 𝑢 ( 𝑡 ) and �̇� ( 𝑡 ) are empirical values

n the form of discrete time series. The global coupling strength param-

ter 𝑔 will be fitted to balance information from the proper region 𝑖 ,
�̇� 𝑖 ( 𝑡 ) 
𝑢 𝑖 ( 𝑡 ) 

+ 𝑢 𝑖 ( 𝑡 ) , and information from the rest of the brain 
∑𝑛 

𝑗=1 𝛾𝑖𝑗 𝑢 𝑗 ( 𝑡 ) . 
Third, we characterize the corresponding attractor landscape com-

uting the globally asymptotically stable stationary solution (GASS) and

he number of energy levels (NoEL) at each time instant 𝑡 ∗ solving 

̇  𝑖 = 𝑢 𝑖 

( 

𝛼𝑖 ( 𝑡 ∗ ) − 𝑢 𝑖 + 

𝑛 ∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑢 𝑗 

) 

, 𝑖 = 1 , … , 𝑛. 

Finally, in order to assess differences in the ALs between wakefulness

nd deep sleep, we use the non-parametric Wilcoxon signed-rank test

nd the J index. We consider two quantitative descriptors of the ALs,

he time average of NoEL ( 𝑞 ) and the standard deviation of NoEL ( 𝜎𝑞 ),

oth calculated for each participant in the two brain states. We obtained

he 𝑝 -value of a paired and two-sided test for the null hypothesis that

he distribution of average NoEL (or their standard deviation) presented

he same median during awake vs. deep asleep subjects. In addition, we

efined the following measure 𝐽 ind : 

 ind = 

𝑛𝑠 ∑
𝑖 =1 

( 𝑞 𝑎𝑠,𝑖 − 𝑞 𝑎𝑤,𝑖 ) 

𝑛𝑠 ∑
𝑖 =1 

∣ 𝑞 𝑎𝑠,𝑖 − 𝑞 𝑎𝑤,𝑖 ∣
(1)

here 𝑛𝑠 is the total number of subjects, 𝑞 𝑎𝑠,𝑖 is the value of 𝑞 for subject

 while asleep and 𝑞 𝑎𝑤,𝑖 is the value of 𝑞 for subject 𝑖 while awake. Then,

 ind =1 ( 𝐽 ind =−1 ) if the mean number of energy levels is larger (smaller)

or deep sleep than wakefulness for all subjects and 𝐽 ind ≃ 0 if the null

ypothesis holds. Please note that 𝐽 ind can also be defined for 𝜎𝑞 or for

ny other parameter (see Supplementary Materials for more details). 

.2. BOLD signal acquisition 

In order to compare different naturally occurring brain states we use

ata from 18 healthy participants: specifically, BOLD fMRI signals in

esting state and asleep phases (N1, N2 and N3). Empirical data comes

rom a set of fifty-five subjects (thirty-six females, mean ± standard devi-

tion age of 23.4 ± 3.3 years) who fell asleep during a simultaneous EEG-

MRI recording previously described in Tagliazucchi and Laufs (2014) ,

here 18 participants who reached stage N3 sleep (deep sleep) were

elected. The mean duration ( ± standard deviation) of contiguous N3

leep epochs for these participants was 11.67 ± 8.66 min. fMRI data

as recorded at 3T (Siemens Trio, Erlangen, Germany) simultaneously

ith EEG data using an MR-compatible EEG cap (modified BrainCapMR,

asycap, Herrsching, Germany), MRI-compatible amplifiers (BrainAmp

R, BrainProducts, Garching, Germany), and sleep stages were scored

anually by an expert according to the AASM criteria (AASM, 2007). 

.3. BOLD signal preprocessing 

fMRI data was realigned, normalized and spatially smoothed using

PM8 ( www.fil.ion.ucl.ac.uk ), (see Tagliazucchi and Laufs, 2014 for

http://www.fil.ion.ucl.ac.uk
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ull acquisition, pre-processing and sleep scoring details). Cardiac (with

requencies around 1 ∼ 2 Hz), respiratory (around 0 . 3 Hz), motion-

nduced and their temporal aliasing noises were regressed out from the

MRI BOLD signals, and data were band-pass filtered in different ranges.

Empirical BOLD signals are generally band-pass filtered to remove

he contribution of noise. In this study we take a particular look at this

rocess to better illustrate how the attractor landscape found in rest-

ng state and in the deep sleep differentiate from each other. Different

lters have been proposed in the literature to obtain the most reliable

esults. We consider all the possible filters below the Nyquist frequency

o show how the non-stationary landscapes differ in awake and asleep

onditions. 

.4. Structural connectivity matrix 

For the whole-brain network model, the interactions between the 90

rain areas were scaled in proportion to their white matter structural

onnectivity. For this study, we used the structural connectivity between

he 90 automated anatomical labelling (AAL) regions obtained in a pre-

ious study ( Deco et al., 2017 ) averaged across 16 healthy young adults

5 females, mean ± SD age: 24.75 ± 2.54). Briefly, for each subject, a

0 × 90 structural connectivity matrix Γ= 

[
𝛾𝑖𝑗 

]
was obtained by apply-

ng tractography algorithms to Diffusion magnetic resonance imaging

dMRI) where the connectivity 𝛾𝑖𝑗 between regions 𝑖 and 𝑗 was calcu-

ated as the proportion of sampled fibers in all voxels in region 𝑖 that

each any voxel in region 𝑗. Since dMRI does not capture fiber direc-

ionality, 𝛾𝑖𝑗 was defined as the average between 𝛾𝑖𝑗 and 𝛾𝑗𝑖 . Averaging

cross all 16 participants resulted in a structural connectivity matrix Γ
epresentative of healthy young adults. We ordered the different brain

reas in the neuroanatomical connectivity matrix in such a way that

omotopic regions in the two cerebral hemispheres were arranged sym-

etrically with respect to the center of the matrix (see Supplementary

aterials for details). 

.5. Global attractor and energy levels 

The global attractor (see Supplementary Materials for a formal defi-

ition) is usually comprised of isolated invariant subsets and trajectories

onnecting them ( Carvalho et al., 2012 ). The highest energy level is de-

ned as formed by isolated invariant subsets that receive no solution, i.e.

nstable or source sets. Then, each successive lower level is defined in-

luding those isolated invariant subsets that receive solutions only from

he previously defined higher levels ( Aragao-Costa et al., 2012 ). 

These concepts can be illustrated using the Lotka-Volterra (LV) sys-

em as follows: 

̇  𝑖 = 𝑢 𝑖 

( 

𝛼𝑖 − 𝑢 𝑖 + 

𝑛 ∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑢 𝑗 

) 

, 𝑖 = 1 , … , 𝑛, (2) 

here 𝛼𝑖 are the growth rates and 𝛾𝑖𝑗 the structural connectivity, both

onsidered constant in time. This is an example of a dynamical system

n a network where the conditions for existence and uniqueness of so-

utions are well-known ( Murray, 2013 ). An shown in the example of

ig. 2 A–C with 𝑛 = 2 , with suitable 𝛾𝑖𝑗 and 𝛼𝑖 there are four station-

ry points (i.e. four isolated invariant subsets): one located at the ori-

in ( 𝑢 1 = 0 , 𝑢 2 = 0) , one at the x-axis ( 𝑢 1 ≠ 0 , 𝑢 2 = 0) , one at the y-axis

 𝑢 1 = 0 , 𝑢 2 ≠ 0) , and one at the positive quadrant ( 𝑢 1 ≠ 0 , 𝑢 2 ≠ 0) . The

tationary points of the LV system for 𝑛 = 2 can be described as two

inary variables, null values indicating that the corresponding dynam-

cal variable is zero (i.e. is located in one of the axes), and non-null

alues indicating that it is located outside that axis. In other words, the

lobal attractor of the system (and thus its asymptotic behavior) could

e encoded as a set of Boolean variables and connecting global solutions

mong them. 

Figure 2 C shows that the stationary points are partially ordered,

.e. they admit an order relationship in which not necessarily all the

airs of elements can be compared. In this ordering, the unstable and
4 
table points are maximal and minimal respectively, with the two other

tationary points (saddle points) not being ordered with respect to each

ther. Thus, there are three energy levels: the trivial solution (unstable

oint), the saddle points, and the stable solution. The number of energy

evels (NoEL) 𝑞 will be the most important parameter in our data analysis

see Supplementary Materials for more details and formal definitions). 

Figure 2 D–F show a LV system for 𝑛 = 4 where 𝛼𝑖 𝑖 = 1 , … , 4 , are

ow periodic functions of time. Changes in the 𝛼𝑖 produce changes in

he AL so that the NoEL 𝑞 also changes over time. For LV systems, each

nergy level is formed by stationary points with the same number of

on-zero components, and the only stable point is a single stationary

oint in the lowest level with incoming solutions only, called globally

symptotically stable solution (GASS). The GASS is the point the system

s attracted to, since any initial point of ℝ 

𝑛 
+ will converge to the GASS

 Takeuchi and Adachi, 1980 ). 

It can be shown that there exists an equivalence between obtaining

he GASS of LV systems and solving a linear complementarity problem

LCP, see Takeuchi, 1996 and Supplementary Materials). Furthermore,

he NoEL 𝑞 equals the number of non-zero entries in the GASS plus one

see Fig. 2 F). The LCP associated with the LV can be solved using the

omplementary Pivot Algorithm ( Cottle et al., 1992 ). Although the LV

odel is relatively simple, with 𝑛 = 90 nodes it could include a complex

L with up to 2 90 ( 1 . 238 × 10 27 ) stationary points. 

The Informational Structure (IS) of the global attractor is defined as a

irected graph composed of nodes associated with the isolated invariant

ubsets and links establishing their connections (see Fig. 2 C and F, and

upplementary Materials for a formal definition). 

