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A B S T R A C T

Cognitive processing requires the ability to flexibly integrate and process information across large brain networks.
How do brain networks dynamically reorganize to allow broad communication between many different brain
regions in order to integrate information? We record neural activity from 12 epileptic patients using intracranial
EEG while performing three cognitive tasks. We assess how the functional connectivity between different brain
areas changes to facilitate communication across them. At the topological level, this facilitation is characterized
by measures of integration and segregation. Across all patients, we found significant increases in integration and
decreases in segregation during cognitive processing, especially in the gamma band (50–90 Hz). We also found
higher levels of global synchronization and functional connectivity during task execution, again particularly in the
gamma band. More importantly, functional connectivity modulations were not caused by changes in the level of
the underlying oscillations. Instead, these modulations were caused by a rearrangement of the mutual synchro-
nization between the different nodes as proposed by the “Communication Through Coherence” Theory.
Introduction

Intracranial electroencephalography (iEEG) recordings from the
human brain provide a unique opportunity to study cognitive functions
measuring neural activity at the mesoscopic level. Beyond the high
temporal resolution intrinsic to iEEG measurements, this technique also
allows higher levels of spatial resolution and enhanced signal-to-noise
ratio (Engel et al., 2005; Lachaux et al., 2003). These advantages have
led scientists to use the technique (Lachaux et al., 2012) to study several
cognitive processes such as attention (Musch et al., 2014), visual
perception (Ossandon et al., 2012; Bertrand et al., 2014), language
(Sahin et al., 2009; Chan et al., 2011; Hamame et al., 2014), memory
(Kucewicz et al., 2014; Greenberg et al., 2015; Haque et al., 2015), de-
cision making (Perez et al., 2015), emotion (Murray et al., 2014; Boucher
et al., 2015) and consciousness (Gaillard et al., 2009). Most of this
research has attempted to assign functions to specific local brain areas by
correlating task-performance with measurements of neural activity - see
also recent coherence network studies (Kingyon et al., 2015; Zheng et al.,
2017; Mercier et al., 2015). Furthermore, most studies using iEEG have
focused mainly on single-electrodes analysis, using predominantly
event-related potentials (Lachaux et al., 2012) or spectral analysis
(Kahana, 2006). Here, we take a different perspective. Instead of focusing
on single electrodes, we assess changes in functional connectivity ana-
lysing all the implanted electrodes.

In contrast to the regional view of brain function, growing evidence
reveals that human cognition relies on the flexible integration of infor-
mation widely distributed across different brain regions (Bressler and
Menon, 2010; Deco et al., 2015; De Vico Fallani et al., 2008; Wang et al.,
2015; Kitzbichler et al., 2011; Palva et al., 2010; Valencia et al., 2008;
Bassett et al., 2011; Chai et al., 2016; Ekman et al., 2012; Kinnison et al.,
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Table 1
Demographic and clinical characteristics of each patient.

Patient Gender Age
(years)

Epileptogenic zone
laterality

Seizure onset zone Implanted
Regions

N� of electrodes
implanted

N� unipolar
channels

N� of bipolar channels
for analysis

A Male 38 Left Mesial temporal and
amygdala

L (F-T-I-P) 8 85 76

B Male 21 Left Anterior temporal L (F-T-I-P-O) & R
(F-T)

15 125 95

C Male 44 Right Anterior temporal L (T) & R (F-T-P) 12 125 104
D Male 44 Right Temporo-parietal L (T) & R (F-T-I-P) 16 127 101
E Female 43 Left Anterior medial

temporal
L (F-T-I-P-O) 11 127 112

F Male 25 Right Temporo-parieto
occipital

R (F-T-I-P-O) 14 127 105

G Male 23 Left Temporal L (F-T-I-P) 13 125 102
H Female 43 Left Posterior Temporal L (F-T-I-P) 14 125 103
I Male 44 Left Mesial Temporal L (F-T-I-P) 12 123 105
J Female 46 Left Anterior medial

temporal
L (F-T-I-P-O) 11 124 107

K Male 43 Left Mesial Temporal L (F-T-P) 9 103 94
L Male 23 Right Anterior temporal R (F-T-P) 15 125 96

R: Right; L: Left; F: Frontal; T: Temporal; P: Parietal; O: Occipital; I: Insula.

Fig. 1. Paradigm, behavioural performance and implantation scheme. A) Schematic example of the experimental paradigm of the picture-naming task. After
an interval of 1000ms for preparation, each target picture was presented and remained on the screen for 2000ms. B) Picture naming accuracy for each patient. On
average, patients achieved 83.2� 11.3% accuracy on test items (N¼ 228). C) Example of the intracerebral implantation scheme for iEEG recordings in patient E.
Eleven electrodes were implanted in the left hemisphere.
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2012; Wang et al., 2016). In these studies, cognitive processing increases
the global integration of information across neural networks, while at the
same time leads to a decrease in their modularity (Kitzbichler et al.,
2011; Ekman et al., 2012; Kinnison et al., 2012; Bola and Sabel, 2015;
Vatansever et al., 2015; Godwin et al., 2015; Liang et al., 2016). Although
some iEEG studies have observed increased synchronization by task de-
mands (Gaillard et al., 2009; Becher et al., 2015; Axmacher et al., 2008),
no one has assessed integration and segregation dynamics. Furthermore,
limited knowledge is available regarding the mechanisms that underlie
changes in integration/segregation associated with cognitive processing.

