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A B S T R A C T

Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns.
Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and
segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical
stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain
computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two indepen-
dent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct
multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once
perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the
recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in
wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are
associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake
brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of
artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the
dynamical properties of different brain states.
Introduction

Investigating brain function often requires using a black box
approach, from which information can be obtained by: 1) measuring the
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spontaneous activity arising from the non-perturbed system; or 2) per-
turbing the system and measuring how the system responds. This infor-
mation then serves to postulate mechanistic scenarios, which may be
verified via mathematical/computational models. In the case of
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perturbation, a wide range of schemes is available, ranging from natural
interventions such as sensory stimuli or task instructions, to artificial -
usually electromagnetic - interventions such as transcranial magnetic
stimulation (TMS) or deep brain stimulation (DBS).

Alterations in brain activity elicited by natural perturbations can be
detected non-invasively and at the whole-brain level using functional
MRI (fMRI), allowing to map the brain regions whose activity correlates
with different stimuli or tasks, resulting in a detailed repertoire of task-
specific functional networks (Rissman et al., 2004; Raichle, 2009; Yar-
koni et al., 2011). Notably, many of these task-specific functional net-
works have also been detected in baseline brain activity during rest
(Biswal et al., 1995; Raichle et al., 2001; Damoiseaux et al., 2006; Smith
et al., 2009; Zhang and Raichle, 2010). With hindsight, the fact that the
brain at rest still exhibits highly structured spatiotemporal patterns of
activity has important implications for our understanding of brain
function (Raichle et al., 2001; Deco et al., 2011; Cabral et al., 2014; Cole
et al., 2014; Deco and Kringelbach, 2016).

Beyond the insights obtained under natural conditions, direct artifi-
cial perturbations allow for the systematic exploration of dynamical re-
sponses elicited by controlled perturbative protocols. However, such
perturbative approaches are generally limited to TMS in healthy humans
(Siebner et al., 2009), or DBS in human patients, due to ethical consid-
erations (Kringelbach et al., 2007b; Clausen, 2010; Kringelbach and Aziz,
2011; Fox et al., 2014). Combining these direct stimulation techniques
with whole-brain neuroimaging allows exploring how the system leaves
the resting equilibrium by characterizing the resulting dynamics in terms
of complexity and latencies using TMS-EEG (Ilmoniemi et al., 1997;
Massimini et al., 2005; Litvak et al., 2007; Casali et al., 2013), DBS-MEG
(Kringelbach et al., 2007a; Mohseni et al., 2012) and DBS-fMRI (Saenger
et al., 2017a).

There is a long history of trying to characterize the global dynamics of
brain activity in terms of complexity and dynamical stability, particularly
in EEG studies (Pereda et al., 1998; Stam, 2005). The general picture that
emerges is that brain activity during some diseases, coma and sleep is
characterised by dynamical stability and loss of complexity. This phe-
nomenon has been variously characterised in terms of principal compo-
nent analysis and related decompositions into spatial modes, correlation
dimension and dynamical formulations in terms of Lyapunov exponents
(Pradhan and Sadasivan, 1996). Indeed, the (fractal) dimension is usually
estimated using the Kaplan-Yorke conjecture, based upon estimates of
Lyapunov exponents. Heuristically, the Lyapunov exponents reflect the
degree of dissipation, decay or relaxation rate of various modes following
endogenous or exogenous perturbation (Pradhan and Sadasivan, 1996).
In sleep and some pathological brain states the fall in complexity of brain
activity is generally accompanied by a loss of critical unstable modes,
which increases dynamical stability usually associated with the emer-
gence of slow brain rhythms.

Using an artificial perturbative approach, Massimini and colleagues
investigated the perturbation-elicited changes in global brain activity
during wakefulness and sleep using TMS-EEG, showing that non-REM
sleep is accompanied by a breakdown in cortical effective connectivity,
where the stimuli rapidly extinguish and do not propagate beyond the
stimulation site (Massimini et al., 2005; Ferrarelli et al., 2010; Casali
et al., 2013). These findings corroborate leading theories of conscious-
ness postulating that consciousness requires effective communication
between brain regions (Dehaene et al., 1998, 2014; Tononi et al., 1998;
Dehaene et al., 2014), which appears impaired in certain stages of sleep
and anesthesia (Alkire et al., 2008).

To assess the brain-wide spatiotemporal propagation of external
stimulation Casali et al. (2013) introduced the Perturbational Complexity
Index (PCI), which measures the amount of information contained in the
amplitude of the average perturbation-elicited responses by calculating
the Lempel-Ziv complexity of the binary matrix describing the statisti-
cally significant sources, in space and time, of the EEG signals,. PCI has
been successfully used for separation of brain states in healthy subjects
during wakefulness, dreaming, sleep, under different levels of anesthesia
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and in coma (Ferrarelli et al., 2010; Rosanova et al., 2012; Casali et al.,
2013). Nevertheless, it is important to note that PCI is obtained from a
grand average of an evoked potential, typically with relatively short la-
tencies of 1–2 s, and ignores the pre-existing variability prior to every
individual perturbation as well as the variability in responses across the
series of perturbations.