.6. Model transform 

A formal definition of the Model Transform (MT) is provided in the

upplementary Materials. In short, the idea is the same as when a uni-

orm motion in a straight line is fitted to any three-dimensional motion

n an arbitrarily small segment of the trajectory. If we want to quan-

ify how a motion �⃗� ( 𝑡 ) “moves away from rest ”, we must look for the

implest possible motion that allows us to measure that distance. Sim-

le motion in this case is the uniform motion in a straight line and,

djusting it to each small neighborhood of �⃗� ( 𝑡 ) , the variation per unit

f time of �⃗� ( 𝑡 ) is a measure of “remoteness from rest ”. Therefore, we

ay that the uniform motion in a straight line is the minimum model

hat transforms a motion �⃗� ( 𝑡 ) into 𝑣 ( 𝑡 ) , or conversely that 𝑣 ( 𝑡 ) is the MT

f �⃗� ( 𝑡 ) when the minimum model is uniform motion in a straight line.

ote that first, we have an intuitive idea of what we want to measure

nd then, after choosing a minimal model, the intuitive idea is specified

nd formalized. Thus, the equations 𝑥 ′
𝑖 
( 𝑡 ) = 𝑣 𝑖 , 𝑖 = 1 , 2 , 3 can be seen as a

model ” of uniform motion in a straight line when 𝑣 𝑖 has a fixed value

or 𝑖 = 1 , 2 , 3 or, alternatively, they can be seen as a definition of the

nstantaneous velocity 𝑣 ( 𝑡 ) at each time point 𝑡 for any trajectory ⃗𝑥 ( 𝑡 ) . In
he latter case, the value of 𝑣 changes over time and the MT transforms

⃗ ( 𝑡 ) into 𝑣 ( 𝑡 ) . The 𝑣 ( 𝑡 ) can also be seen as defined to exactly reproduce

⃗ ( 𝑡 ) integrating 𝑥 ′
𝑖 
( 𝑡 ) = 𝑣 𝑖 ( 𝑡 ) , 𝑖 = 1 , 2 , 3 when the initial point 𝑥 0 = �⃗� ( 𝑡 0 )

s known. The uniform motion in a straight line is the simplest model

hat allows us to know “how far an object moves from rest at each time

nstant ” using the model parameters 𝑣 𝑖 , 𝑖 = 1 , 2 , 3 . 
In summary, we look for the simplest model that allows us to an-

wer the questions “towards which state is the brain attracted to at one

ime point? ” and “how is the attractor landscape characterized at one

ime point? ”. These questions are answered with help of the DST. Math-

matically speaking, the Lotka-Volterra model is the simplest nontrivial

ooperative model which includes the trivial solution (0 , 0 , … , 0) and

ossesses a GASS. Models of global brain dynamics are usually coopera-

ive in the sense that different brain areas act cooperatively (excitation),

hile there is inhibition only at local level (within each region). The in-

lusion of the trivial solution and the GASS are crucial in our study of

he attractor structure, since they both mark the beginning and the end
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Fig. 2. ( A ), Two-node structural network of a 

Lotka-Volterra (LV) system (2) , with 𝛼1 = 0.71, 

𝛼2 = 2.85, 𝛾12 = 0.2 and 𝛾21 = 0.1. ( B ), Solutions 

of the LV system in A . The global attractor is the 

set of all bounded solutions (yellow area).( C ), 

The structure of the global attractor is a new 

network made by four nodes associated with 

the four stationary points and directed links as- 

sociated with connecting solutions. The rela- 

tion induced by the links is transitive such that 

only the minimal links are represented. Each 

node of this graph is represented as a subgraph 

of the original LV system where non-null com- 

ponents are shown in black and null in grey. 

In this example there are three energy levels: 

the trivial solution, the saddle points, and the 

stable solution. ( D ), Structural network of a 4- 

dimensional ( 𝑛 = 4 ) LV system (see Supplemen- 

tary Materials for 𝛾 values). ( E ), In this example 

𝛼𝑖 are periodic functions of time. ( F ), Structures 

of the global attractor corresponding to time 

steps shown in E . The number of energy lev- 

els (NoEL) changes over time, and equals the 

number of non-zero entries in the lowest level 

plus one. (For interpretation of the references 

to colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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f said structure; that is, both the first and the last energy levels, along

ith the “distance ” between them give us the NoEL. 

Furthermore, we show (see Supplementary Materials) that the Lotka-

olterra model: 

i) includes a rich attractor landscape with a large number of stationary

points, which are a unique combination of active and inactive nodes

of the dynamical system, 

ii) includes empirical information regarding the structural connectivity

of the dynamical system, 

ii) has a well-known condition for existence and uniqueness of the state

the system is attracted to, i.e. the GASS, 

v) supports a Lyapunov function so that its isolated invariants could be

ordered according to the energy levels, 

v) supports an algorithm of low computational complexity (the Com-

plementary Pivot Algorithm for solving the LCP), so that 
i) the global attractor has a well-known structure. t  

5 
The Lotka-Volterra Transform (LVT) is the particular case of MT

hen the model is given by the LV equations: 

̇  𝑖 = 𝑢 𝑖 

( 

𝛼𝑖 − 𝑢 𝑖 + 𝑔 

𝑛 ∑
𝑗=1 

𝛾𝑖𝑗 𝑢 𝑗 

) 

, 𝑖 = 1 , … , 𝑛, (3)

here 𝑔 is a global coupling strength parameter. From these equations

e can obtain time-dependent parameters 𝛼𝑖 ( 𝑡 ) as follows: 

𝑖 ( 𝑡 ) = 

�̇� 𝑖 ( 𝑡 ) 
𝑢 𝑖 ( 𝑡 ) 

+ 𝑢 𝑖 ( 𝑡 ) − 𝑔 

𝑛 ∑
𝑗=1 

𝛾𝑖𝑗 𝑢 𝑗 ( 𝑡 ) , 𝑖 = 1 , … , 𝑛. (4)

his expression defines the LVT. 

Finally, we can associate each parameter and variable of the LVT

ith its neurobiological counterpart: both 𝑢 ( 𝑡 ) and �̇� ( 𝑡 ) will be empirical

alues from BOLD fMRI signals in discrete form; structural connectivity

nformation in 𝛾𝑖𝑗 will be obtained by applying tractography algorithms

o diffusion magnetic resonance imaging (dMRI) where the connectivity
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etween regions 𝑖 and 𝑗 is calculated as the proportion of sampled fibers

n all voxels in region 𝑖 that reach any voxel in region 𝑗; the global

oupling strength parameter 𝑔 will be fitted to balance information from

he proper region 𝑖 , 
�̇� 𝑖 ( 𝑡 ) 
𝑢 𝑖 ( 𝑡 ) 

+ 𝑢 𝑖 ( 𝑡 ) , and information from the rest of the

rain 
∑𝑛 

𝑗=1 𝛾𝑖𝑗 𝑢 𝑗 ( 𝑡 ) . LVT transforms 𝑢 ( 𝑡 ) into 𝛼( 𝑡 ) , i.e., LVT transforms

mpirical data into auxiliary functions 𝛼𝑖 ( 𝑡 ) . 

.7. Alternative model transforms 

Given a dataset like ours, with resting state and N3 deep sleep

ata, can any model transform differentiate between these states? In the

earch for biomarkers of consciousness, what does the LVT contribute

ith, compared to any other MT? 

We use four generative models possessing various levels of complex-

ty: i) the Kuramoto model for coupled oscillators, ii) the simultaneous

utoregressive (SAR) model, a purely spatial model with no dynamics

hat expresses BOLD fluctuations within one region as a linear combina-

ion of the fluctuations in other regions, iii) a rate fluctuations model,

hich is a simplified version of the Wilson–Cowan system considering

xclusively the excitatory population, and iv) the Lotka-Volterra (LV)

odel. 

The Kuramoto model Kuramoto (1975) , Yeung and Stro-

atz (1999) consists of a set of coupled oscillators: 

𝑑𝜙𝑖 ( 𝑡 ) 
𝑑𝑡 

= 𝜔 𝑖 + 𝑔 
∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑠𝑖𝑛 ( 𝜙𝑗 ( 𝑡 ) − 𝜙𝑖 ( 𝑡 )) 

here 𝜙𝑖 and 𝜔 𝑖 stand for the phase and intrinsic angular frequency of

egion 𝑖 . 𝑔 and 𝛾𝑖𝑗 are defined as in the LV model. 

The simultaneous autoregressive (SAR) model is composed of a lin-

ar combination of the fluctuations within other regions ( Tononi et al.,

994 ): 

 𝑖 = 𝑔 
∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑢 𝑗 + 𝜈𝑖 

here 𝜈𝑖 stands for uncorrelated white Gaussian noise, and 𝑢 𝑖 , 𝑔 and 𝛾𝑖𝑗 

re defined as in the LV model. 

The Rate fluctuations model ( Galán, 2008 ) is a simplification of the

ilson–Cowan model where inhibitory neurons and saturation have

een removed: 

𝑑𝑢 𝑖 ( 𝑡 ) 
d 𝑡 

= − 𝑢 𝑖 ( 𝑡 ) + 𝑔 
∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑢 𝑗 ( 𝑡 ) + 𝜈𝑖 . 

ere, 𝜏 is the time scale of the excitatory population, and 𝜈𝑖 stands for

ncorrelated white Gaussian noise. 𝑢 𝑖 , 𝑔 and 𝛾𝑖𝑗 are defined as in the LV

odel. 

Specifically, to test which model stands out compared to the others

hen it comes to finding differences between brain states, we contrast

he four different model transforms (MT) to validate the choice of LV.

lways starting from the same dataset, we look for the model with great-

st capacity to distinguish between states of consciousness. In order to

est this capacity, we add the sign test and the paired t -test (for more

etails see Supplementary Materials) to the non-parametric Wilcoxon

igned-rank test and the J index. The models that we compare with LV

ave shown high predictive power of the functional connectivity start-

ng from the structural connectivity ( Messe et al., 2015 ). 

To calculate the Kuramoto Transform (KT), we previously perform

 Hilbert transform ( Marple, 1999 ) of the BOLD signal to obtain the

mplitude and phase of the signal. 𝜙𝑖 is now said empirical phase in

ach region i. 𝜔 𝑖 is the parameter of the model that becomes a function

f time and that will be the actual result of the KT: 

 𝑖 ( 𝑡 ) = 

𝑑𝜙𝑖 ( 𝑡 ) 
𝑑𝑡 

− 𝑔 
∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑠𝑖𝑛 ( 𝜙𝑗 ( 𝑡 ) − 𝜙𝑖 ( 𝑡 )) . 

For the SAR Transform (SART), 𝜈𝑖 is the model parameter that is

onverted to a function of time. Therefore, instead of being modeled as
6 
 Gaussian noise, it is calculated exactly from the experimental data: 

𝑖 ( 𝑡 ) = 𝑢 𝑖 − 𝑔 
∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑢 𝑗 

In the Rate fluctuations Transform (RFT), 𝜈𝑖 is again the chosen pa-

ameter: 

𝑖 ( 𝑡 ) = 𝜏
𝑑𝑢 𝑖 ( 𝑡 ) 

d 𝑡 
+ 𝑢 𝑖 ( 𝑡 ) − 𝑔 

∑
𝑗≠𝑖 

𝛾𝑖𝑗 𝑢 𝑗 ( 𝑡 ) . 

For details about these model transform processes, see Supplemen-

ary Materials. 

. Results 

.1. Impact of free parameters 

We transform time series of BOLD signal data of 18 healthy partici-

ants into time series of attractor landscapes (ALs), and investigate the

istribution of the number of energy levels (NoELs) of the AL during

akefulness and deep sleep. Although the 𝛼𝑖 become time-varying and

re fitted in each small time interval, other parameters remain free and

e study their impact on the classification of brain states. 