The “Communication Through Coherence” (CTC) theory states that
the communication between different neuronal populations could be
modulated by the synchronization between them (Deco and Kringelbach,
2016). Indeed, two populations of neurons may communicate most
effectively when they are coherent, i.e. when their excitability level is
coordinated in time. The CTC theory suggests that effective connections
in a network can be shaped through phase relations, more specifically
through gamma- and beta-band (30–90 Hz) synchronization, as reported
experimentally (Fries, 2005, 2009, 2015). Thus, oscillations are proposed
to dynamically shape the computational role of different neuronal groups
linked through static structural connectivity. Several empirical studies
support task-induced changes in synchronization at the level of individ-
ual regions during selective attention (Womelsdorf et al., 2006), working
memory (Howard et al., 2003), and motor control (Ball et al., 2008).
Moreover, such task-induced changes in synchronization have been
observed between distant cortical regions during working memory
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(Jones and Wilson, 2005), long-term memory encoding (Fell et al.,
2001), visual attention (Gregoriou et al., 2009), and sensorimotor inte-
gration (Roelfsema et al., 1997).

Here, we explore how cognitive processing modulates the level of
integration and segregation of information in human brain networks
(Deco et al., 2015), and how this is related to CTC theory. To do so, we
recorded iEEG data from depth electrodes stereotactically implanted for
pre-surgical diagnosis in 12 epileptic patients performing three different
cognitive tasks. The iEEG electrodes used a stereo-
electroencephalography (SEEG) implantation methodology and covered
broad brain regions including cortical as well as subcortical regions.
Hence, we were able to assess global changes in a broad brain network.
Furthermore, we also assessed how integration and segregation relate to
synchronization rather than to the oscillations level (amplitude). Finally,
we would like to emphasize that our claims about the modulation of
integration/segregation and the validity of CTC theory are global, since
they are independent from the location of the electrodes (i.e. node
location, which was different for each patient) and type of cognitive
processing (three different cognitive tasks were used).

Materials and methods

Ethics statement

The Clinical Research Ethical Committee of the Municipal Institute of
Health Care (CEIC-IMAS) approved this study. Following the Declaration



Fig. 2. Data processing flow chart. The iEEG data is recorded from 85 up to 127 unipolar channels on each patient. The bipolar montage is constituted offline by
subtracting the neural activity recorded by neighbouring contacts within the same electrode array. The data is first band-pass filtered at 1–150 Hz, and further
band-pass filtered into narrow frequency bands [fcarrier-2, fcarrierþ2 Hz] (we consider here carrier frequencies fcarrier¼ 1–130 Hz in steps of 4 Hz). By the Hilbert
transform the corresponding amplitude envelopes are computed to further compute the envelope FC matrix. The continuous data is segmented into windows of
�500 to 0ms (pre-stimulus window) and 0–500ms (post-stimulus window), around stimulus presentation. In order to characterize the organization of the
network under both windows, we used the integration and segregation measures of global brain function.
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of Helsinki, patients were informed about the procedure and they gave
their written consent before the experiment.

Participants

Twelve participants (N¼ 12) (3 women; all right-handed; mean age
36.4� 10.1 years-old), evaluated for presurgical diagnosis in the Epi-
lepsy Monitoring Unit of the Hospital del Mar (Barcelona, Spain),
participated in the study. All patients were stereotactically implanted
with depth electrodes for invasive presurgical diagnosis using a stereo-
tactic ROSA robotic device (Medtech, France). The location of the elec-
trodes was established only for clinical reasons using a SEEG approach.
The implantation schemas were similar between all patients given that
they were all under investigation for temporal lobe epilepsy. The number
of electrodes used varied among 8 to 16 for patient with 5–15 contacts
each (diameter: 0.8mm; contacts 2mm long, 1.5mm apart) (Dix-
iM�edical, France). All patients underwent an extensive neuropsycholog-
ical evaluation and had normal or corrected-to-normal vision. They were
within the normal range of education having completed from primary to
high academic level. Table 1 summarizes personal data, pathological
information and overview of implanted electrodes for each patient. Since
we aim to study the network dynamics supporting cognitive processes
under normal circumstances, patients were assessed in absence of phar-
macological treatment. They were tested at least three days after the last
administration of the drug.

Cognitive tasks

Picture-naming task
Participants were asked to name aloud in Spanish, as fast and accu-

rately as possible, 228 pictures presented in three different blocks. Pic-
tures were black & white line drawings of familiar objects from a wide
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range of semantic categories selected from the Snodgrass and Vander-
wart (1980) set. Each picture appeared once centrally and sequentially
on the computer screen in a pseudo-random order for 2000ms followed
by a fixation cross for 1000ms (see Fig. 1).

Size-judgement task
Participants were instructed to indicate via button press if the pre-

sented Spanish word represented an object larger than one-foot box in
any dimension. Word stimuli were 68 items from two different cate-
gories: animals andman-made objects. Half of the words in each category
represented objects larger than one foot. Words were auditory-presented
through the computer speakers. Each word was presented sequentially in
a pseudo-random order followed by an inter-trial lapse of 3500ms.