In this paper, we expand to a new level the traditional perturbative
approaches by using a whole-brain computational model that can be
systematically perturbed off-line in silico in ways not possible in vivo. This
allows for a deeper investigation of the biophysical mechanisms under-
lying the changes in dynamical complexity observed experimentally be-
tween brain states. We use a previously-published whole-brain model
that directly models the network dynamics occurring at the ultra-slow
scale of resting-state BOLD signal fluctuations without explicitly having
to model the hemodynamic response function (Ponce-Alvarez et al.,
2015; Deco et al., 2017b; Jobst et al., 2017; Saenger et al., 2017a). Using
this approach, in Jobst et al. (2017) we have recently shown that fMRI
dynamics of wakefulness and deep sleep can be differentiated by a global
coupling parameter that shifts the dynamical regime of the
network model.

Following these recent theoretical and experimental insights, we
hypothesize that the in silico perturbation of the sleep model would result
in a faster rate of decay of prominent synchronization modes relative to
the awake model, consistent with less complex and more stable dy-
namics. Operationally, we conjecture that this is associated with a shift in
the brain's dynamical regime, which alters the rate of dissipation of
induced (or disrupted) synchronization among coupled brain areas,
perhaps linked to the phenomenon of critical slowing down (Wissel,
1984; Van Nes and Scheffer, 2007). Wemeasure this dissipation using the
Perturbative Integration Latency Index (PILI), which measures the re-
covery of global integration levels back to baseline, scoring the persis-
tence of the largest connected component in terms of BOLD phase
synchronization.

Methods

Overview of perturbative approach

The following procedure, illustrated in Fig. 1, was implemented:

1. Fit the whole-brain computational model to fMRI data recorded in
each brain state, i.e. during wakefulness and deep sleep (stage N3).

2. Compute from simulations the evolution of integration for each un-
perturbed brain state.

3. Systematic application of two off-line perturbation protocols (noise
and synchronization) in 1–10 random brain regions and compute the
evolution of integration after the offset of perturbation for each brain
state.

4. Compute the PILI as the area under the normalized curve of perturbed
integration until it reaches the basal integration levels. Repeat trials
to estimate significance levels.

Experimental data

We used fMRI data from two independent studies recorded in
Frankfurt, Germany (Tagliazucchi and Laufs, 2014) and Li�ege, Belgium
(Boly et al., 2012) where participants fell asleep during a simultaneous
EEG-fMRI scanning session. Both datasets have been described in pre-
vious publications and we only provide a brief summary of their acqui-
sition and pre-processing here (see Supplementary Methods for more
details). For this study, we only considered the subset of subjects who
reached deep sleep (stage N3).

Frankfurt dataset: From a total of fifty-five subjects (thirty-six females,
mean ± SD age of 23.4 ± 3.3 years) who fell asleep during a simultaneous
EEG-fMRI recording previously described in Tagliazucchi and Laufs
(2014), we selected the 18 subjects who reached stage N3 sleep (deep



Fig. 1. Procedure for computing the Perturbative Integration Latency Index (PILI). A) First, the whole-brain computational model is constructed based on the empirical structural and
functional connectivity between 90 brain regions, each represented by a Hopf bifurcation model. B) Second, the simulated time series for each brain region are band-pass filtered and the
instantaneous phases obtained using the Hilbert transform. C) Third, the integration is calculated over 200 s in the basal unperturbed state and after the suppression of a perturbation
protocol. For each time point a phase locking matrix is constructed and binarized, calculating the number of regions in the largest connected component for each threshold value. The
integration is defined as the integral over all thresholds. D) Finally, the PILI is computed to characterize, in a single value, the recovery to basal equilibrium after the suppression of
perturbation. PILI is computed as the integral between the curves of integration values over time (in light blue) for the perturbed dynamics (dark blue line) compared to the maximum or
minimum (red dotted line) of the basal state dynamics (red line) (see Methods for details).
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sleep). The mean duration (±standard deviation) of contiguous N3 sleep
epochs for these participants was 11.67 ± 8.66 min fMRI data was
recorded at 3T (Siemens Trio, Erlangen, Germany) simultaneously with
EEG data using an MR-compatible EEG cap (modified BrainCapMR,
Easycap, Herrsching, Germany). Sleep stages were scored manually by an
expert according to the AASM criteria (AASM, 2007). fMRI data was
realigned, normalized and spatially smoothed using SPM8 (www.fil.ion.
ucl.ac.uk/spm). Cardiac, respiratory, and motion-induced noise were
regressed out from the fMRI BOLD signals (Glover et al., 2000) and data
was band-pass filtered in the range 0.01–0.1 Hz (Cordes et al., 2001).
Please see the Supplementary Methods and Tagliazucchi and Laufs
(2014) for full acquisition, pre-processing and sleep scoring details.

Li�ege dataset: We selected only the 12 participants who maintained
sustained periods of wakefulness and deep NREM sleep (stage N3) from a
dataset of twenty-five healthy young adults who underwent an EEG-fMRI
session (eleven females, mean age of 22.0 years; age range 18–25 years)
as described in a previous study by Boly et al. (2012). EEG data was
acquired simultaneously with fMRI data to identify periods of wakeful-
ness and 2–4 NREM sleep stages using an MR-compatible EEG cap
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(Braincap MR; Falk Minow Services) with 64 ring-type electrodes and
two MR-compatible 32-channel amplifiers (Brainamp MR plus; Brain
Products) in a 3-Tesla MR scanner (Allegra; Siemens). Pre-processing of
the fMRI data was carried out using MELODIC 3.14 (Beckmann and
Smith, 2004), part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.
uk/fsl). Please see the Supplementary Methods and Boly et al. (2012)
for full acquisition, pre-processing and sleep scoring details.

fMRI processing
For each participant and for each brain state (i.e. wakefulness and

deep sleep), we used FSL tools to normalize, extract and average the
BOLD signals from all voxels within each ROI defined in the AAL atlas
(considering only the 90 cortical and subcortical non-cerebellar brain
regions) (Tzourio-Mazoyer et al., 2002) (see Supplementary Methods for
full description).