Impact of coupling strength: The strength of the connections between

airs of nodes is controlled by the coupling strength parameter 𝑔.

hanges in coupling strength 𝑔 lead to changes in 𝛼, and therefore have

n impact on the distribution of NoEL. Figure 3 A shows the impact of

on the ability of AL to differentiate between the two brain states, i.e.,

howing how the gap between awake and deep asleep changes as a func-

ion of 𝑔. A vertical dashed line shows the maximum value ( 𝑔 < 0 . 36743 )
nsuring global stability. We compute the Pearson linear correlation co-

fficient between the two curves ( −0 . 9781 ) to corroborate that the 𝐽 ind 

asically measures the same as the Wilcoxon test (although 𝐽 ind is more

ntuitive and easier to calculate). The optimal value ( 𝑔 =0 . 29 ) is the same

n both tests, and therefore we choose it for our computations. Note

owever, that the gap between awake and asleep is not restricted to

his value. Indeed, the range of 𝑔 in which the differences between the

istributions of energy are manifest ( 𝑝 -values below 1% or 10 −2 ) is very

road. In Fig. 3 A we can see that there is a wide range of values for

hich the 𝑝 -value is small (from around 𝑔 =0 . 05 to the red dashed line

n 𝑔 =0 . 36743 , where global stability of the system is guaranteed). In

hat same interval 𝐽 ind remain above 72% ( 𝐽 ind = 0 . 72 ). In other words,

ur results are robust, as they do not depend on a specific value of 𝑔. In

ddition we verified ( Fig. 3 A) that the suggested method does not pro-

uce good results when the information from the coupling term in the

VT is not considered, i.e. 𝑔 tends to zero. At the other extreme, when

tends to its maximum value the LVT does not distinguish so well be-

ween brain states. We can state that our method’s ability to distinguish

rain states only decreases when global connectivity is too small or too

arge. 

Impact of time series filtering: Fig. 3 B shows the results of the Wilcoxon

est and 𝐽 ind index for the mean 𝑞 and the standard deviation 𝜎𝑞 of the

oEL assuming different filter ranges. At high frequencies, noise was

ot filtered and the ALs of the two brain states were very similar, the 𝑝 -

alue was high and the 𝐽 ind small. For 𝑞 , the filter range with minimum

 -value was 0 . 077 − 0 . 096 Hz ( 𝑝 = 0.00023 ). For 𝜎𝑞 , the filter range with

inimum 𝑝 -value was 0 . 077 − 0 . 106 Hz ( 𝑝 = 0.00023 ) and the second

est was 0 . 077 − 0 . 096 Hz ( 𝑝 -value = 0.00028 ). For 𝜎𝑞 , the filter range

ith maximum 𝐽 ind was 0 . 077 − 0 . 106 Hz ( 𝐽 ind = 0.9954 ) and the second

est was 0 . 077 − 0 . 096 Hz ( 𝐽 ind = 0.9813 ). Therefore, we chose the filter-

ng range 0 . 077 − 0 . 096 Hz. When the signal was filtered in this range,

he difference between the distributions of NoEL and therefore, between

he ALs of awake and sleeping participants, is maximal. The values ob-

ained for most filters (wide filters, narrow filters or even filter absence,

.e. 0 . 0 − 0 . 24 Hz where 0.24 Hz is the Nyquist frequency) were good

nough ( 𝐽 ind > 0 . 75 and 𝑝 -value < 0 . 01 ) to sustain that our results can

ot be attributed to a specific filter. Rather, we demonstrated that our
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Fig. 3. ( A ), Impact of coupling strength 𝑔 on 

the 𝑝 -value of the Wilcoxon test and the 𝐽 ind 

maximization, both for mean NoEL. The red 

dashed line ( 𝑔 < 0 . 36743 ) delimits the region 

in which global stability is guaranteed. In both 

cases the optimal value is 𝑔 =0 . 29 . ( B ), Impact 

of the filter used on the 𝑝 -value of the Wilcoxon 

test and the 𝐽 ind for the samples of both, 𝑞 

and 𝜎𝑞 . Both, the Wilcoxon test 𝑝 -value and the 

𝐽 ind are functions of the ends of the filtering 

range (see Supplementary Materials for a 2D 

version of the graphics).. (For interpretation of 

the references to colour in this figure legend, 

the reader is referred to the web version of this 

article.) 
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ypotheses, in general, were true even for the unfiltered signal. Only

igh-pass filters provided negative results ( 𝐽 ind < 0 . 4 and 𝑝 > 0 . 2 ). Thus,

ur conclusions are again robust in this regard. 

.2. Statistical analysis of non-stationary attractor landscapes 

The Lotka-Volterra Transform (LVT) allows us to compute the time-

arying vector 𝛼 for every participant in both brain states. Using the lin-

ar complementarity problem (LCP) we computed the globally asymp-

otically stable solution (GASS). 

Figure 4 A shows a 208-seconds long sample of the NoEL as a func-

ion of time for one subject in awake state and deep sleep state. We

tudied the NoEL distributions for the 18 participants in both condi-

ions. Generally, the NoEL increased when the components of alpha

row ( Fig. 4 B, where alpha components were computed using the LVT).

In order to draw general conclusions beyond the inter-individual dif-

erences, we computed the average distribution of the 18 participants

n the awake state and the average distribution of the 18 participants in

he sleep state ( Fig. 4 C). The pattern typically observed was that the dis-

ribution for the awake state was more homogeneous along 𝑞 ∈ [ 1 , 80 ]
oEL values. ALs with extreme NoEL values (that is, low: < 28 , or very

igh: 90 or 91), were more frequent in awake individuals. 

Figure 4 D shows the mean NoEL 𝑞 in awake vs. deep asleep (N3)

ith filtered signals in the range 0 . 077 − 0 . 096 Hz. The error bars were

omputed according to 𝑒𝑟𝑟𝑜𝑟 = 𝜎𝑞 ∕ 
√

𝑇 where 𝜎𝑞 is the standard deviation

f the NoEL and 𝑇 was the length of the data series. For all participants

xcept one, the mean NoEL 𝑞 was higher when the participants were

n deep sleep. In order to assess how different 𝑞 is for participants in

wake and deep sleep, we use the signed-rank test Wilcoxon and we
7 
btain 𝑝 = 0.00023 , i.e., differences between the means of both brain

tates are significant. In addition, we compute 𝐽 ind =0 . 9948 . Recall that

 ind =1 when 𝑞 is larger for all participants in the deep sleep state. 

Then, we establish patterns regarding the variability of the distribu-

ions. We compute the standard deviations of the distribution of NoEL

n each participant for the two brain states. In Fig. 4 E each point rep-

esents a participant. The error bars were calculated according to the

tandard error of the standard deviation 

1 
2 𝜎

√ 

1 
𝑇 
( 𝜇4 − 

𝑇 − 3 
𝑇 − 1 

𝜎4 ) (5) 

here 𝜎 is the standard deviation of the NoEL, 𝑇 is the length of the data

eries, and 𝜇4 = 𝐸( 𝑞 − 𝑞 ) 4 Rao (2009) . For 17 (out of 18) participants

he standard deviation is larger for wakefulness than for the deep sleep

tate, 𝐽 ind = −0 . 9813 and 𝑝 = 0.00028 . Again, the differences between

he standard deviations of both brain states are very significant. There

s only one participant who shows a greater deviation when asleep. This

ay be more clearly understood recalling Fig. 4 C, where ALs with ex-

reme NoEL values are more frequent in awake individuals. 

.3. Comparison including N1 and N2 

Results of the analysis of data from N1 and N2 states are included

n Fig. 5 A–C. where N1, N2 and N3 states are significantly ordered ac-

ording to statistical tests ( Fig. 5 D) so that, as deeper levels of sleep

re reached, the average NoEL increases while the standard deviation

ecreases. However, the differences between awake and N1 are not sig-

ificant neither for the mean nor for the standard deviation ( Fig. 5 D-E).

he same is true for the comparison between awake and N2 ( Fig. 5 D

nd F). Nevertheless, the NoEL distributions distinguish between these
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Fig. 4. ( A ), Sample of 208 seconds of the num- 

ber of energy levels (NoEL) for participant 

number 5 in wakefulness and deep sleep states 

(filter 0 . 01 − 0 . 1 Hz, 𝑔 =0 . 29 ). ( B ), Number of 

Energy Levels (NoEL) as a function of the av- 

erage 90 alpha components (same 𝑔 as before). 

Each dot represents a time point of a subject 

in a brain state. ( C ), Average distribution of 

the NoEL for 18 healthy participants in awake 

and in deep sleep states (see Supplementary 

Materials for individual histograms). ( D ), Av- 

erage number of energy levels 𝑞 of 18 partici- 

pants awake vs. deep asleep (N3) ( 𝐽 ind =0 . 9948 , 
𝑝 = 0.00023 ). 𝑞 is the same for wakefulness 

and for deep sleep brain states along the red 

line. ( E ), Standard deviation of the NoEL for 

deep asleep state vs. wakefulness state. ( 𝐽 ind = 
−0 . 9813 , 𝑝 -value = 0.00028 ). In graphics B-E 

the NoEL was obtained from filtered data be- 

tween 0 . 077 − 0 . 096 Hz (see Supplementary Ma- 

terials for a similar figure using other filters).. 

(For interpretation of the references to colour 

in this figure legend, the reader is referred to 

the web version of this article.) 
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tates: Fig. 5 G shows the NoEL distribution averaged across the four

tates (awake, N1, N2 and N3) and the 18 subjects (inset), as well as

he differences between the average distributions for each state with re-

pect to the mean. We observe that the differences between states are

ore significant for certain NoELs. Thus, if we compare the frequency

t which the AL reaches 15 levels in each of the 18 subjects for awake

nd N1 states, the differences are significant ( Fig. 5 H). The same is true

hen we compare the frequency at which the AL reaches 13 levels in

he comparison between awake and N2 states ( Fig. 5 I). Further observa-

ions show that the average NoEL for five subjects shows a monotonic

ncrease from awake to N3 sleep, whereas another four subjects shows

he same monotonic increase but with lower average NoEL in N1 than

n the awake state (see Supplementary Materials). 

.4. Comparison of model transforms 

We contrast different model transforms (MT) and show that LV

tands out compared to other models when it comes to finding dif-

erences between brain states ( Fig. 6 A–E). The MTs for four different

odels (LV model, SAR model, Rate fluctuations model and Kuramoto

odel) are compared and validate the choice of LV. We use the same

ataset for all MTs and start filtering the BOLD signals in the range

 . 077 − 0 . 096 𝐻𝑧 . 𝑔 was optimized in each MT to find the greatest dif-

erences between brain states. The results show that LV has a greater

apacity to distinguish between states of consciousness than the other

odels. 
8 
In our formalism, we transform the BOLD signals into alpha values

sing the LVT and then use these alphas to calculate the structure of the

orresponding attractor, along with its energy levels. Figure 6 F com-

ares the ability of alphas with the ability of NoEL to distinguish states

f consciousness. The result is that the structure of the attractor through

ts energy levels is able to distinguish between states much better, so the

imple calculation of the alphas would not be enough to generate a mea-

ure of consciousness. 

.5. Classification 

In addition, we have classified the subjects by training a KNN clas-

ifier with 𝑘 = 2 , obtaining high percentages of accuracy with minimal

mounts of training data. Leave-one-out cross-validation and Receiver

perating Characteristics (ROC) analysis are included in this classifica-

ion process. Figure 6 G–H shows the classification results training the

lassifier with the mean and the standard deviation of the NoEL of 36

ubjects (18 in N3 and 18 in awake resting state). The area under the

urve (AUC = 0 . 89 ) is a performance measure of our classification prob-

em at various threshold values: it indicates how much our formalism is

apable of distinguishing between brain states. The higher the AUC, the

etter the formalism to predict N3 subjects as being in N3 and awake

ubjects being awake. By analogy, the higher the AUC, the better to

istinguish between brain states. 