Lexical-decision task
Participants were instructed to indicate whether the letter string

presented in each trial written on a computer screen was a real word (e.g.
run, table) or a pseudo word (e.g. lun, tible). We included four types of
real words: motion verbs (e.g. run), static verbs (e.g. think), concrete
nouns (e.g. table) and abstract nouns (e.g. theory). The task included a
total of 150 trials. Each word was presented once centrally and sequen-
tially on the computer screen in a pseudo-random order for 2000ms
followed by a fixation cross for 1000ms.

The three tasks had different stimulus presentation modality. This
allowed us to assess neural activity elicited when retrieving conceptual
knowledge from a lexical form, from an object depicting a concept and
from a written lexical form.

Stimulus were presented using the software Sketchbook Processing
2.2.1 (Programming Software, 2001 https://processing.org/) on a laptop
computer at an approximate size of 5 degrees of visual angle. For the
picture-naming task, the experimenter transcribed the responses and
provided an accuracy score. For the size-judgement and lexical-decision

https://processing.org/


Fig. 3. Results analysis patient K for the picture-naming task. Panel A shows a significant increase in the integration during cognitive processing. The greatest
effect is observed in the gamma range (50–90 Hz). The red line corresponds to pre-stimulus window, the blue line corresponds to post-stimulus window, the
shaded error regions reflect the standard deviation across trials and green dots indicate a statistical significance of p< 0.05 (N¼ 1000). Complementary to the
integration, panel B shows a decrease of the modularity in the same frequency range. Panel C shows that there are no iEEG oscillations amplitude changes in any
frequency induced by the stimulus (both curves are strongly overlapped). This result indicates that the increase of integration and decrease of modularity could
not be explained by changes in the oscillations amplitude. Panel D shows an increase of mean synchronization over a broad range of frequencies that is more
conspicuous in the gamma band range (50–90 Hz) for the post-stimulus window. Panel E shows that the functional connectivity behaves coherently with the other
results, as it increases as a function of the stimulus presentation particularly in the gamma range. Panel F plots the amplitude of the oscillations envelope at 60 Hz
for each bipolar channel and pre- and post-stimulus window. There are no noticeable modulations across single bipolar channels between pre- and post-stimulus
window. Note that the sharp peaks at 50 and 100 Hz are due to the power-line noise created by the electrical power.

Fig. 4. Inter pre-stimulus presentation window comparison for the picture-naming task. Panel A shows the result of the measure of Integration, and panel B
shows the result of the measure of Segregation, when contrasting half of pre-stimulus trials against the other half. There is no modulation of any of the two
measures before stimulus presentation. The red line corresponds to 50% of pre-stimulus windows; blue line corresponds to the other 50% of pre-stimulus window.
The shaded error regions reflect the standard deviation across trials. Green dots indicate a statistical significance of P< 0.05 (N¼ 1000).
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task, responses were collected through keyboard input and response
times recorded and timed in milliseconds. An electronic processor
“Arduino, UNO”was used to connect and synchronize both hardware; the
XLTEK system with the computer (MacBook Pro). The application
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interfaced with an Arduino board that in turn was connected to the EEG
amplifier, and at each trial a signal was sent through the Arduino to the
EEG.



Fig. 5. Integration measure results for each patient. The panels show the results for every single patient for the picture-naming task. As can be seen, despite
the heterogeneity of the recording sites, all patients show a significant increase of the integration related to cognitive processing. For all patients, the greatest
effect was found in the gamma range. The red line corresponds to pre-stimulus window, blue line corresponds to task condition, the shaded error regions reflect
the standard deviation across trials and green dots indicates a statistical significance of p< 0.05 (N¼ 1000).

J. Cruzat et al. NeuroImage 172 (2018) 492–505
iEEG data acquisition and pre-processing

Neurophysiological responses were registered by the iEEG system
from deep multichannel electrodes (DIXI Microtechniques, Besançon,
France). On average, each patient had 13� 2 electrodes implanted
(range 8–16) with a total of 120�13 recording contacts (range 85–127).
The data were acquired continuously by the Neuroworks XLTEK system
(version 6.3.0, build 636) at 32 kHz with a headbox of 128 channels
recorded at a sampling frequency of 500Hz. For our analysis, we
considered all channels placed in both cortex and subcortical structures.
Channels placed in white matter or misplaced were disregarded.

A bipolar montage was constituted offline to increase spatial resolu-
tion by removing any confounds from the common reference signal
(Lachaux et al., 2003; Jerbi et al., 2009). Bipolar signals were derived by
differentiating neighbouring electrode pairs of recorded and not rejected
consecutive channels within the same electrode array (Lachaux et al.,
2012; Boucher et al., 2015; Gaillard et al., 2009; Burke et al., 2013). The
continuous iEEG data was first high-pass filtered at 1 Hz and low-pass
filtered at 150Hz. To remove common line contamination an extra
notch filter was applied at 50 and 100Hz. In order to have specific
spectral information, we analysed the spatio-temporal correlations of the
Band Limited Power (BLP) at a given carrier frequency. This is a standard
approach introduced in the context of MEG analysis (Brookes et al.,
2011a). For that, at a given carrier frequency fcarrier (we consider here
fcarrier¼ 1–130Hz in steps of 4 Hz) we band-pass filtered the signal
within the narrow band [fcarrier-2, fcarrierþ2 Hz] (we used the second
order Butterworth filter) and computed the corresponding envelope
using the Hilbert transform (Brookes et al., 2011b; Cabral et al., 2014).
The Hilbert transform yields the associated analytical signals. The ana-
lytic signal represents a narrowband signal, s(t), in the time domain as a
rotating vector with an instantaneous phase, φ(t), and an instantaneous
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amplitude, A(t), i.e., s(t) ¼ A(t)cos(φ(t)). The phase and the amplitude
(envelope of that carrier frequency) are given by the argument and the
module, respectively, of the complex signal z(t), given by z(t) ¼ s(t)þi.H
[s(t)], where i is the imaginary unit and H[s(t)] is the Hilbert transform of
s(t). We further consider only the slow components of the envelope A(t)
by filtering the amplitudes again below 12 Hz (Nir et al., 2008). Finally,
the slow component of the envelope of each brain node -which corre-
sponds to each bipolar channel-at a given carrier frequency was used to
calculate the envelope FC (see subsection below, Data Analysis).