Pairwise Pearson correlation between all 90 regions was computed
resulting in a 90 � 90 functional connectivity (FC) matrix for each
participant and brain state. Correlation values were converted to z-values
applying Fisher's transform before averaging across participants in the

http://www.fil.ion.ucl.ac.uk/spm
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same cohort, resulting in a 90 � 90 FC matrix for each brain state (rest
and sleep) and for each dataset (Frankfurt and Li�ege).

Structural connectivity
In the whole-brain network model, the interactions between the 90

brain areas were scaled in proportion to their white matter structural
connectivity (Fig. 1A). For the present study, we used the structural
connectivity between the 90 AAL regions obtained in a previous study
(Deco et al., 2017a) averaged across 16 healthy young adults (5 females,
mean ± SD age: 24.75 ± 2.54). Briefly, for each subject, a 90 � 90
structural connectivity matrix C was obtained by applying tractography
algorithms to Diffusion Tensor Imaging (DTI) following the same meth-
odology described in Cabral et al. (2012b) where the connectivity Cnp
between regions n and p is calculated as the proportion of sampled fibres
in all voxels in region n that reach any voxel in region p. Since DTI does
not capture fiber directionality, Cnp was defined as the average between
Cnp and Cpn. Averaging across all 16 participants resulted in a structural
connectivity matrix C representative of healthy young adults.
Whole-brain computational model

We simulated the BOLD activity at the whole-brain level using a
phenomenological computational model, which emulates the ultra-slow
resting-state dynamics captured by the BOLD signal by simulating the
interactions between brain areas on this time scale when coupled
through the anatomical structural connectivity (Kringelbach et al., 2015;
Deco et al., 2017b). Notably, Jobst et al. (2017) have recently shown that
the model parameters can be adjusted in order to describe different brain
states such as wakefulness and deep sleep. The model consists of 90
coupled dynamical units (nodes) representing the 90 cortical and
subcortical brain areas from the AAL parcellation explained above.

The BOLD activity of each brain area (node) is described by the
normal form of a supercritical Hopf bifurcation (see Fig. 1A), which is the
canonical model for studying the transition from noisy to oscillatory
dynamics (Kuznetsov, 1998), as in (Deco et al., 2017b; Jobst et al., 2017;
Saenger et al., 2017a). When coupled together using brain network ar-
chitectures, the complex interactions between Hopf oscillators have been
shown to successfully replicate features of brain dynamics observed at
different time-scales including electrophysiology (Freyer et al., 2011,
2012), magnetoencephalography (Deco et al., 2017a) and fMRI (Krin-
gelbach et al., 2015; Deco et al., 2017b). Since we were interested here in
modeling the slow BOLD signal fluctuations observed in the different
brain states, we adjusted the intrinsic frequency fn¼ωn/2π of each node n
to the empirical peak frequency of the BOLD signal in each brain region
and for each brain state, as in Deco et al. (2017b) within the frequency
range 0.04–0.07 Hz which has been shown to be the most reliable and
functionally relevant for studies of resting-state activity (Biswal et al.,
1995; Achard et al., 2006; Buckner et al., 2009; Glerean et al., 2012). The
distributions of peak frequencies are reported in Figs. S1 and S2 in the
Supplementary Information.

The dynamics of an uncoupled node n is given by the following set of
coupled dynamical equations, which describes the normal form of a su-
percritical Hopf bifurcation in Cartesian coordinates:

dxn
dt

¼ �
an � x2n � y2n

�
xn � ωnyn þ βηnðtÞ (1)

dyn
dt

¼ �
an � x2n � y2n

�
yn þ ωnxn þ βηnðtÞ (2)

where ηnðtÞ is additive Gaussian noise with standard deviation β. This
normal form has a supercritical bifurcation at an ¼ 0, so that if an>0 the
system engages in a stable limit cycle with frequency fn¼ωn/2π and for
an<0 the local dynamics returns to a stable fixed point representing a low
activity noisy state.

To model the whole-brain dynamics we added an additive coupling
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term representing the input received in node n from every other node p,
which is weighted by the corresponding structural connectivity Cnp. This
input was modeled using the common difference coupling, which ap-
proximates the simplest (linear) part of a general coupling function.
Thus, the whole-brain dynamics was defined by the following set of
coupled equations:

dxn
dt

¼ �
an � x2n � y2n

�
xn � ωnyn þ G

XN
p¼1

Cnp

�
xp � xn

�þ βηnðtÞ (3)

dyn
dt

¼ �
an � x2n � y2n

�
yn þ ωnxn þ G

XN
p¼1

Cnp

�
yp � yp

�þ βηjðtÞ (4)

where G denotes the global coupling weight, scaling equally the total
input received in each brain area. We fixed the noise standard deviation
to β ¼ 0.02 and the mean structural connectivity to <C>¼0.2, in order to
be in the same range of parameters previously explored in Deco et al.
(2017b) and Jobst et al. (2017).