Thus, subjects can be classified with an accuracy of 89% by training

he classifier with only the standard deviation of the NoEL. If we add
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Fig. 5. ( A–F ), Comparisons of NoEL standard 

deviation among awake, N1, N2 and N3 (deep 

asleep) states (see Fig. 4 for awake-N3 compar- 

ison). Error bars were calculated according to 

(5) ( D ), 𝐽 ind and 𝑝 -values of the Wilcoxon tests. 

The differences between N1, N2 and N3 were 

very significant ( 𝑝 -values < 5% ), but differences 

between awake and N1 or N2 were not signifi- 

cant (see Supplementary Materials for compar- 

isons of average NoEL). ( G ), Deviation of the 

NoEL distribution of each state respect to aver- 

age NoEL distribution (inset) of the four states. 

( H ), Frequency of attractor landscapes (ALs) of 

15 energy levels of 18 participants awake vs. 

N1 ( 𝐽 ind =0 . 6629 , 𝑝 = 0.0139 ). ( I ), Frequency 

of ALs of 13 energy levels of 18 participants 

awake vs. N2 ( 𝐽 ind =0 . 6418 , 𝑝 = 0.0139 ). In all 

graphics (A-I) the NoEL was obtained from fil- 

tered data between 0 . 077 − 0 . 096 Hz. 

t  

n  

N  

l  

l  

o  

r

3

 

n  

s  

n  

q  

I  

g  

p  

(  

q  

f  

p  

s  

t  

d  

w  

t  

w  

e

 

1  

a  

s  

o  

s  

(  

F  

t  

m  

t

4

 

a  

d  

s  

s  

t  

i  

a  

p  

t  

t  

t  

v  

i  

t  

e  

n  

 

u  

a  

a  

t  

g  

a  

t  
he mean NoEL, the accuracy rises to 92% as shown in Fig. 6 G. It is

oteworthy that the classifier can be trained with particular values of the

oEL distribution (instead of global characteristics of the distribution

ike mean and standard deviation) such as the frequency of a given NoEL

evel. For instance, with the frequency of level 59, an 89% accuracy is

btained. Moreover, if we add the frequency of level 3, the accuracy

ises further to 92%. 

.6. Attracting brain areas 

Next, we investigated which areas were active (non-zero compo-

ents) in the attractor (GASS). On average, the attractor of the deep

leep state was more populated (larger NoEL) than that of the wakeful-

ess state. Hence, most of the brain areas tended to appear more fre-

uently in the deep sleep attractor than in the wakefulness attractor.

n other words, as 𝑞 was greater in the participants in deep sleep, the

eneral tendency was that each area of the brain was more frequently

resent in the deep sleep attractors than in the wakefulness attractors

with some exceptions). As shown in Fig. 7 AB, we computed the fre-

uency of appearance of an area in the GASS for each participant and

or each brain state, averaged over all participants, and then we com-

uted the difference between the frequencies in awake and in deep sleep

tates for each participant and area ( Fig. 7 C). As can be seen, most of

he areas showed less presence in the wakefulness attractor than in the

eep sleep attractor. But there were some exceptions (indicated by the

arm colours), i.e., greater presence of the area in the wakefulness at-

ractor (see Supplementary Materials for individual differences, where

e found inter-individual variability but, in all cases, warm colors were

xceptional). 

Considering the averaged results (see Fig. 7 C) for the 18 participants,

4 areas (out of 90) showed this opposite tendency. 12 out of these 14

re actually six pairs of homotopic zones, i.e., pairs of areas that occupy

ymmetrical zones in each hemisphere. These six pairs of areas are the

lfactory, the calcarine (V1), the cuneus (basic visual), the lingual (vi-
9 
ual letters), the occipital superior (visual), and the paracentral lobule

motor-sensory), all of them found in both left and right hemispheres.

urthermore, the fusiform in the left hemisphere (facial recognition) and

he supplementary motor area in the right hemisphere (control move-

ent). Due to their specific functions, in all cases, it makes sense that

hese areas were foci of attraction in the wakefulness state. 

. Discussion 

In this paper we have proposed a novel mathematical formalism for

pproximating the time-varying attractors landscape (AL) depicted by the

ynamical activity of the human brain. In the rich and complex land-

cape provided by the Lotka-Volterra (LV) equations for collaborating

pecies, the energy levels of the global attractor can be found by iden-

ifying the globally asymptotically stable solution (GASS). Our main aim

s not to provide a better method to discriminate or describe states of

wake and sleep, but to validate, for the first time, a theoretical pro-

osal for the study of consciousness states. Although we do not pretend

o find a better classification method than those that already exist in

he scientific literature, our novel method allows us to clearly charac-

erise and distinguish between different brain states by means of the

ariability of the associated energy levels, opening up for relevant clin-

cal applications. We defined the Lotka-Volterra transform (LVT) as the

ime-varying growth rate parameter, 𝛼=𝛼( 𝑡 ) , that exactly reproduces the

mpirical BOLD signal. This allowed us to compare the corresponding

on-stationary attractor landscapes in wakefulness and sleep conditions.

Lotka-Volterra model was chosen as the simplest model that helped

s find an answer to the questions “towards which state is the brain

ttracted to at a given time point? ” and “how do the corresponding

ttractor landscape surroundings look like? ”. Therefore, the choice of

he model and the time-dependent parameters (rates of time-dependent

rowth and fixed structural connectivities) ensure maximum simplicity

nd coherence. Furthermore, the results show that the method is able

o characterise and significantly distinguish ( 𝑝 -values < 5%) among the
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Fig. 6. ( A–E ), Comparisons of NoEL standard 

deviation among awake (W), and N3 (deep 

asleep) states using four different model trans- 

forms. ( F ), First, we transform BOLD signals 

into alphas, and then, alphas into energy lev- 

els. Here, capacities to distinguish brain states 

of both transformations are compared. ( G–H ), 

Classification results training a KNN classifier 

( 𝑘 = 2 ) with the mean and the standard devia- 

tion of the NoEL obtaining an accuracy of 92%. 

Data come from 18 subjects in two brain states 

(W and N3) used as two independent samples. 
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b  
ell-defined brain states of wakefulness (N1, N2 and deep sleep stage

3) in empirical BOLD functional magnetic resonance imaging (fMRI)

ignals (as measured with concurrent EEG to identify the sleep stages). 

Thus, there is a nonlinear transformation from BOLD signals to time-

ependent alpha parameters taking into account ninety brain areas.

here are many cases, for instance from Ecology or Chemistry, in which

 signal produces an alpha vector almost constant in time with our trans-
10 
ormation. In that case, all the forward asymptotic behaviour of the sys-

em follows a stationary attractor landscape (AL). This is not expected

n brain dynamics, and therefore we try to use the time-dependent AL

o produce a biomarker (the number of energy levels, NoEL) for the

on-stationarity of brain activity. 

Still, we have shown that the LVT can be used for the study of

rain dynamics, and to compare and distinguish between different brain
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Fig. 7. Frequencies of appearance of each area 

in the globally asymptotically solution (GASS) 

in ( A ) deep sleep and in ( B ) awake states av- 

eraged over all participants. ( C ), Difference be- 

tween the averaged frequencies of appearance 

of each area in the GASS of both states. This 

difference is expressed in standard error units 

where the standard error is estimated by the 

interpersonal variability. Most areas have cold 

colours, i.e., greater presence in the deep sleep 

attractor (see Supplementary Materials for in- 

dividual differences). 
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tates. Indeed, one of the conclusions of this study is that there are sig-

ificant differences ( 𝑝 -values < 5%) in the ALs corresponding to the brain

ctivity of individuals in wakefulness and deep sleep. Before seeing the

verage probability densities in Fig. 4 C, unimodal distributions such as

aussian distributions could be expected. At least it would be reason-

ble to expect two similar distributions but with different maxima. How-

ver, not only the means of the number of energy levels (NoEL), 𝑞, are

ifferent, but also the distributions themselves. Besides the very high

requencies obtained for the highest values of 𝑞 in both distributions,

he frequency of the deep sleep NoELs increases with 𝑞, while that of

akefulness remains more homogeneous for most values of 𝑞. 

From its simplicity, the model combines the information from brain

ctivity in each specific area with the coupling with the rest of the brain.
 t  

11 
ur hypothesis is that the adequate compromise between both sources

rovides information that is not evident from the experimental data and

hat allows us to distinguish between brain states. It should be empha-

ised that the usefulness of our method is not restricted to a narrow

ange of values of 𝑔, neither to a particular filtering range, as shown by

he results reported in this study. 

.1. Limitations of the framework 

It should be noted that it is important to be careful in interpreting

he results of this procedure, since this is still a parametric approach

nd it could be seriously biased by the choice of parameters (including

he model itself). In the first stages of our research it was unclear what
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he impact of the choice of time-dependent parameters ( 𝛼𝑖 ( 𝑡 ) or 𝛾𝑖𝑗 ( 𝑡 ) )
n the LV equations would be. Finally, we used fixed connectivity val-

es 𝛾𝑖𝑗 for the conditions (wakefulness, N1, N2 and N3) despite they

re known to be associated with distinct levels of effective connectiv-

ty. Indeed, in the first stages we used different connectivity matrices

or each subject, and even individual effective connectivity. In any case,

e believe that the comparison between awake and asleep only makes

ense when the same treatment is carried out (which includes the same

onnectivity matrix) to the different states in each subject. Our inten-

ion was to find differences in the attractor with the same mathematical

reatment for all participants and states. Furthermore, there is another

athematical reason for this choice: in MT the number of equations 𝑛

atches the number of parameters to be expressed as functions of time.

his requirement is fulfilled by 𝛼𝑖 but not by 𝛾𝑖𝑗 . 

Our formalism does not account for any of the critical struc-

ures/circuitry involved in sleep/wake transitions (such as the thala-

ocortical circuitry) or the external inputs to the brain. Any model that

oes not account for those factors is bound to overfit. However, recall

hat we are not modeling but carrying out a transformation of the empir-

cal data to time-dependent parameters. We call this new mathematical

ool “transform ” because it starts from a 𝑁 × 𝑇 data matrix (N brain ar-

as, T time steps) while the result of the LVT is another 𝑁 × 𝑇 matrix that

e call the alphas. Therefore, there is no reduction of information of the

ynamics of the system, but rather a transformation to a language that

llows us to calculate an attractor at each time instant. In the conceptual

ramework of modeling, this would be a clear overfitting. In this sense,

he MT would be an overfitting by definition because the alphas are de-

ned so that the LV equations with time-dependent parameters exactly

omply with the experimental data. But since we are not modeling the

ynamics, it should not be considered overfitting in the same way that it

oes not make sense to consider overfitting the Fourier transform, even

hough the harmonic oscillator model is involved in the transformation.

We do not aim to characterize the changes in the underlying cou-

ling and to develope a model capable of generating patterns of cou-

ling changes. For us the empirical, real, thalamocortical activity, and

f all the other brain areas constitutes an initial data, an input, informa-

ion that we already have and that we do not intend to model. Our ap-

roach is the search for a first approximation to the attractor landscape

hat explains the experimental data. Furthermore, these attractors are

ought at the level of the global brain dynamics when the correspond-

ng brain state is stabilized, and not in the transition between awake

nd asleep states. In any case, we probably need to perform other more

eneral frameworks. Although this methodology discriminates awake

ersus sleep states, it is not enough to draw major conclusions on the

escription of brain dynamics related to these states. Due to the limi-

ations of this framework as a modelization of brain dynamics, this AL

hould not be taken for other purposes than a biomarker. 