In order to test another possible definition of integration, we also used
the monopolar montage. Spatial resolution was increased by removing
any confounds from the common reference signal for each time point. In
this case, brain nodes correspond to each single monopolar channel.
Data analysis

Envelope functional connectivity (FC)
For the three tasks, all trials were considered. The data was

segmented into two windows around stimulus presentation: the first one
spanning from �500 ms to 0 from the stimulus presentation (pre-stim-
ulus window), and the second one from 0 to 500ms from stimulus onset
(post-stimulus windows). We defined an Envelope FC matrix of the
continuous bipolar iEEG data for pre- and post-stimulus windows as a
matrix of Pearson's correlations of the corresponding amplitude enve-
lopes, i.e. the slow components of the BLP of iEEG signals at a given
carrier frequency between two brain areas over the whole-time window
for a given window (pre- and post-stimulus). Thus, the mean FC is spe-
cific for each narrow band frequency window.

Phase-lock matrix
For each time point we calculated the phase lock matrix describing



Fig. 6. Segregation measure results for each patient. The panels show the results of segregation (measured by the modularity) during pre- and post-stimulus
window for the picture-naming task. For all patients, there is a significant decrease of the segregation during cognitive processing and the greatest effect can be
seen in the gamma range (50–90 Hz). The red line corresponds to pre-stimulus window, blue line corresponds to post-stimulus window, the shaded error regions
reflect the standard deviation across trials and green dots indicates a statistical significance of p< 0.05 (N¼ 1000).

Fig. 7. Group Analysis. Panel A shows a significant increase in integration during cognitive processing for almost all frequencies, but with the greatest effect in
the gamma range (60–100 Hz) as seen on each single subject. Complementary to the integration, panel B shows a decrease of the modularity which is more
prominent in the high gamma range. The red line corresponds to pre-stimulus window, the blue line corresponds to post-stimulus window, the shaded error
regions reflect the standard deviation across trials and green dots indicates a statistical significance of p< 0.05 (N¼ 1000).
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the global state of synchronization across all network nodes using the
bipolar montage. The elements of the phase-lock matrix are given by:

PijðtÞ ¼ e�3jφiðtÞ�φjðtÞj

where φiðtÞ is the extracted phase of node i at time t (at a given carrier
frequency using the Hilbert transform as specified above). We used the
phase-lock matrix at a specific single time point to calculate the inte-
gration as specified below.
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Integration
We used the measure of integration introduced by Deco et al (2015)

defined at the network level, to characterize the level of broadness of
communication between regions across the whole brain. After filtering
the data, we calculated the envelope FC for both, the pre- and
post-stimulus windows. Then, we define integration as the size of the
largest connected component in the FC matrix. That is, the number of
nodes of the largest connected graph in the binarized FC matrix obtained
after thresholding it. More specifically, for a given absolute threshold θ
between 0 and 1 (scanning the whole range), the FC (using the criteria



Fig. 8. Envelopes' Amplitude at 60 Hz across electrodes for each patient. The panels show the results of the mean amplitude and SD at 60 Hz for each bipolar
channel and both pre- and post-stimulus window for the picture-naming task. For all patients, there is no noticeable modulation across single bipolar channels
between pre- and post-stimulus windows. The red line corresponds to pre-stimulus window and the blue line corresponds to post-stimulus window. The shaded
error regions reflect the standard deviation across trials. Note the strong overlap of both lines. Green dots indicate a statistical significance of p< 0.05 (N¼ 1000).

Fig. 9. Correlation between Integration and Segregation. The figure
shows the coefficient of determination between the integration and segrega-
tion measures across patients (N¼ 12) at 60 Hz. The R2 represents the pro-
portion of variance explained by a linear model. Note that both measures are
highly correlated.
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jFCijj<θ, i. e a value of 0 and 1 otherwise) is binarized and the largest
subcomponent (see definition below) extracted as a measure of integra-
tion. To get a measure that is independent of the threshold, this curve is
integrated in the range of thresholds between 0 and 1. The integration
measure is then normalized by the maximal number of connected brain
areas (i.e. all N areas) for each integration step and by the number of
integration steps such that the maximal integration is normalized to 1.
498
Note, that the concept of integration is designed to account for the
broadness of communication across the brain, and thus require consid-
ering positive and negative correlations as potentially establishing a
communication link. Therefore, we took the absolute values of the FC
correlations. In other words, we quantified the broadness of communi-
cation (measured by means of correlation) regardless of whether the
correlation values were negative or positive.