While the oscillators are weakly coupled, the periodic orbit of the
uncoupled oscillators is preserved. Please note that we do not address
here the case of non-linear coupling, in which the next non-vanishing
higher order term following a Taylor expansion of the full coupling
should be considered (Kuramoto, 1984; Pikovsky et al., 2003).

Due to the mesoscopic nature of the ultra-slow Hopf model consid-
ered herein - which explicitly neglects the contribution of faster neuro-
physiological rhythms - the variable xn directly emulates the ultra-slow
dynamics of the BOLD signal at each node n, without the need to apply
an hemodynamic response function, which is necessary in more detailed
models of neuronal activity (see also Cabral et al. (2017) for a review
exposing this difference between neuronal and mesoscopic models). The
global coupling parameter G is the control parameter with which we
adjusted the model to the dynamical working region where the simula-
tions optimally fit the empirical data (Deco et al., 2017b; Jobst
et al., 2017).

Fitting the model to empirical data
To obtain a representative model of BOLD activity in both wakeful-

ness and deep sleep, we first adjusted the model parameters to fit the
spatio-temporal dynamics of BOLD signals recorded in each brain state
and in each dataset.

In order to mimic the unperturbed basal dynamics in wakefulness and
deep sleep, we followed the study by Jobst et al. (2017) who performed a
careful exploration of the model's parameter space in terms of the global
coupling G and the bifurcation parameter a in these two brain states. In
particular, they have found that the optimal fit was obtained when the
nodes operate in the vicinity of the bifurcation (�0.1 � a � 0) and, for a
fixed a in this range, consistently occurred for higher G during wake-
fulness as compared to sleep (Jobst et al., 2017). As such, we fixed the
local bifurcation parameters at an ¼ 0 for all nodes, i.e. at the edge of a
Hopf bifurcation describing the transition from a noisy to an oscillatory
state as in Deco et al. (2017b), and adjusted only the global coupling
parameter G in order to match the global level of BOLD phase synchro-
nization measured empirically in each brain state, the most sensitive
measure to distinguish the two brain states found in Jobst et al. (2017).

To match the level of BOLD phase synchronization, the BOLD signals
(both empirical and simulated) were band-pass filtered within the
narrowband 0.04–0.07 Hz and the time-varying phases φn(t) of each
narrowband signal were computed using the Hilbert transform (Fig. 1B)
(Glerean et al., 2012; Ponce-Alvarez et al., 2015). The Hilbert transform
represents a signal, s(t), in the time domain as a rotating vector with an
instantaneous phase, φ(t), and an instantaneous amplitude, A(t), as
sðtÞ ¼ AðtÞcosðφðtÞÞ. Knowing the instantaneous phase φi(t) of each
narrowband BOLD signal at node n, the level of global BOLD phase
synchronization over time is given by the Kuramoto order parameter
(Kuramoto, 1984):
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RðtÞ ¼
���XN eiφnðtÞ

��� N (5)
�
�
n¼1

�
�
,

where i is the imaginary unit and N is the total number of brain areas. If
BOLD signals are completely independent, the N phases are uniformly
distributed and R is nearly zero, whereas if the BOLD signals are fully
synchronized, all phases are equal and R¼ 1. For each value of G ranging
between 0 and 1 (with increments of 0.01), we compute the absolute
difference between the mean levels of synchronization of simulated and
empirical BOLD signals for each brain state and each dataset (see Fig. 2,
red lines). Note that, for the mean levels of BOLD phase synchronization
to be meaningful, the global signal should not be regressed out.

In addition, for each value of G, we calculated a simulated FC matrix
as the 90 � 90 correlation matrix between the simulated BOLD signals
(xn) in all 90 regions. Correlation values were converted to z-values
applying Fisher's transform and the simulated FC matrices were
compared to the empirical ones obtained for each brain state (see
Methods - fMRI processing) by calculating the Pearson correlation coeffi-
cient between the elements of the upper triangular part of both empirical
and simulated FC matrices.
Off-line perturbation protocols

Despite being purely phenomenological, the Hopf model is particu-
larly well-suited for perturbative studies because each brain area n has a
local parameter an that defines the distance to a supercritical Hopf
bifurcation, inducing synchronized BOLD fluctuations for an>0 and
strong noise for an<0 (Kringelbach et al., 2015; Deco et al., 2017b). We
used two different off-line perturbation protocols eliciting strong de-
viations from the basal (i.e. unperturbed) state dynamics by artificially
imposing more synchronization or temporarily suppressing synchroni-
zation in different brain regions. In order to attenuate the local effects
associated to the perturbation of specific brain areas, we systematically
repeated each protocol 3000 times, perturbing a different set of randomly
selected brain regions in each trial.
Fig. 2. Adjusting the whole-brain Hopf model to the basal brain activity of wakefulnes
parameters of the whole-brain Hopf model in order to obtain a representative model of the bra
studies (Frankfurt and Li�ege) (Jobst et al., 2017). The red line shows the difference between sy
degree of simulated BOLD signals matches the one measured empirically. In addition, the black l
for the range where the synchronization error is optimal.
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1) Synchronization perturbation protocol: 1 to 10 randomly selected brain
regions were simultaneously perturbed for 100 s by shifting their
local bifurcation parameter values to the positive range (an ¼ 0.6),
which imposes more synchronized oscillatory BOLD signals.