.2. Partial validations 

This work can be seen as a contribution to the general idea that at-

ractors are relevant for understanding brain dynamics, but is far from

 definitive answer and it is therefore necessary to continue investigat-

ng in that direction. Brain dynamics depicts an extremely complex en-

rgy landscape and finding a model that predicts its global behavior in

he short and long term is a central unsolved problem in neuroscience.

urrent knowledge and technology do not allow us to confirm whether

e are really approaching the state to which the system is attracted to

the attractor) at each time point. It is also true that the mathemati-

al tools used do not need experimental validation because we simply

efine them that way. In any case, the fact that the average and the stan-

ard deviation of the number of levels of these non-stationary attractors

an be used to distinguish between awake and deep sleep states can be

onsidered as a first validation. 

On the other hand, the results of the classification show that our

ethod not only recognizes the differences between brain states but
12 
an also predict these states from a certain BOLD signal with high ac-

uracy. In a paired-samples test, observations are defined as the differ-

nces between two sets of values, and each assumption refers to these

ifferences, not the original data values. But while the paired tests were

ased on differences (how much the mean or the standard deviation

f the NoEL increases or decreases in each subject when going from W

o N3) in the classification, both samples are considered independent.

herefore, the values of the mean or the standard deviation of the NoEL

re directly used and not their differences. 

A new partial validation has emerged from the observation that not

ny MT of any model will lead to significant differences (small 𝑝 -values)

etween awake and sleep data. We compared the MT of four different

odels on the same dataset (SAR, Rate fluctuations, Kuramoto and LV)

nd found that the LV transform yields the best results. LV has shown a

reater ability to distinguish between different states of consciousness

ompared to the other models when used in the sense of MT. This shows

hat a given system can be characterized by one MT but not another. It

ould happen that some systems could not be characterized by any MT.

his could be the case of brain activity: no model transform serves to

istinguish between the state of consciousness of the subjects. But in this

ork, we have found at least one MT that not only distinguishes them,

ut also provides a measure of consciousness. 

Our formalism transforms, first, the BOLD signals into alpha values

sing the LVT, and then, we use these alphas to calculate the struc-

ure of the corresponding attractor with its energy levels. Comparison

f Fig. 6 F shows that the first transformation is not sufficient. Therefore,

t is not the case that the data of the brain states are so different that

djusting the model to them results in significant differences in the pa-

ameters. This justifies in this formalism the calculation of the attractor

tructure and its characterization through its energy levels to distinguish

ell enough between states, since the simple calculation of alphas is not

nough to generate a measure of consciousness. 

Another partial validation comes from including N1 and N2 in our

nalyzes. Our results indicate that the same type of differences that ex-

st between Awake and N3 are those found between N1 and N2 and

etween N2 and N3. 

Recently, a novel index of consciousness that works for fMRI data

as proposed ( Hahn et al., 2021 ). This index is based on the Fano fac-

or (FF), a measure applied in the analysis of population spiking ac-

ivity (which captures higher order correlation and global synchrony

etween discrete events). The GASS also encodes correlations and syn-

hrony among active brain areas and inactive brain areas but it does

o in the attractor. Furthermore, the mathematical approaches are very

ifferent. For example, a) the index in Hahn et al. (2021) uses posi-

ive peaks in the BOLD time series, while the growth rates �̇� 𝑖 ( 𝑡 )∕ 𝑢 𝑖 ( 𝑡 ) are

he main factor in LVT; b) while in LVT the global coupling of each

egion with the rest of the brain is a very important additional correla-

ion and synchrony factor, the structural connectivity is not considered

n Hahn et al. (2021) . We computed the Pearson correlation coefficient

etween the average NoEL and the Beta values of the FF distribution

or each subject and brain state, and obtained −0 . 7562 . First, the result

s negative because the average NoEL is usually lower in W and N1,

hereas the Beta value is higher in those states. Second, it is not a high

alue, showing that each measure gives a different point of view. Our

pproach gives better results than those of ( Hahn et al., 2021 ), which

anaged to classify four subjects with a monotonic increase from awake

o N3 sleep, while our method managed to classify five (see Supplemen-

ary Materials and Supplementary Fig. 6 in Hahn et al. (2021) ). Fur-

hermore, in our case in 88% of the cases (16 out of 18 subjects) the N3

hows more extreme values with respect to the other states, while only

1% (11 out of 18) in Hahn et al. (2021) . 

In any case, for a definitive validation of this machinery, one needs

rue models that predict the global behavior of the brain in the short and

ong term, and to be able to calculate the attractors of these models.

s more achievable short-term validations are to be performed, more

onscious states in different datasets are needed. 
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.3. Explanations of the results 

Given that the energy levels can be interpreted not only in terms

f energy but also in terms of attraction or stability (see Introduction),

his leads to the conclusion that, on average, the approximated non-

tationary AL in deep sleep is more stable. Lower stability of the awake

tate can also be inferred from the greater variability of the NoEL, ac-

ording to our results. This is in agreement with other studies in which

uthors claim, using very different methodologies, that the brain ex-

ibits less stability during wakefulness ( Jobst et al., 2017 ). 

The mean NoEL 𝑞 is higher when the participants are asleep, as

hown in Fig. 4 D. It can be explained by using the unstable trivial solu-

ion (0 , 0 , … , 0) as a reference of the energy and considering that when

he number of levels increases, the stability of the GASS grows and its

nergy decreases, the average energy of the deep asleep state is lower

han the awake one. 

In our results the complexity of the wakefulness state is reflected not

n more complex ALs but in the variability of different ALs in this state.

aking the standard deviation as a measure of NoEL distribution vari-

bility, Fig. 4 E demonstrates that the complexity of an awake individual

s higher (except for one case) than in the same individual during deep

leep. 

More generally, the conscious state has usually been associated with

omplexity in different ways. Different measures of the dynamic com-

lexity of a network have been proposed. For instance in Zamora-

ópez et al. (2016) , for a given network, its pair-wise correlation ma-

rix reflects the degree of inter-dependencies among the nodes. When

he nodes are disconnected or close to independence (equivalent to a

mall 𝑔), no complex collective dynamics emerge and the distribution

f cross-correlation values is characterized by a narrow peak in the low-

alue regime. On the other hand, when the collective dynamics are close

o global synchrony (equivalent to a large 𝑔), the distribution of cross-

orrelation values has a peak in the high-value regime. However, it is

ot a complex state either, since all nodes follow the same behavior.

omplexity emerges when the collective dynamics are characterized by

ntermediate states, between independence and global synchrony, and

t is characterized by a broad distribution of correlation values or in-

erdependencies among the node values, so the functional complexity is

eflected in the variability of the associated distribution. This variability

an be defined as normed entropy or as the difference between distri-

ution and uniform distribution quantified as the integral of the abso-

ute value of the difference. Dynamic complexity is thus clearly asso-

iated with more uniform distributions. Although our distributions are

ot made from cross-correlation but from NoEL values, the underlying

dea is the same. The pattern of statistical distribution of NoEL in wake-

ulness ( Fig. 4 C) can be interpreted as a sign of complexity. We have

een that in deep sleep the probability of a concrete 𝑞 increases with 𝑞.

n the contrary, when the participants are awake the frequency remains

ore uniform when 𝑞 ∈ [1 , 89] . 

.3.1. Alternative explanations 

Our results can also be explained based on concepts and results al-

eady established in computational neuroscience: 

The ALs with the highest NoEL, and therefore possibly those with the

ighest number of stationary points and trajectories connecting them,

re the most repeated for participants both in wakefulness and deep

leep. In addition, in the awake state the maximum NoEL is more fre-

uent than in deep sleep condition ( Fig. 4 C). Recall that in this case the

ttractor or GASS has all the components different from zero, that is,

he complete brain is active (90 areas) which implies a high degree of

ffective connectivity. It can be explained considering the decrease in

ffective connectivity during slow wave sleep (see Jobst et al., 2017 ). 

Generally, the extreme number of energy levels are more frequent in

wake compared to deep sleep, as shown in Fig. 4 C. These results may be

xplained as a global effect of a group of local nodes with a high number

f links greatly exceeding the average (hubs), driving thus the dynamic
13 
ystem. They can also be interpreted as a higher ability to integrate infor-

ation whilst the subject is awake and an increased capacity to amplify

ocal perturbations. In contrast, slow-wave deep sleep is associated with

 diminished level of integrated information ( Tagliazucchi et al., 2013 ).

his result is also explained by the integrated information theory (IIT)

f consciousness ( Oizumi et al., 2014 ), which holds that different levels

f consciousness must correspond to the brain’s ability to integrate in-

ormation. Many other studies have shown that integration is impaired

uring non-wakefulness ( Deco and Kringelbach, 2014 ). 

Our results also show a decrease of time variability in the deep sleep

ondition that might be explained as a decrease in the differentiation

f brain activity. According to the IIT, this might be thought of as an

ndicator for diminished conscious awareness ( Oizumi et al., 2014 ). 

It is worth mentioning that we have not observed any AL that is

xclusive of a particular brain state. Any AL can be found in any of

he two states, and it is only through its statistical distribution that we

an asses the differences between the brain states. The differences be-

ween wakefulness (frequently opened eyes, coordinated body move-

ent and response to the environment) and deep sleep (closed eyes,

ack of overt behaviour and absence of response to stimuli) are very

ell known. However, it has been shown that when wakefulness is pro-

onged, characteristic OFF periods of the slow wave of sleep can appear

ocally ( Vyazovskiy et al., 2011 ). In the same way during sleep the fre-

uency of these periods decreases as the sleep goes on. Even local wake-

ulness characteristics have been shown in global sleep ( Nobili et al.,

011 ). Therefore, it would be expected that at the level of the global

rain in which we conducted our study, some of the characteristics of

oth states are shared while the differences have to be established in

 statistical way. Indeed, if we consider the medium-high values of 𝑞,

haracteristic of the sleeping condition, we see that the awake brain can

each these values during some intervals (analogously to a prolonged

akefulness with the characteristic OFF periods that can appear locally

yazovskiy et al., 2011 ). 

A greater unpredictability of the wakeful brain dynamics can also be

onsidered because there is maximum entropy and minimal information

bout the state subsequent to the current one. Unpredictability is one

f the features of complexity and chaotic dynamics. On the contrary, in

eep sleep it is very likely to find the system in a medium-high NoEL

ttractor landscape, restricting the repertoire of possible dynamics in

his state. 

Recently it has been shown that BOLD oscillation patterns provide a

otential signature of local sleep, where individual fMRI voxels evolves

rom a mixed-frequency pattern in wakefulness, to a low-frequency

 ∼ 0 . 05 Hz) oscillation prominent in light sleep, and a high-frequency

 ∼ 0 . 17 Hz) oscillation prominent in deep sleep ( Song et al., 2019 ). The

ow-frequency and high-frequency BOLD oscillations could track the oc-

urrences of sleep spindles and slow waves, respectively. This could ex-

lain why within this wide range of filters that allow our method to

istinguish significantly ( 𝑝 -values < 5%) between brain states, the differ-

nces are optimal in the range 0 . 077 − 0 . 096 Hz since that range leaves

ut those characteristic frequencies of BOLD activity during sleep that

an interfere with our analysis. 