In graph-theoretical terms, subcomponents are extracted from the
undirected graph defined by the binarized matrix (which itself is
considered as an adjacency matrix). More precisely, a subcomponent is a
subgraph in which paths connect any two vertices to each other, and
which connects to no additional vertices in the super-graph (Deco et al.,
2015). A vertex u is said to be connected to a vertex v in a graph G if there
is a path in G from u to v. The concepts of subgraph and super-graph are
defined as following: Let H be a graph with vertex set V(H) and edge set
E(H), and similarly let G be a graph with vertex set V(G) and edge set
E(G). Then, we say that H is a subgraph of G if V(H) � V(G) and E(H) �
E(G). In such a case, we also say that G is a super-graph of H.

Segregation
Complementary to the integration, we used the modularity (Rubinov

and Sporns, 2011) as a measure of segregation. Following Rubinov and
Sporns (2011), modularity is defined as a measure of the goodness with
which a network is optimally partitioned into functional subgroups, i.e. a
complete subdivision of the network into non-overlapping modules, and
supported by densely connected network communities. We consider the
modularity of our envelope FC matrix. This matrix contains positive and
negative weights, namely the corresponding correlation between two
nodes. The modularity measure we use is given by,

QGJA ¼ 1
vþ þ v�

X
ij

h�
wþ

ij � eþij
�
�
�
w�

ij � e�ij
�i

δMiMj



Fig. 10. Results analysis patient K for the Lexical Decision and Size-Judgement Task. Panels A and D shows a significant increase in the integration in the
post-stimulus window (red line) compared to the post-stimulus window (blue line). The greatest effect is observed in the gamma range (50–90 Hz). The shaded
error regions reflect the standard deviation across trials. Green dots indicate a statistical significance of p< 0.05 (N¼ 1000). Complementary to the integration
measure, panels B and E shows a decrease of Segregation in the same frequency range. Panels C and F shows that there are no oscillations' envelope amplitude
changes in any frequency induced by the stimulus (both curves are strongly overlapped). Note that the modulatory effect is almost the same for both tasks.
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Where the total weight, V� ¼ P
ij
W�

ij , is the sum of all positive or

negative connection weights (counted twice for each connection), being
wij

þ 2 (0,1] the weighted connection between nodes i and j. The chance-

expected within-module connection weights e�ij ¼ s�i s
�
j

v� , where the
strength of node i, S�i ¼ P

j
W�

ij , is the sum of positive or negative

connection weights of i. The delta δMiMj¼ 1 when i and j are in the same
module and δMiMj¼ 0 otherwise (Newman, 2006). This definition is a
generalisation of the standard measure of modularity for matrices with
nonnegative weights, which is given by the average difference between
present within-module connection weights wij

þ and chance-expected
within-module connection weights eijþ. As mentioned above, here we
consider both positively and negatively weighted connections (envelope
FC matrix). The positively weighted connections represent correlated
activation patterns and hence reinforce the placement of positively
connected pairs of nodes in the same module. The negatively weighted
connections represent anti-correlated activation patterns and reinforce
the placement of negatively connected pairs of nodes in distinct modules.
For a complete description see (Sporns, 2010).

Synchronization
We measure the global mean level of synchronization as the mean

value of the Kuramoto order parameter across time. The Kuramoto order
parameter is defined by following equation:

RðtÞ ¼

����
Pn
k¼1

eðiφk ðtÞÞ
����

n

where φk(t) is the instantaneous phase of each narrowband signal at node
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k at a given carrier frequency by using the Hilbert derived phases of the
slow component of the Band Limited Power (BLP) signals. The Kuramoto
order parameter measures the global level of synchronization of the n
oscillating signals. Under complete independence, the n phases are uni-
formly distributed and thus R is nearly zero, whereas for R¼ 1 all phases
are equal (full synchronization).

Permutation tests
To examine the reliability of the post-stimulus window modulation,

frequency-dependent statistical significance was assessed using a non-
parametric test with 1000 random permutations. The statistic test was
chosen to be the median across the differences between post and pre-
stimulus measures. Following Winkler et al (2014), we simulated the
null hypothesis of no stimulus modulation at any post-stimulus windows
by randomly permuting pre- and post-stimulus samples at each paired
trial (group exchangeability hypothesis) and computing the test statistic.
These surrogate values formed a reference distribution, against which we
compared the original statistic value. The proportion of permutations in
which surrogate values matched or exceeded the original statistic value
determined the test p-value (P) to be compared with the significance
level. We obtained a p-value for each frequency band and applied mul-
tiple comparisons corrections with the False Discovery Rate (FDR) level
of 0.05 using the Benjamini-Hochberg method.

Results

We investigate how cognitive processing modulates the level of
integration and segregation in human brain networks and how these
modulations are related to the CTC theory. To do so, we exploited the
high spatiotemporal resolution of intracranial electroencephalography
(iEEG); a technique usually employed in pharmacologically resistant



Fig. 11. Results of the analysis of sub-networks within frontal, temporal and parietal lobes for the Picture-naming task. The upper panels show a sig-
nificant increase of the integration in the post-stimulus window (red line) compared to the post-stimulus window (blue line) in the left Temporal (A) and left
Parietal (B) lobes for patient K. The greatest effect is observed in the gamma range (50–90 Hz). The shaded error regions reflect the standard deviation across
trials. Green dots indicate a statistical significance of p< 0.05 (N¼ 1000). Panels (C) and (D) shows the results of the right temporal and Frontal lobes
respectively, for patient L. The modulatory effect is seen in the whole range of frequencies.
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epileptic patients who require brain mapping before surgery (Lachaux
et al., 2012; Sperling, 1997; Serletis et al., 2014).