2) Noise perturbation protocol: To temporarily suppress synchronization,
the local parameters of 1–10 randomly selected brain regions were
simultaneously shifted to the negative region (ai ¼ �0.6) for 100 s
eliciting more noisy behaviour and hence causing an artificial per-
turbative destruction of the basal synchronization across the different
brain areas.

In both protocols, the bifurcation parameters were reset to zero after
perturbation.
Integration over time

To characterize the level of brain-wide BOLD signal interactions
across time, we used an observable measure that summarizes in a single
value for each time point the level of Integration across the whole brain
previously defined in Deco et al. (2015), and which characterizes the
broadness of communication between brain regions at the instantaneous
level (Lord et al., 2017).

To calculate the Integration, first we use the BOLD signal phases φn(t)
(obtained using the Hilbert transform, see Methods - Fitting simulations to
empirical data) to calculate a phase locking matrix P, describing for each
time point the level of pair-wise phase synchronization between regions n
and p as:

PnpðtÞ ¼ Re
���e�3ðφnðtÞ�φpðtÞÞ��� ¼ cos

�
φnðtÞ � φpðtÞ

�
(6)

Based on this phase locking matrix, we compute the level of inte-
gration I(t) at each time point t as the size of the largest connected
component of P(t) averaged over thresholds (Deco et al., 2015). More
specifically, for a given absolute threshold θ between 0 and 1 (scanning
the whole range), P is binarized (0, if |Pnp| < θ, θ and 1 otherwise). For
each threshold θ and for each time t, the number of nodes in the largest
s and deep sleep. Before applying the perturbative protocol, we first define the model
in activity recorded during wakeful rest and deep sleep using fMRI from two independent
nchrony degrees, such that, when the synchrony error reaches zero, the mean synchrony
ine shows the correlation between empirical and simulated FC matrices, which is kept high
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connected component of P(t) is extracted (see Fig. 1C). The largest
component is the largest sub-graph of the binarized P(t), in which any
two vertices are connected to each other by paths, and which connects to
no additional vertices. In order to be independent of a given threshold,
we repeat this procedure scanning all possible thresholds (between 0 and
1) and define the Integration at each time t, I(t), as the integral of the
largest component curve as a function of the thresholds. We have recently
shown that this measure is both sensitive and specific with the ability to
classify FC differences associated with different diseases and brain states
(Deco et al., 2015). Following this procedure, we calculated the Inte-
gration over 200 s of simulated BOLD signals in the basal conditions and
right after perturbation offset.

Perturbative Integration Latency Index

The Perturbative Integration Latency Index (PILI) characterizes the
recovery of the perturbed brain dynamics to regain basal equilibrium
after suppression of the perturbation (see Fig. 1D). The key idea is to
characterize the latency of extinction of a massive stimulation perturbing
a basal state. Thus, to determine when the evoked perturbative dynamics
relaxes back to the basal dynamics of wakefulness or deep sleep after the
offset of perturbation, we measure the alterations in the level of inte-
gration over time (see Fig. 1D).

In more detail, we first compute the Integration for 200 s of the
simulated unperturbed basal cases, and detect the maximal and minimal
values, Ibasalmax and Ibasalmin , for each brain state (see Fig. 3, red lines). Then, we
perturb the system and compute the integration for 200 s after the offset
of perturbation, averaged across 3000 trials. The values Ibasalmax and Ibasalmin are
used as the criterion for reaching the basal values for the synchronization
and for the noisy perturbative protocols, respectively. The PILI is ob-
tained by normalizing the extrema of I to 1 at the offset of perturbation
(i.e. for t ¼ 0) and 0 at the point where the Integration reaches the basal
values and calculating the integral of that curve. Larger values of this
integral mean longer latency of extinction of the perturbative effects and
Fig. 3. Response to perturbation in silico for wakefulness and deep sleep. (Blue lines) Respo
synchronization protocol (left column) or the noise protocol (right column) during wakefulness (
of integration in the unperturbed simulated dynamics, different for wakefulness (top) and deep s
rises (right) towards the baseline values of each state (see Methods for details). For the purpose
obtained with the Li�ege dataset.
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smaller values indicate shorter latencies. The process is sketched in
Fig. 1. Significance levels were estimated over 3000 trials, calculating the
mean of the distribution and estimating the error.

Node-wise perturbations

To explore the link between localized PILI and other node-wise
metrics, we computed PILI after 1000 synchronous and noisy perturba-
tions one node at a time. We then correlated the resulting mean PILI
vectors (shown in Fig. 5A) with different metrics characterizing the
critical dynamics and the functional and structural connectivity strengths
(shown in Fig. 5B). The first index was used to explore the relationship
between PILI and critical dynamics by taking into account the bifurcation
parameters (an in equations (3) and (4)) optimized at each node n (Deco
et al., 2017b; Jobst et al., 2017). Importantly, the resulting regional PILI
values are also computed by taking into account the optimized bifurca-
tion parameter distribution, so in this part of the analysis, the values of
the bifurcation parameter across nodes are not set to ~0 but rather to
their expected values. This constrains the localized perturbations with
the “true” underlying critical dynamics allowing a closer linkage with
topology. Secondly, we used the strength (sum of connectivity weights
per node) of the mean FC matrix for both sleep and awake states. This
allowed uncovering a possible relation between PILI and the underlying
functional connectivity. Finally, we used the strength of the structural
connectivity (obtained from the SC matrix) to explore the relation be-
tween structural properties of brain connectivity and PILI. All correla-
tions were corrected for multiple comparisons. Only those correlations
with p < 0.008 were considered as significant.