.4. Are these attractors functionally relevant? 

The attractor states are not expected to be directly in the BOLD time

eries at a given time point, as they correspond to zero flow states. It

egs the question of the functional relevance of these attractors and

heir ultra-slow dynamics (i.e., zero flow), as the faster scale coupling

hanges ultimately determine the state of the system. If instead of an

pproximation we had the true AL, this would fully characterize the

ynamics of any dynamic system including slow and fast dynamics. The

rue AL includes all the states of the system, the entire phase space,

nd all its possible trajectories, not just the ultra-slow dynamics. That

s, the knowledge of the AL is equivalent to the complete knowledge

f the dynamic system. If we got to know the true AL of a system like
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s  
he human brain, we could account not only for the stationary points

zero flow) but also for the faster scale dynamics. However this ideal is

nattainable because: 

1) The complete knowledge of AL is unmanageable even in simple

odels such as LV and we reduce it for its mathematical treatment to

ts structure, that is, to the invariants (usually stationary points with

ero-flow) and their connections. In general, a dynamical system evolves

way from unstable zero-flow stationary points, but these points are

seful to summarize the structure of the AL. We even go one step further

nd reduce AL to the number of energy levels. Probably the system is

oving through different energy levels without necessarily passing near

he stationary points that result from our calculations. 

2) We are far from being able to calculate the true AL of the hu-

an brain. Furthermore, attempts such as the one we present here are

onditioned by the temporal and spatial resolution of the measurement

evices that produce the empirical data used to calculate AL. The pos-

tive counterpart of this is that our framework is flexible in this sense,

hat is, it is susceptible to being fed by data of different temporal and

patial scales, so the corresponding non-stationary ALs calculated using

he LVT would inherit these scales of temporal and spatial resolution.

s a consequence of this we can account for the fast scale changes with

ur 𝛼( 𝑡 ) by definition of LVT. Although our tool does not have predictive

ower, at least we can ensure that our non-stationary AL includes as a

olution a trajectory that corresponds to the empirical data and its fast

cale dynamics. 

Our initial motivation for this research line is that the subject’s state

f consciousness is related to the AL as a whole, but for operational

easons we reduce the attractor to its structure in a first step and subse-

uently to its number of levels. Perhaps it would be possible to defend

he functional relevance of the ultra-slow dynamics associated with sta-

ionary points of the LA to the extent that these stationary points, which

re mostly saddle points, repel or attract the state of the system by con-

guring its fast scale coupling. This can be visualized by imagining that

hese points curve the phase space, indirectly affecting the dynamics of

he system. However, given the limitations of our framework, the func-

ional relevance is limited to the time interval in which the dynamics of

he system can be described by a specific AL. After that time interval of

he order of a few TR, the AL has changed and it would be new saddle

oints that would explain the dynamics of the system. 

.5. Relationship with IIT 

The global attractor and its structure (the informational structure, IS)

ave previously been associated with the scientific study of conscious-

ess. The IS has been used to determine the level of integrated infor-

ation for different states ( Esteban et al., 2018; Kalita et al., 2019 ) in

he context of the Integrated Information Theory (IIT). Nevertheless, here,

ur proposal is far from the mathematical machinery in IIT, as both

he framework and the approach are different. The IIT ( Oizumi et al.,

014 ) proposes a potential route into identifying the essential proper-

ies of brain states using five axioms: intrinsic existence, composition,

nformation, integration and exclusion. In other words, given the mech-

nisms underlying a particular brain state, IIT identifies a brain state

ith a conceptual structure: an Informational Object which is composed

f identifiable parts, informative, integrated and maximally irreducible.

IT is thus linked to both Information Theory and Theory of Causality . IIT is

mong the leading computational theories of consciousness. It has orig-

nally been formulated for binary discrete dynamical systems; thus, IIT

onsider systems in which the elementary mechanisms are discrete logic

ates or linear threshold units and assume that these mechanisms are the

nes mediating the strongest causal interactions. The IS of the global at-

ractor has been harnessed to translate IIT’s formalism to continuous

ynamical systems and constitute a significant departure from the the-

ry’s original formulation ( Esteban et al., 2018 ). More specifically the

Ss of LV systems have been used to show the dependence between the

opology, the value of the parameters and the state with respect to its
14 
evel of integration ( Esteban et al., 2018 ), as such pointing for the small

orld configuration of the brain ( Bassett and Bullmore, 2006 ) (although

ee recent controversies Markov et al., 2013 ). 

.6. Wakefulness and N1 states 

We have also seen that global characteristics of the NoEL distribu-

ion such as the mean or standard deviation do not significantly separate

wake (W) and N1 states, but that frequencies for certain NoELs serve

o distinguish between them suggesting that some subjects could have

lightly larger functional complexity in N1 state than W ( Fig. 5 G). This

an be explained by the characteristics shared by N1 and W states. Al-

hough a very first and undoubtable sign of the insurgence of sleep is

he disappearance of the EEG alpha rhythm within N1, there is an evo-

ution of brain waves that goes from alpha waves in the N1 initial stages

o theta waves as the subject enters the N1 phase. This evolution can be

xplained by the single unified mechanism to generate both, alpha and

heta, and other brain rhythms proposed in Galadí et al. (2020) . In the

omparison between the N1 early phase and the N1 central phase, alpha

aves are more powerful in the first and theta waves more important in

he second. Thus, in terms of brain wave activity, N1 sleep is associated

ith both alpha and theta waves. The early portion of N1 sleep pro-

uces alpha waves, which are relatively low frequency (8–13Hz), high

mplitude patterns of electrical activity (waves) that become synchro-

ized. This pattern of brain wave activity resembles relaxed state, yet

wake. It is relatively easy to wake someone from stage 1 sleep; in fact,

eople aroused from this stage often believe that they have been fully

wake. In general, it is difficult to distinguish N1 from W even using

EG, because the distinction is based on suppression of alpha rhythm,

nd there are subjects who are already poor alpha generators even with

yes closed and awake. In practice, this means that if different evalua-

ors classify EEG between N1 and W, there is a considerable error, and

hey only agree between 60–70% of the time. N1 bears many similarities

o W in that it is characterized by a certain degree of conscious mental-

ty and even visual and auditory content remaining. We think that the

ommunication between the peripheral sensory systems and the cortex

s cut due to the deactivation of the thalamus, and that this lack of in-

ut makes the conscious content self-generated, that is, more similar to

allucinations than to the conscious content associated with perception

f the external world that occurs in waking. But generally speaking, N1

s dynamically similar to W ( Tagliazucchi and Laufs, 2014; Tagliazucchi

t al., 2013 ). 

The level of wakefulness in N1 state can also be assessed by com-

aring REM and N1 states. Thus, arousal responses to added inspira-

ory resistance are similar during REM sleep than during the N1 sleep,

hile decreases significantly from stage N1 to stage N2 and from N2

o N3 ( Gugger et al., 1993 ). Some authors consider REM dreams expe-

iences similar to wakefulness ( Hobson, 2014; Searle et al., 1998 ) and

ome results suggest that REMs share characteristics with wakefulness.

hus, REMs during sleep could rearrange discrete epochs of visual-like

rocessing as during wakefulness ( Andrillon et al., 2015 ). Indications

rom TMS-EEG experiments are that integrated information is high in

akefulness and almost so high in REM sleep ( Tononi, 2014 ). It has

ven been hypothesized that if the integrated information were higher

n REM sleep than in waking, it could be concluded that dreaming was

ore conscious than wakefulness. Nevertheless, according to IIT it mat-

ers not only how much information is integrated but also how it is

ntegrated ( Tononi, 2014 ). 

.7. Comparison with direct transfer entropy 

It is interesting to compare our method with other ones based on di-

ect transfer entropy as ( Maki-Marttunen et al., 2013 ). Transfer entropy

uantifies the coherence between brain areas from the information the-

retic perspective, but in such a way that exchanged information from

hared common history and input signals is excluded by appropriate
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onditioning of transition probabilities. Thus, transfer entropy is able

o distinguish effectively driving and responding elements and to de-

ect asymmetry in the interaction of brain regions. However, in our ap-

roach, the information is not quantified in terms of the history of each

rain region, but is implicit in the structure of the attractor at each time

oint. The entropy transfer is calculated from mutual information and

utual conditional information, which, in turn, are based on Shanon’s

nformation. This measures the expected value of the surprisal or self-

nformation 𝑙𝑜𝑔(1∕ 𝑝 𝑋 

( 𝑥 )) and can be interpreted as quantifying the level

f “surprise ” of a particular outcome. It can be said that it is objective,

xternal information. However, in our work the information is inspired

y IIT’s ideas as: a) intrinsic information , that is, information from the

oint of view of the system itself, which is described as the “differences

hat make a difference ” within a system and that is expressed in terms

f causal power, and b) integrated information as information specified

y a whole that cannot be reduced to that specified by its parts. Our

S is emergent since it cannot be explained through the dynamics of the

eparate parts but only through the global dynamics. In IIT causal power

s a requirement for the existence of consciousness. Moreover, it is real

n and from itself -from its own intrinsic perspective- without the need

or an external observer to come into being. In Esteban et al. (2018) it

as proposed that the global attractor and its structure simultaneously

xpress both aspects of IIT: the causal power of the system by configuring

he trajectories of the system in the phase space and integration by being

 characterization of the system as a whole. 

.8. Translational impact 

The scope of this work should not be reduced to the theoretical plane

mong other reasons because: 

1. The experimental data are the starting point. 

2. The theoretical framework can be put into practice without simpli-

fying the theory. 

3. We can classify the subjects by training a classifier, obtaining high

percentages of accuracy. This means that by simply measuring the

BOLD signal of a subject and calculating through our formalism the

frequency with which it reaches, for example, 3 and 59 energy levels

respectively for a few minutes, we can predict its state of conscious-

ness with 92% accuracy. 

4. We have developed a measure of consciousness that distinguishes W,

N1, N2 and N3 with 𝑝 -values below 1.39% (see Fig. 5 ). 

5. The local attractors that we obtain are not abstract entities but real

brain states in which some brain regions are active while others are

not. 

6. It must also considered that many of the measures of consciousness

in the scientific literature are defined for theoretical systems but dif-

ficult to apply in practice. For example, phi in IIT 3.0 is applicable

only to discrete Markovian systems (see Oizumi et al., 2014 ). Other

measures can be estimated for real data using empirical distributions

only if stationarity can be assumed. Non-stationarity is a remain-

ing important challenge, in many practical scenarios. For long data

segments, it can be unrealistic to assume that all the statistics are

constant throughout. For shorter data segments, one cannot be con-

fident that the system has explored all the states (see Mediano et al.,

2019 ). However, our measure is designed to be applied directly to

non-stationary empirical data. 