We recorded iEEG data in twelve patients while they were naming
pictures in their native language (Spanish) (see Materials and Methods)
(Fig. 1A). Naming accuracy was high (83.2� 11.3%) with an averaged
response time of 1350� 306ms (Fig. 1B). The task was used to drive the
modulation of the underlying brain networks related to the integration of
task-related information. For the large majority of people, language
processing is supported by a widespread large-scale network distributed
across frontal, temporal, parietal and occipital lobes in the dominant
hemisphere (Chai et al., 2016; Ferstl et al., 2008; Price, 2000). Channels
were placed in all lobes in both hemispheres, being most of them in the
left frontal, temporal and parietal lobes (see an example of implantation
scheme in Fig. 1C). All channel recordings from grey matter and
subcortical structures were considered for the analysis.

After data pre-processing, we analysed the Band Limited Power (BLP)
at a given carrier frequency (fcarrier) in order to have specific spectral
information. We band-pass filtered the iEEG signals within the narrow
band [fcarrier �2, fcarrier þ2 Hz] and considered a range of fcarrier starting
500
from 1 to 130Hz in steps of 4 Hz. We chose a bandwidth of 4 Hz because
it provides a good trade-off between phase estimation accuracy and
number of testable comparisons. In order to compute the envelope
Functional Connectivity (FC), we further computed the Hilbert transform
(Fig. 2).

To study functional network topology changes during task execution,
we contrasted differences in brain activity in two time-windows: 500ms
before the stimulus was presented: “pre-stimulus window”, and 500ms
immediately after the stimulus was presented: “post-stimulus window” As
speech production is associated with large motor activity, thus with a
significant increase of integration, we focused our analysis in a time
window far from the beginning of the motoric activity (response times
were around 1350ms and we recorded the first 500ms). In order to
characterize the organization of the network in both windows, we used
the integration and segregation measures of global brain function (see
Materials andMethods) characterizing the level of communication across
the different nodes of the brain network. We tested the statistical sig-
nificance of the network measure differences between pre-stimulus and
post-stimulus using a non-parametric method (Winkler et al., 2014).



Fig. 12. Results analysis using the FC matrix based on the monopolar montage for Patient A. Panels A and B show the integration and segregation
modulation during pre- and post-stimulus presentation, respectively, for the picture-naming task. The red line corresponds to pre-stimulus window, blue line
corresponds to post-stimulus window. The shaded error regions reflect the standard deviation across trials and green dots indicate a statistical significance of
p< 0.05 (N¼ 1000). Panels C and D shows the FC matrices computed for 60 Hz for the pre- and post-stimulus windows respectively. Panel E shows the difference
between pre- and post-stimulus windows. The differences between both matrices (C and D, expressed on E), evidence the distributed character of the modulation
across many different nodes.
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Specifically, we characterized the null hypothesis using constrained
permutations that preserved the trial grouping of the data at both time
windows (Materials and Methods).

To illustrate the results, we first focus on the ones corresponding to a
single patient (Fig. 3). The post-stimulus window as compared to the pre-
stimulus one led to an increase in neural integration and to a decrease in
neural segregation (Fig. 3A and B). For both indexes, the largest modu-
lation appeared particularly in the gamma band, around 50–90 Hz
(p< 0.05, N¼ 1000). Note that the concepts of integration and segre-
gation are measures that, by definition, are calculated independently
from each other but, at the same time, are highly correlated; when one
increases the other consistently decreases. Thus, these results show that
cognitive processing leads to an increase in neural integration and a
decrease in neural segregation.

We further analyse the correlates of these modulations associated
with the cognitive task. First, these modulations are not related to
changes in oscillations' envelope amplitudes at any frequency (Fig. 3C).
This is so both when looking at the mean amplitude of all electrodes and
when evaluating the mean amplitude of each bipolar channel separately
at 60 Hz (which corresponds to the maximal modulation of the integra-
tion measure) (Fig. 3F). Hence, changes in integration and segregation
cannot be accounted by changes in oscillations’ envelope amplitudes.

Second, the modulation of integration and segregation associated
with the cognitive task was related to an increase in the global syn-
chronization of cortical activity (measured using the Kuramoto Order
Parameter). This increase was present over a broad range of frequencies,
being the largest at the gamma range (50–90Hz) (Fig. 3D).
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Third, we assess whether integration and segregation were related to
differences in Functional Connectivity (see Materials and Methods) be-
tween channels. This connectivity was calculated by considering the
instant amplitude envelopes of all frequencies. Indeed, the Envelopes’
Functional Connectivity is enhanced during task performance, in
particular in the gamma range (50–90 Hz) (Fig. 3E).

When comparing two different time windows in which no task was
performed, no changes in integration and segregation were found. Fig. 4a
and b shows the lack of integration and segregation modulation when we
contrasted the pre-stimulus windows of half the trials against the other
half (same windowing as before, i.e. 500ms before stimulus presenta-
tion). This result suggests that changes in these two measures are related
to cognitive processing.

All together, these observations reveal that changes in integration and
segregation (and their relationship) are likely related to a global increase
of the connectivity, especially in the gamma band. Furthermore, changes
in oscillations’ envelope amplitudes cannot explain these phenomena.
This pattern is consistent with the notion that communication between
different brain networks is accomplished by means of the level of syn-
chronization as posited by the Communication Through Coherence Theory
(CTC) (Fries, 2005, 2015).