Results

We investigated the differences between two brain states, wakeful-
ness and deep sleep, in healthy human participants from 2 independent
previously published studies using a new off-line perturbative approach
nses in the level of global integration after 10 random brain areas were perturbed using the
top line) and deep sleep (bottom line) averaged over 3000 trials. (Red lines) Baseline levels
leep (bottom). Once perturbation is halted (at t ¼ 0s), the integration slowly decays (left) or
of illustration, the results are shown for the Frankfurt dataset only, but similar plots were
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in which we focused on the latency that the system takes to recover back
to baseline after the offset of a strong multifocal perturbation applied off-
line (the methods are summarized in Fig. 1).

As a first step, the whole-brain computational model was adjusted to
the baseline activity of each brain state recorded with fMRI in each study
(see Methods - Fitting the model to empirical data). In Fig. 2 (red lines) we
show how the global coupling parameter G was adjusted such that the
mean degree of synchronization in simulated BOLD signals matched the
ones measured empirically in each brain state and in each dataset. We
found that this match – i.e. when the difference between the mean syn-
chronization levels reaches zero (red lines) – occurs for a very specific
value of G, which is consistently lower in deep sleep than wakefulness for
both datasets. This result goes in agreement with previous findings
suggesting that functional connectivity at the level of the BOLD signals is
stronger during wakefulness than deep sleep (Jobst et al., 2017). In
addition, we show in Fig. 2 (black lines) the correlation between the
empirical and simulated FC matrices as a function of G. This measure,
however, is less constrictive since a good fit is obtained not only for the
optimal G determined above but also when the simulated BOLD signals
highly differed from the real ones in terms of phase synchronization.

Once we obtained a representative model of the whole-brain dy-
namics of each brain state, i.e. a Wakefulness Model and a Sleep Model
(adjusted to each dataset), the models were perturbed off-line following
two distinct perturbation protocols in which we induced either more
synchronization or more noise in 1–10 random brain regions for 100 s
(see Methods - Off-line perturbation protocols). After perturbation was
stopped, we measured the perturbation-elicited changes in terms of
global Integration, which captures the brain-wide connectedness of
BOLD signals in terms of phase locking (see Methods – Integration over
time) (Deco et al., 2015; Lord et al., 2017).

In Fig. 3, we show the evolution of Integration (averaged over 3000
trials) right after the perturbation of 10 random brain areas (blue lines)
compared to the basal condition (red lines) for each model and for each
perturbation protocol. Notably, the basal Integration was consistently
higher during wakefulness (red line, top plots) than during sleep (red
line, bottom plots), which means a higher connectedness at the level of
BOLD signal phases during unperturbed wakefulness. At the offset of a
long-lasting perturbation, i.e. at t ¼ 0 (blue lines), the levels of Integra-
tion are strongly deviated from the baseline, with increased Integration
after the synchronization protocol (left plots) and decreased Integration
after the noise protocol (right plots). During the recovery period, the
levels of integration slowly decay (or rise) towards their corresponding
basal levels lasting on average more than 100 s to fully recover.
Fig. 4. Slower recoveries in the Awake model compared to the Sleep model following syste
values obtained in the awake (blue) and deep sleep (red) models as a function of the number o
values correspond to slower recovery rate. Errorbars represent the standard error of the mean ov
sleep, with p-value<10�5, in both datasets and synchronization protocols.
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Importantly, we found that each brain state, here wakefulness and sleep,
recovered differently after being submitted to the same perturba-
tion protocols.

To characterize the recovery after a long-lasting perturbation, we
defined the Perturbative Integration Latency Index (PILI), which can be
interpreted from Fig. 3 as the area between the normalized red and blue
curves. To capture only the recovery dynamics in the PILI, the curves of
perturbed integration are normalized such that I(t0)¼1 at the offset of
perturbation, irrespective of the brain state, and I¼0 at the point where
the Integration reaches the basal values. We calculated the PILI for each
brain state and each perturbation protocol with varying number of per-
turbed areas. In Fig. 4, we show the values of PILI as a function of the
number of brain regions perturbed, for each brain state and synchroni-
zation protocol. Importantly, for both datasets, we found consistently
higher PILI for wakefulness than for sleep, with significance p < 10�5,
irrespective of the number of nodes perturbed. This result shows that two
brain states, here wakefulness and deep sleep, can be dissociated based
on their dynamical response to a strong long-lasting perturbation, which
is efficiently characterised using PILI. Whether the perturbation acts on
promoting or disrupting synchronization, the recovery is consistently
longer during wakefulness than in deep sleep.