.9. Future directions 

Here we characterize the structure of the AL through the NoEL,

lthough this leaves a high amount of (possibly) crucial information

bout the entire structure left to be explored in future works. The global

ynamics underlying brain states emerge from complex interactions

mong brain regions. By describing the topological structure of the

lobal attractor at each moment in time, we could be able to classify
15 
ifferent brain states by using the statistics across time of these exact

tructures until now hidden. Given the potential of this framework, we

ould be able to classify the neuroimaging data from different classes

f comatose patients. This approach has the potential to provide new in-

ights into the causal mechanistic principles lying beneath the complex

ynamics defining brain states. 

The concept of non-stationary AL with stationary points moving in

he phase space and changing their stability could be harnessed to de-

cribe multistability or metastability and could be even a useful tool

o analyze the functional connectivity dynamics. For example, metasta-

ility is usually measured with the standard deviation 𝜎𝑅 of the Ku-

amoto order parameter 𝑅 , where 𝑅 is the module of the complex num-

er 1 
𝑛 

∑𝑛 
𝑗=1 𝑒 

𝑖𝜃𝑗 ( Shanahan, 2010 ). However, what 𝜎𝑅 really describes is a

ariability in the overall synchronization of the system. An alternative is

o use the standard deviation of the NoEL, which assesses the tendency

f the system to change local attractors and could be called structural

etastability . 

The new concept of MT allows simple models to be applied to com-

lex empirical systems. It does not only unify trivial cases such as the

nstantaneous velocity, the curvature of a plane curve or the torsion

f a non-planar curve under the same conceptual framework, but also

rojects in all fields of knowledge in which any system, simple or com-

lex, theoretical or empirical, defined on a network or not, can be char-

cterized by time-dependent values of the parameters. Each different

odel opens different possibilities in countless practical and theoretical

pplications. Indeed, a Kuramoto Transform in which the natural fre-

uencies were the parameters to be fitted in each time interval would

rovide a non-stationary landscape in which the GASSs would be peri-

dic orbits, as opposed to the stationary points of the LVT. 

.10. Conclusions 

The main contribution of this work is a mathematical and theoretical

ramework for approximating the non-stationary attractor landscape of

 brain state. This framework is able to find significant differences be-

ween brain states using empirical neuroimaging data. In the future,

urther steps in this regard include finding out what lies below this ex-

lanation of the complex dynamical landscape. The theoretical frame-

ork proposed is potentially relevant for the development of the study

f consciousness, and of biomarkers in translational applications, espe-

ially in the context of patients with neuropsychiatric disorders and with

ifferent levels of coma. 

eclaration of Competing Interest 

The datasets analyzed during the current study are not publicly avail-

ble due to constraints imposed by the ethics approval but are available

rom the corresponding author on reasonable request. 

redit authorship contribution statement 

J.A. Galadí: Conceptualization, Methodology, Software, Formal

nalysis, Writing – original draft, Visualization, Writing – review & edit-

ng. S. Silva Pereira: Conceptualization, Visualization, Writing – review

 editing. Y. Sanz Perl: Writing – review & editing. M.L. Kringelbach:

nvestigation, Visualization, Writing – review & editing. I. Gayte: Con-

eptualization, Writing – review & editing. H. Laufs: Investigation, Writ-

ng – review & editing. E. Tagliazucchi: Investigation, Writing – review

 editing. J.A. Langa: Conceptualization, Supervision, Writing – review

 editing. G. Deco: Conceptualization, Supervision, Writing – review &

diting. 

cknowledgments 

J.A.G., I.G. and J.A.L have been partially supported by Spanish Min-

sterio de Economía y Competitividad and FEDER, projects MTM2015-



J.A. Galadí, S. Silva Pereira, Y. Sanz Perl et al. NeuroImage 244 (2021) 118551 

6  

r  

C  

t  

2  

0  

A  

t  

v  

b  

g  

S  

a  

M  

G  

b  

d  

u  

N  

a  

F  

i

S

 

t

R

A  

A  

 

A  

 

B

B  

 

C  

C  

C  

 

D  

 

 

D  

 

D  

 

D  

 

E  

 

F  

 

G  

 

G  

 

G  

G  

G  

 

H  

 

 

H  

H

J  

 

 

K  

 

K  

 

M  

 

 

M  

 

M  

M  

 

M  

 

M

N  

N  

 

O  

 

R  

R  

 

S  

S  

S  

 

T  

T  

 

 

 

T  

T  

 

T  

 

 

T  

 

 

T  

 

 

V  

 

V  
3723-P, PGC2018-096540-B-I00, Proyecto US-1254251 del Fondo Eu-

opeo de Desarrollo Regional (FEDER) y la Consejería de Economía,

onocimiento, Empresas y Universidad de la Junta de Andalucía, den-

ro del Programa Operativo FEDER 2014-2020 and Proyecto PAIDI

020 P20_00592. S.S.P. is supported by the Research Project PGC2018-

96641-B-I00 (Ministerio de Ciencia, Innovación y Universidades /

gencia Estatal de Investigación /FEDER, UE). G.D. is supported by

he Spanish Research Project PSI2016-75688-P (Agencia Estatal de In-

estigacíon/Fondo Europeo de Desarrollo Regional, European Union);

y the European Union’s Horizon 2020 Research and Innovation Pro-

ramme under Grant Agreements 720270 (Human Brain Project [HBP]

GA1) and 785907 (HBP SGA2); and by the Catalan Agency for Man-

gement of University and Research Grants Programme 2017 SGR 1545.

.L.K. is supported by the European Research Council Consolidator

rant: CAREGIVING (615539) and Center for Music in the Brain, funded

y the Danish National Research Foundation ( DNRF117 ). H.L. and

ata acquisition were supported by the Bundesministerium für Bildung

nd Forschung (grant no. 01 EV 0703); H.L. and E.T. by the LOEWE

euronale Koordination Forschungsschwerpunkt Frankfurt (NeFF); H.L.

lso by Christian-Albrechts-University Kiel and the CRC1261 (Deutsche

ors-chungsge-meinschaft). We thank Astrid Morzelewski for sleep scor-

ng of the EEGs. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2021.118551 . 

eferences 

fraimovich, V., Zhigulin, V., Rabinovich, M., 2004. On the origin of reproducible sequen-

tial activity in neural circuits. Chaos 14 (4), 1123–1129. doi: 10.1063/1.1819625 . 

ndrillon, T., Nir, Y., Cirelli, C., Tononi, G., Fried, I., 2015. Single-neuron activity and eye

movements during human rem sleep and awake vision. Nat. Commun. 6 (1), 7884.

doi: 10.1038/ncomms8884 . 

ragao-Costa, E. , Caraballo, T. , Carvalho, A. , Langa, J. , 2012. Continuity of Lyapunov

functions and of energy level for a generalized gradient semigroup. Topol. Methods

Nonlinear Anal. 39 (1), 57–82 . 

assett, D., Bullmore, E., 2006. Small-world brain networks. Neuroscientist 12 (6), 512–

523. doi: 10.1177/1073858406293182 . PMID: 17079517 

ortolan, M. , Carvalho, A. , Langa, J. , 2020. Attractors under autonomous and non-au-

tonomous perturbations. Mathematical Surveys and Monographs. American Mathe-

matical Society . 

ardanobile, S., Rotter, S., 2011. Emergent properties of interacting populations of spiking

neurons. Front. Comput. Neurosci. 5, 59. doi: 10.3389/fncom.2011.00059 . 

arvalho, A. , Langa, J. , Robinson, J. , 2012. Attractors for infinite-dimensional non-au-

tonomous dynamical systems. Applied Mathematical Sciences. Springer New York . 

ottle, R. , Pang, J. , Stone, R. , 1992. The linear complementarity problem. Classics in Ap-

plied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Mar-

ket Street, Floor 6, Philadelphia, PA 19104) . 

eco, G., Cabral, J., Woolrich, M., Stevner, A., van Hartevelt, T., Kringelbach, M.,

2017. Single or multiple frequency generators in on-going brain activity: a mech-

anistic whole-brain model of empirical meg data. NeuroImage 152, 538–550.

doi: 10.1016/j.neuroimage.2017.03.023 . 

eco, G. , Cruzat, J. , Cabral, J. , Tagliazucchi, E. , Laufs, H. , Logothetis, N. , Kringelbach, M. ,

2019. Awakening: predicting external stimulation forcing transitions between differ-

ent brain states. PNAS 116 (36), 18088–18097 . 

eco, G., Jirsa, V., 2012. Ongoing cortical activity at rest: criticality, multistabil-

ity, and ghost attractors. J. Neurosci. 32 (10), 3366–3375. doi: 10.1523/JNEU-

ROSCI.2523-11.2012 . http://www.jneurosci.org/content/32/10/3366.full.pdf 

eco, G., Kringelbach, M., 2014. Great expectations: using whole-brain computational

connectomics for understanding neuropsychiatric disorders. Neuron 84 (5), 892–905.

doi: 10.1016/j.neuron.2014.08.034 . 

steban, F., Galadí, J., Langa, J., Portillo, J., Soler-Toscano, F., 2018. Informational struc-

tures: a dynamical system approach for integrated information. PLoS Comput. Biol.

14 (9), 1–33. doi: 10.1371/journal.pcbi.1006154 . 

ukai, T., Tanaka, S., 1997. A simple neural network exhibiting selective activation of

neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput. 9 (1),

77–97. doi: 10.1162/neco.1997.9.1.77 . 

aladí, J. , 2020. Dynamical systems applied to consciousness and brain rhythms in a neu-

ral network. Department of Differential Equations and Numerical Analysis. University

of Seville Ph.D. thesis . 

aladí, J., Torres, J., Marro, J., 2020. Emergence and interpretation of oscillatory be-

haviour similar to brain waves and rhythms. Commun. Nonlinear Sci. Numer. Simul.

83, 105093. doi: 10.1016/j.cnsns.2019.105093 . 

alán, R.F., 2008. On how network architecture determines the dominant patterns of spon-

taneous neural activity. PLoS ONE 3 (5), 1–10. doi: 10.1371/journal.pone.0002148 . 
16 
olos, M., Jirsa, V., Dauce, E., 2016. Multistability in large scale models of brain activity.