When looking at all patients, and despite the heterogeneity of the
recording sites, the same pattern of modulation is observed for each in-
dividual as can be appreciated in Figs. 5 and 6, (Fig. 7 shows the group
average data for both measures). Interestingly, in most of the patients,
there is a consistent decrease of the segregation in the gamma band but
with a slight increase of the segregation in the sub-gamma regime. This is



Fig. 13. Correlation between Integration and Functional Connectivity. The figure shows the coefficient of determination between the integration and the
mean variance of the functional connectivity calculated at 20, 40, 60 and 80 Hz across the studied patients (N¼ 12) based on the monopolar montage. The R2

represents the proportion of variance explained by a linear model. In all cases there is no correlation between both measures.
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not observed for the integration measure. Furthermore, differences in
oscillations’ envelope amplitude at 60 Hz for each bipolar channel do not
differ between pre- and post-stimulus windows (Fig. 8).

Importantly, the integration and segregation modulations calculated
at 60 Hz were highly correlated (Fig. 9). Conversely, the network mea-
sures were independent of patient's performance (correlation coefficient
of 0.0242, N¼ 12 patients).

These main results were robust since they were observed also in the
other two tasks: a lexical decision task and a size judgement task (see
Materials and Methods). Accuracy in both tasks was high (81.8� 5.1%
and 88.7� 8.3% respectively) and response times for the lexical decision
task was 1481� 398ms and for the size judgement task 1008� 287ms.
A significant increase of the integration in the post-stimulus window was
observed in the two tasks as shown for one patient (see Fig. 10).
Furthermore, the largest modulation appears in the gamma band (around
50–90 Hz) for both measures, and no changes in the oscillation's enve-
lope mean amplitude were observed.

The global nature of the integration is demonstrated by analysing
different subnetworks independently. In two patients, we use the precise
anatomical location of each electrode channel, and perform the inte-
gration analysis restricted to three specific subnetworks, namely the
frontal, temporal and parietal. As shown in Fig. 11, even though the
greatest modulations were found in both right and left temporal lobes,
the parietal and frontal subnetworks were also modulated due to
cognitive processing. This suggests that broadcasting of communication
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across the brain has a global nature.
Regarding technical issues, it is important to note that the results are

independent on whether we used a bipolar or monopolar montage. We
compared the new integration/segregation measurements with the more
classical approach considering the pairwise changes in the FC between
the post- and pre-stimulus windows (see Fig. 12 for a single patient). The
results are consistent with the previous analysis and confirm the
robustness of the findings. Fig. 12C and D shows the FC matrices calcu-
lated at 60 Hz for the pre-stimulus window and post-stimulus window
respectively. The difference between both matrices demonstrate the
distributed character of the modulation across many different nodes
(Fig. 12E). Furthermore, this result supports the notion that the
cognitive-driven global changes in integration and segregation are
indeed not associated with any particular anatomical position inside the
networks considered. Figure S1 in the Supplementary Materials shows
the results for all patients.

Interestingly, the integration measure we use differs and comple-
ments the more classical measure of pairwise Functional Connectivity. As
shown in Fig. 13, there is no correlation between the integration measure
and the mean changes in the FC between the post- and pre-stimulus
windows, for different frequencies in the gamma range.

Finally, we found that the modulation of integration is not solely
driven by the stimulus's presentation, but it is persistently increasing
after its onset. For this purpose, we extended the analysis of the inte-
gration measure by using the phase-lock matrix; a more explicit measure



Fig. 14. Time evolution of the Integration measure for Patient K during
the picture-naming task. The figure shows the integration measure calcu-
lated for the phase-lock matrix for every single time point for the whole period
of time at 80 Hz. As seen, there is a monotonic increasing behaviour of the
integration starting after the stimulus onset. The shaded error regions reflect
the standard deviation across trials.
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of communication according to CTC theory). The phase-lock matrix (see
Materials and Methods) characterizes the global state of mutual syn-
chronization between all pairs of network nodes at each single time
point. Thus, with this matrix we are able to study the temporal evolution
(in milliseconds) of the integration across time (see Fig. 14). This result
was found in all three tasks.

Discussion

As a complex system, the human brain is organized into large-scale
networks. In order to support cognitive functions, these networks need
to flexibly adjust their functional connectivity to integrate relevant in-
formation towards a goal-directed behaviour (Bressler and Menon, 2010;
Deco et al., 2015; Bola and Sabel, 2015). Traditionally, graph and in-
formation theoretical approaches have helped to characterize the global
network connectivity in terms of segregation and integration (Deco et al.,
2015; Tononi et al., 1994; Fox and Friston, 2012; Sporns, 2013). Segre-
gation refers to the relative statistical independence of subsets of neurons
or brain regions to compute information (Tononi et al., 1994; Sporns,
2013), while integration is a complementary concept quantifying the
connectivity level across the whole-brain (Deco et al., 2015; Sporns,
2013). In particular, we used a measure of integration associated with the
broadness of communication quantified by the length of the largest
connected component of the functional connectivity across the whole
brain (Deco et al., 2015), while for segregation we used the concept of
modularity (Rubinov and Sporns, 2011).