Finally, we studied the effects of perturbation on a node-by-node level
by computing the corresponding PILI profiles after both noisy and syn-
chronous perturbation in the sleep and awake brain (Fig. 5A). Because a
crucial point is to explore how this metric relates with the underlying
topology of each node, we explored the relationship between the
resulting PILI profiles and other nodal metrics. We first explored the
correlation between PILI profiles and the optimized critical dynamics of
each brain area by considering the optimized bifurcation parameters as
in Deco et al. (2017b). This correlation yielded high significant values for
both sleep (r ¼ 0.54, p < 0.0001) and wakefulness (r ¼ 0.83, p < 0.0001)
after noisy but not for synchronous perturbation (Fig. 5C, top). To
explore a possible link of localized PILI with a simpler topological metric,
we used the Strength (sum of region-specific weights) of both structural
and functional matrices, which conveniently is not sensitive to arbitrary
thresholding (Saenger et al., 2017b). Here, PILI values after noisy
perturbation significantly correlated with structural strength in both
sleep (r ¼ 0.34, p < 0.0001) and awake (r ¼ 0.52, p < 0.0001). The only
other correlation that survived correction for multiple comparisons was
that between PILI after noisy perturbation and functional strength in the
awake brain (r ¼ 0.51, p < 0.0001).
matic perturbation reveal critical slowing down of the network dynamics. Mean PILI
f random brain regions perturbed, for each dataset and perturbation protocol. Larger PILI
er 3000 trials. We found clear significant differences in PILI between wakefulness and deep



Fig. 5. Node-wise changes after noisy and synchronous perturbation in the sleep (red) and awake (blue) brain models. A) Mean Perturbative Integration Latency Index (PILI) after
1000 perturbation to each of the N ¼ 90 nodes using the Noise (top) or the Synchronization (bottom) perturbation protocols. B) Three node-wise metrics used for the comparisons in panel
C: The bifurcation parameter (alpha or a in the model equations) optimized for each node following the approach from Deco et al. (2017b) (top), the mean functional connectivity strength
Str(FC) of each node (middle) and the mean structural connectivity strength Str(SC) of each node (bottom). C) Correlation scatters between PILI and all the node-wise metrics from panel B.
p* represents a p < 0.0001, which reflects significance after correcting for multiple comparisons.
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Discussion

In this paper we introduced a novel methodological approach
designed to investigate the dynamical complexity of brain states through
their recovery from strong long-lasting perturbations using PILI. This
approach has the potential to significantly expand our understanding of
the dynamical complexity underlying different conscious and uncon-
scious states. Our results show that PILI efficiently dissociated two brain
states, here wakefulness and deep sleep, with significantly higher PILI in
wakefulness in both datasets and perturbation protocols, regardless of
the number of areas perturbed. Overall, these results show that a shift in
the dynamical regime of the brain – induced by a change in the global
coupling weight potentially linked to cholinergic levels (Deco et al.,
2014) – turns the brain more rigid to external perturbations during deep
sleep, returning faster to its equilibrium dynamics, whereas during
wakefulness the brain integrates perturbations in the dynamics for
longer. Theoretically, these results express the critical slowing down of a
system when it is shifted away from an equilibrium point (Wissel, 1984;
Van Nes and Scheffer, 2007), in line with previous EEG studies showing
that sleep is characterised by dynamical stability and loss of complexity
(Pereda et al., 1998).

Importantly, all perturbations in this work are applied off-line to a
whole-brain computational model, which allows eliciting strong unnat-
ural deviations from the basal activity with recoveries lastingmore than a
hundred seconds. The model is previously adjusted to the basal activity
recorded with fMRI in each brain state, here wakefulness and deep sleep,
resulting in two distinct models representative of each unperturbed brain
state (Jobst et al., 2017). These models can then be exhaustively per-
turbed in silico without the ethical and safety constrains of in vivo per-
turbations (Clausen, 2010; Kringelbach and Aziz, 2011). Previous studies
have used whole-brain computational models to simulate the effects of
structural lesions, i.e. by removing links or nodes, and studying its impact
in whole-brain dynamics (Cabral et al., 2012a; Vasa et al., 2015; Aerts
et al., 2016; Deco et al., 2017c). In particular, we have recently shown
that the removal of specific ‘binding’ regions impacts subsequent brain
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activity, specifically in terms of integration and information encoding
capability (Deco et al., 2017c). Rather than removing regions, we per-
turbed regions by making them either more oscillatory or more noisy and
measured the recovery of the system's global integration. Other studies
have recently started to locally perturb models of resting-state activity to
investigate their response to stimulation, particularly focusing on the
activation/stabilization of meaningful functional networks in task (Coc-
chi et al., 2015; Gollo et al., 2016; Spiegler et al., 2016). Yet the strategy
presented herein differs from previous off-line stimulation approaches
because it does not aim to simulate natural perturbative interventions
(pathological or not) but rather to further investigate why brain states
can be dissociated based on their response to perturbations, revealing
important features of their dynamical complexity.

In terms of the elicited changes resulting from the perturbation of
individual nodes, we found positive and significant correlations between
the elicited PILI and other metrics characteristic of each brain area.
Interestingly, the highest andmost significant correlations were observed
between the resulting PILI and the optimized bifurcation parameters,
which suggest a closer relationship between PILI and the critical dy-
namics of each brain area rather than with static or topological features.
Relevant to this argument, it has been recently shown that the most
relevant hubs in the brain within a functional perspective are not
necessarily those extracted after taking into account static structural
features such a rich-club ranking (Deco et al., 2017b). This observation
suggests that, although structure and function are closely related, the
intrinsic node dynamics also plays a fundamental role in promoting the
relevance of such regions. Also worth noting is that overall, correlations
were higher in the awake brain, which suggests that the link between
PILI and functional/structural metrics is tightened while awake, and
diminished during sleep. Further studies exploring this relation in more
detail would be of considerable interest.