PLoS Comput. Biol. 11 (12), 1–32. doi: 10.1371/journal.pcbi.1004644 . 

ugger, M., Bögershausen, S., Schäffler, L., 1993. Arousal responses to added inspiratory

resistance during rem and non-rem sleep in normal subjects.. Thorax 48 (2), 125–129.

doi: 10.1136/thx.48.2.125 . https://thorax.bmj.com/content/48/2/125.full.pdf 

ahn, G., Zamora-López, G., Uhrig, L., Tagliazucchi, E., Laufs, H., Mantini, D., Kringel-

bach, M.L., Jarraya, B., Deco, G., 2021. Signature of consciousness in brain-wide syn-

chronization patterns of monkey and human fMRI signals. NeuroImage 226, 117470.

doi: 10.1016/j.neuroimage.2020.117470 . 

ale, J. , 1988. Asymptotic behavior of dissipative systems. Mathematical Surveys and

Monographs. American Mathematical Society . 

obson, J.A. , 2014. Introduction. Springer International Publishing, Cham, pp. 3–7 . 

obst, B., Hindriks, R., Laufs, H., Tagliazucchi, E., Hahn, G., Ponce-Alvarez, A., Stevner, A.,

Kringelbach, M., Deco, G., 2017. Increased stability and breakdown of brain effective

connectivity during slow-wave sleep: mechanistic insights from whole-brain compu-

tational modelling. Sci. Rep. 7 (1), 4634. doi: 10.1038/s41598-017-04522-x . 

alita, P., Langa, J., Soler-Toscano, F., 2019. Informational structures and informational

fields as a prototype for the description of postulates of the integrated information

theory. Entropy 21 (5). doi: 10.3390/e21050493 . 

uramoto, Y. , 1975. Self-entrainment of a population of coupled non-linear oscillators. In:

Araki, H. (Ed.), International Symposium on Mathematical Problems in Theoretical

Physics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 420–422 . 

aki-Marttunen, V., Diez, I., Cortes, J., Chialvo, D., Villarreal, M., 2013. Disruption of

transfer entropy and inter-hemispheric brain functional connectivity in patients with

disorder of consciousness. Front. Neuroinform. 7, 24. doi: 10.3389/fninf.2013.00024 .

arkov, N., Ercsey-Ravasz, M., Essen, D.V., Knoblauch, K., Toroczkai, Z., Kennedy, H.,

2013. Cortical high-density counterstream architectures. Science 342 (6158),

1238406. doi: 10.1126/science.1238406 . 

arple, L., 1999. Computing the discrete-time “analytic ” signal via fft. IEEE Trans. Signal

Process. 47 (9), 2600–2603. doi: 10.1109/78.782222 . 

ediano, P.A., Seth, A.K., Barrett, A.B., 2019. Measuring integrated information:

comparison of candidate measures in theory and simulation. Entropy 21 (1).

doi: 10.3390/e21010017 . 

esse, A., Rudrauf, D., Giron, A., Marrelec, G., 2015. Predicting functional connectivity

from structural connectivity via computational models using MRI: an extensive com-

parison study. NeuroImage 111, 65–75. doi: 10.1016/j.neuroimage.2015.02.001 . 

urray, J. , 2013. Mathematical biology. Biomathematics. Springer Berlin Heidelberg . 

ir, Y. , Massimini, M. , Boly, M. , Tononi, G. , 2013. Sleep and Consciousness. Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 133–182 . 

obili, L., Ferrara, M., Moroni, F., Gennaro, L.D., Russo, G.L., Campus, C., Cardinale, F.,

Carli, F.D., 2011. Dissociated wake-like and sleep-like electro-cortical activity during

sleep. NeuroImage 58 (2), 612–619. doi: 10.1016/j.neuroimage.2011.06.032 . 

izumi, M., Albantakis, L., Tononi, G., 2014. From the phenomenology to the mechanisms

of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10 (5), 1–25.

doi: 10.1371/journal.pcbi.1003588 . 

ao, C. , 2009. Linear statistical inference and its applications, 2nd ed. (With Cd). Wiley

Series in Probability and Statistics. Wiley India Pvt. Limited . 

obinson, J. , Crighton, D. , Ablowitz, M. , 2001. Infinite-dimensional dynamical systems:

an introduction to dissipative parabolic PDEs and the theory of global attractors. Cam-

bridge Texts in Applied Mathematics. Cambridge University Press . 

earle, J. , Dennett, D. , Chalmers, D. , 1998. The Mystery of Consciousness. Granta Books .

hanahan, M., 2010. Metastable chimera states in community-structured oscillator net-

works. Chaos 20 (1), 013108. doi: 10.1063/1.3305451 . 

ong, C., Boly, M., Tagliazucchi, E., Laufs, H., Tononi, G., 2019. Bold signa-

tures of sleep. bioRxiv doi: 10.1101/531186 . https://www.biorxiv.org/content/early/

2019/01/26/531186.full.pdf 

agliazucchi, E., Laufs, H., 2014. Decoding wakefulness levels from typical fMRI resting-

state data reveals reliable drifts between wakefulness and sleep. Neuron 82 (3), 695–

708. doi: 10.1016/j.neuron.2014.03.020 . 

agliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Jahnke, K.,

Laufs, H., 2013. Breakdown of long-range temporal dependence in default

mode and attention networks during deep sleep. Proc. Natl. Acad. Sci. 110

(38), 15419–15424. doi: 10.1073/pnas.1312848110 . https://www.pnas.org/content/

110/38/15419.full.pdf 

akeuchi, Y. , 1996. Global Dynamical Properties of Lotka-Volterra Systems. World Scien-

tific . 

akeuchi, Y., Adachi, N., 1980. The existence of globally stable equilibria of

ecosystems of the generalized volterra type. J. Math. Biol. 10 (4), 401–415.

doi: 10.1007/BF00276098 . 

ononi, G. , 2014. How Does Your PHI Formula Deal with the Evidence that Consciousness

Is State Dependent? More Specifically, if PHI Were Higher in REM Sleep Than in Wak-

ing, Would You Conclude That Dreaming Was More Conscious Even Than Waking?.

Springer International Publishing, Cham, pp. 215–217 . 

ononi, G., Sporns, O., Edelman, G.M., 1994. A measure for brain complex-

ity: relating functional segregation and integration in the nervous system.

Proc. Natl. Acad. Sci. 91 (11), 5033–5037. doi: 10.1073/pnas.91.11.5033 .

https://www.pnas.org/content/91/11/5033.full.pdf 

zourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,

Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM

using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.

NeuroImage 15 (1), 273–289. doi: 10.1006/nimg.2001.0978 . 

ohryzek, J., Deco, G., Cessac, B., Kringelbach, M.L., Cabral, J., 2020. Ghost attractors

in spontaneous brain activity: recurrent excursions into functionally-relevant bold

phase-locking states. Front. Syst. Neurosci. 14, 20. doi: 10.3389/fnsys.2020.00020 . 

yazovskiy, V. , Olcese, U. , Hanlon, E. , Nir, Y. , Cirelli, C. , Tononi, G. , 2011. Local sleep in

awake rats. Nature 472, 443–447 . 

https://doi.org/10.13039/501100001732
https://doi.org/10.1016/j.neuroimage.2021.118551
https://doi.org/10.1063/1.1819625
https://doi.org/10.1038/ncomms8884
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0003
https://doi.org/10.1177/1073858406293182
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0005
https://doi.org/10.3389/fncom.2011.00059
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0008
https://doi.org/10.1016/j.neuroimage.2017.03.023
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0010
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
http://www.jneurosci.org/content/32/10/3366.full.pdf
https://doi.org/10.1016/j.neuron.2014.08.034
https://doi.org/10.1371/journal.pcbi.1006154
https://doi.org/10.1162/neco.1997.9.1.77
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0015
https://doi.org/10.1016/j.cnsns.2019.105093
https://doi.org/10.1371/journal.pone.0002148
https://doi.org/10.1371/journal.pcbi.1004644
https://doi.org/10.1136/thx.48.2.125
https://thorax.bmj.com/content/48/2/125.full.pdf
https://doi.org/10.1016/j.neuroimage.2020.117470
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0022
https://doi.org/10.1038/s41598-017-04522-x
https://doi.org/10.3390/e21050493
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0025
https://doi.org/10.3389/fninf.2013.00024
https://doi.org/10.1126/science.1238406
https://doi.org/10.1109/78.782222
https://doi.org/10.3390/e21010017
https://doi.org/10.1016/j.neuroimage.2015.02.001
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0033
https://doi.org/10.1016/j.neuroimage.2011.06.032
https://doi.org/10.1371/journal.pcbi.1003588
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0038
https://doi.org/10.1063/1.3305451
https://doi.org/10.1101/531186
https://www.biorxiv.org/content/early/2019/01/26/531186.full.pdf
https://doi.org/10.1016/j.neuron.2014.03.020
https://doi.org/10.1073/pnas.1312848110
https://www.pnas.org/content/110/38/15419.full.pdf
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0043
https://doi.org/10.1007/BF00276098
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0045
https://doi.org/10.1073/pnas.91.11.5033
https://www.pnas.org/content/91/11/5033.full.pdf
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.3389/fnsys.2020.00020
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0049


J.A. Galadí, S. Silva Pereira, Y. Sanz Perl et al. NeuroImage 244 (2021) 118551 

Y  

Y  

 

Z  

 

Z  

 

 

F

L  

 

L  

 

eung, M., Strogatz, S., 1999. Time delay in the Kuramoto model of coupled oscillators.

Phys. Rev. Lett. 82 (3), 648–651. doi: 10.1103/PhysRevLett.82.648 . Cited By 405 

uan, R.-S., Ma, Y.-A., Yuan, B., Ao, P., 2014. Lyapunov function as po-

tential function: a dynamical equivalence. Chin. Phys. B 23 (1), 010505.

doi: 10.1088/1674-1056/23/1/010505 . 

amora-López, G. , Chen, Y. , Deco, G. , Kringelbach, M. , Zhou, C. , 2016. Functional com-

plexity emerging from anatomical constraints in the brain: the significance of network

modularity and rich-clubs. Sci. Rep. 6, 38424 . 

hou, J.X., Aliyu, M.D.S., Aurell, E., Huang, S., 2012. Quasi-potential landscape

in complex multi-stable systems. J. R. Soc. Interface 9 (77), 3539–3553.

doi: 10.1098/rsif.2012.0434 . https://royalsocietypublishing.org/doi/pdf/10.1098/

rsif.2012.0434 
17 
urther readings 

agzi, F., Atay, F.M., Rotter, S., 2019. Bifurcation analysis of the dynam-

ics of interacting subnetworks of a spiking network. Sci. Rep. 9, 11397.

doi: 10.1038/s41598-019-47190-9 . 

agzi, F., Rotter, S., 2015. Dynamics of Competition between Subnetworks of Spiking Neu-

ronal Networks in the Balanced State. PLoS ONE 10(9): e0138947. doi: 10.1371/jour-

nal.pone.0138947 . 

https://doi.org/10.1103/PhysRevLett.82.648
https://doi.org/10.1088/1674-1056/23/1/010505
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00824-7/sbref0052
https://doi.org/10.1098/rsif.2012.0434
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2012.0434
https://doi.org/10.1038/s41598-019-47190-9
https://doi.org/10.1371/journal.pone.0138947

	Capturing the non-stationarity of whole-brain dynamics underlying human brain states
	1 Introduction
	1.1 Motivations

	2 Materials and methods
	2.1 Overview of the method
	2.2 BOLD signal acquisition
	2.3 BOLD signal preprocessing
	2.4 Structural connectivity matrix
	2.5 Global attractor and energy levels
	2.6 Model transform
	2.7 Alternative model transforms

	3 Results
	3.1 Impact of free parameters
	3.2 Statistical analysis of non-stationary attractor landscapes
	3.3 Comparison including N1 and N2
	3.4 Comparison of model transforms
	3.5 Classification
	3.6 Attracting brain areas

	4 Discussion
	4.1 Limitations of the framework
	4.2 Partial validations
	4.3 Explanations of the results
	4.3.1 Alternative explanations

	4.4 Are these attractors functionally relevant?
	4.5 Relationship with IIT
	4.6 Wakefulness and N1 states
	4.7 Comparison with direct transfer entropy
	4.8 Translational impact
	4.9 Future directions
	4.10 Conclusions

	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	Supplementary material
	References
	Further readings