We used intracranial EEG (iEEG) to record neural activity from 12
epileptic patients while they were performing three different cognitive
tasks. We focus on how cognition modulates global functional network
measurements, namely integration and segregation. We found a signifi-
cant increase in integration and decrease in segregation during cognitive
processing, especially in the gamma band (50–90Hz). This was so for all
patients and all tasks. Furthermore, these modulations were not associ-
ated with changes in the underlying level of oscillations. We also found
significantly higher level of synchronization and functional connectivity
during task processing, again particularly in the gamma band. This set of
results suggest that changes in the broadness of communication across
the entire extended network associated with cognitive processing could
be due to a rearrangement of the coherence level between the nodes. This
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interpretation fits the predictions of the CTC theory extended to the
whole-brain level (Deco and Kringelbach, 2016; Fries, 2005, 2015).

Our results extent the CTC hypothesis to the mesoscopic/macroscopic
level by analysing the phases and correlations of the envelopes of the
Band Limited Power as proposed by Deco & Kringelbach (Deco and
Kringelbach, 2016). This is important since the CTC hypothesis posits
that information is transmitted by synchronizing distinct neuronal pop-
ulations, mainly in the gamma and beta-band (30–90Hz) (Deco and
Kringelbach, 2016). Note that the original CTC theory is based on a phase
synchronization mechanism defined at the neuronal level.

Our findings are in line with previous neuroimaging studies showing
increases of the integration across brain networks (Kitzbichler et al.,
2011; Kinnison et al., 2012; Liang et al., 2016). There is also substantial
agreement with studies using FC measurements that have revealed that
local computations are likely to be highly segregated in spatially
distributed network communities with clustered connectivity (Bassett
et al., 2011; Ekman et al., 2012; Wang et al., 2016; Bola and Sabel, 2015;
Power et al., 2011). Nevertheless, is important to note that our meth-
odological approach is different from the classic FC approach and adds
some critical information. In our results, the fact that integration and FC
measures of band-limited power were not correlated suggest that the FC
per se is not giving explicit information about how much the network is
clustered. Indeed, one can have higher correlations but a lot of functional
segregated clusters which in our measure is associated with low
integration.

When analysing the performance, we did not find correlations be-
tween it and the modulation of the integration and segregation. Although
we cannot presently elucidate the dynamical properties that leads to a
better performance, the present findings suggest that the behavioural
errors in our experiment are not captured in the time window we were
looking at, or were not due to a failure at the global level of communi-
cation, but probably caused by failures at the local level of specific
processing.

Interestingly, despite the global shift towards segregation in the
gamma band during the task, we observed a slightly increase in segre-
gation in the sub-gamma band. The decrease of the segregation in the
gamma regime is expected and consistent with the increase of integration
in the same regime which is putatively linked to increased stimuli/
cognitive processing (Fries, 2015). Along the same lines, the increase of
segregation in the sub-gamma bands could perhaps be associated with a
disengagement of large slow resting networks. Future research is needed
to understand this difference in sub-gamma bands.

It is important to remark that our results support the global nature of
the functional large-scale network reorganization during cognitive pro-
cessing. We demonstrate here that the pattern observed, that is an in-
crease of the integration and a decrease of the segregation, appear in all
patients irrespective of the heterogeneity of the implantation scheme.
Moreover, this pattern is consistent when using a monopolar or bipolar
montage. Further strengthening the results, we analysed three different
cognitive tasks and we show that the main modulatory effect on the
integration and segregation, and the validity of the CTC theory is inde-
pendent of the particular cognitive processing. Thus, because of our
global perspective, unlike many previous studies, we did not investigate
the role of single channels in the different cognitive processes. Never-
theless, we are convinced that localising these electrodes in the human
brain could lead to the discovery of interesting differences at the local
spatial level and that this could be a very interesting goal for future
investigations.

Our methodology and results open new avenues for further in-
vestigations. First, we need to understand how integration and segrega-
tion measures are modulated by task performance and/or task difficulty.
Second, it is important to determine which specific brain areas, or local
networks, show the highest degree of task-driven effective connectivity
and therefore are mostly involved in information processing. Thus, future
studies could greatly benefit from diffusion tensor imaging in two ways:
to visualize and describe the precise connectivity between the electrodes
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in the brain, as well as the basis of whole-brain models considering the
connectivity and continuity of neural pathways in the patients.

Finally, we are aware of the potential methodological limitations of
the iEEG technique with epileptic patients. First, these patients as
compared to healthy controls, not only have epileptogenic neural activ-
ity, but may also have differences in the structural connectivity. Second,
the lack of whole-brain coverage difficult to draw claims about the global
network connectivity, given that restricted spatial coverage is simulta-
neously sampled. Still, and despite that the cognitive-driven changes
observed on integration and segregation come from a reduced set of brain
regions, we hypothesize that the effect is global across the whole brain.
Thus, we predict that those changes should be consistently observed in
fMRI and/or EEG/MEG experiments.

Conclusions

In this study, cognitive processing is associated with a global increase
of integration and decrease of segregation, especially in the gamma band
(50–90Hz). These modulations probably reflect changes in how infor-
mation is broadcasted in the brain. Going beyond our current knowledge
on integration and segregation (see (Sporns and Betzel, 2016) for a re-
view), we also show that such modulations were associated with a
rearrangement of the band-limited functional connectivity between the
different nodes and not with changes in the level of the underlying os-
cillations. This whole set of results is consistent with the “Communica-
tion Through Coherence” Theory.
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