The introduction of our novel method for revealing the dynamical
complexity following systematic perturbation is complementary to the
seminal work of Massimini and colleagues who have used TMS with EEG
for characterizing different conscious brain states (e.g. wakefulness, sleep
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and anesthesia) (Massimini et al., 2005; Ferrarelli et al., 2010; Casali
et al., 2013). In contrast to this previous method, which uses brief TMS
pulses and thus measures the weak perturbation-elicited dynamics, our
approach measures the recovery after the offset of a long-lasting pertur-
bation. Moreover, since the perturbation-evoked activity is influenced by
fluctuations in spontaneous brain activity present at the time of pertur-
bation, we reduce the effect of such fluctuations by strongly deviating the
dynamics from the basal activity through a substantial long-lasting
perturbation – only possible in a computational model - and then
measuring the recovery from this perturbation over 3000 trials.

Following a growing trend in the analysis of dynamic BOLD signal
connectivity, we consider only the coupling at the level of BOLD phases
(Glerean et al., 2012; Cabral et al., 2017; Deco et al., 2017a). Measuring
changes in phase space allows for a better characterization of the rich
BOLD signal dynamics and any changes arising from perturbations. In
particular, this makes it possible to directly determine the global level of
synchronization across the whole brain, to obtain the phase locking
matrices at the instantaneous level and derive the global level of inte-
gration over time (Deco et al., 2015). This reduction to phase space relies
on the fact that the non-linear brain dynamics shares more features with
the non-linear phenomena observed in the waves and turbulence of the
ocean than with that of a sedate pond, which can be characterised solely
with amplitude measurements. The fundamental idea behind our hy-
pothesis is that a strong perturbation to the turbulent “ocean” of brain
activity elicits alterations in phase (rather than amplitude) space.

There are a number of limitations to our analysis that deserve
mention. First, we have modeled directly the haemodynamics with a
Hopf normal form model, which presupposes that the temporal scale of
haemodynamics can be represented solely by the slow fluctuations of
neuronal activity inherent in fMRI timeseries. Second, we are charac-
terising the stability (or complexity) of coupled dynamical units - not the
neuronal dynamics generating brain signals. Practically, this means that
we have shown that changing the global (symmetric) coupling parameter
G of coupled Hopf units induces a shift in the dynamical regime of the
model, which changes its global stability (i.e. complexity). The impor-
tance of this observation has been motivated by previous results showing
that the global coupling required to emulate sleep and waking functional
connectivity in empirical data also changes (Jobst et al., 2017).

But the link between the empirical and the simulated dynamics does
not rest solely upon global coupling. It is equally important to consider
the role of specific BOLD frequencies, as the ones within the most
meaningful resting-state narrow-band. We found a wider distribution of
BOLD frequencies during sleep, which, in a network model, allows for
increased segregation and lower integration. As such, the lower BOLD
integration levels in the baseline sleep model are likely to be a combi-
nation of both the weaker coupling strength and the wider frequency
distribution obtained from empirical data. Here, we show that these two
features of brain dynamics shift the models’ dynamical regimes into
different levels of baseline integration, which may be directly or indi-
rectly related to different states of consciousness. Yet, other ingredients
and features certainly play a role in regulating the dynamical complexity
of different brain states, namely the asymmetric, region-specific and
context-sensitive coupling in real brains. Since our methodological
approach is not exclusive to the Hopf model used herein, it will be
interesting in future work to fit more realistic models of effective con-
nectivity to empirical data and pursue a more detailed characterization
along the lines above.

Here we expose two dynamical features inducing changes in the
complexity of brain activity while the underlying network structure re-
mains intact, namely the global coupling strength and the intrinsic ultra-
slow frequency of each brain area. From an analytic perspective, recent
studies on the stability and controllability of the human brain's structural
connectivity matrix have made significant achievements in relating the
dynamical complexity with the underlying network architecture (Gu
et al., 2015; Betzel et al., 2016), in particular under artificial stimulation
(Muldoon et al., 2016). Overall, such analytical studies in combination
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with the insights obtained from numerical simulations have the potential
to become important tools for the development of personalized stimu-
lation protocols.

Overall, in silico perturbations of whole-brain dynamics open up for a
new level of artificial perturbative studies unconstrained by ethical
limitations allowing for a deeper investigation of the dynamical prop-
erties of different brain states. To introduce the model, we restricted our
analysis to two healthy brain states, wakefulness and sleep, but it would
be important to test the method on other natural or pathological brain
states such as vegetative coma, minimal conscious state, locked-in syn-
drome and various levels of anesthesia (Casali et al., 2013; Deco and
Kringelbach, 2014) or in altered states elicited by drugs such as
morphine, amphetamines, psilocybin and LSD (Carhart-Harris
et al., 2014).

Beyond the dissociation between brain states via massive perturba-
tion protocols, the perturbative approach proposed herein offers a new
strategy for effectively introducing probabilistic causality into neuro-
imaging studies and may be modified to further explore the minimal
perturbation necessary to induce a significant dissociation between
states, or to evaluate the efficacy of different perturbation protocols
applied to different target regions. By offering the possibility to causally
perturb a whole-brain computational model that fits human empirical
neuroimaging data it could become a tool for determining where effi-
cacious perturbation might help rebalance the dynamical complexity of
the brain (Kringelbach et al., 2011; Saenger et al., 2017a). It may
therefore be useful in clinical contexts for predicting the outcome of DBS
or TMS for specific disorders, perhaps even at the individual level.
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