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a b s t r a c t 

Managing cognitive load depends on adequate resource allocation by the human brain through the engagement 

of metastable substates, which are large-scale functional networks that change over time. We employed a novel 

analysis method, deep autoencoder dynamical analysis (DADA), with 100 healthy adults selected from the Human 

Connectome Project (HCP) data set in rest and six cognitive tasks. The deep autoencoder of DADA described seven 

recurrent stochastic metastable substates from the functional connectome of BOLD phase coherence matrices. 

These substates were significantly differentiated in terms of their probability of appearance, time duration, and 

spatial attributes. We found that during different cognitive tasks, there was a higher probability of having more 

connected substates dominated by a high degree of connectivity in the thalamus. In addition, compared with those 

during tasks, resting brain dynamics have a lower level of predictability, indicating a more uniform distribution of 

metastability between substates, quantified by higher entropy. These novel findings provide empirical evidence 

for the philosophically motivated cognitive theory, suggesting on-line and off-line as two fundamentally distinct 

modes of cognition. On-line cognition refers to task-dependent engagement with the sensory input, while off-line 

cognition is a slower, environmentally detached mode engaged with decision and planning. Overall, the DADA 

framework provides a bridge between neuroscience and cognitive theory that can be further explored in the 

future. 

1

 

o  

f  

t  

(  

v  

d  

f  

(  

v  

b  

t  

i  

n  

e  

s

 

i  

o  

n  

i  

p  

r  

d  

I  

m  

i

 

e  

p  

s  

b  

e  

s  

h

R

A

1

(

. Introduction 

In cognitive processing, the brain forms temporal functional unions

f distinct brain areas to process information. This switching between

unctional networks occurs in not only cognitively demanding condi-

ions but also less challenging basal states, such as meditation or rest

 Cabral et al., 2011 ). The rapid changing of functional networks pro-

ides cognitive flexibility to couple with the environment and fulfill a

emand or decouple from the environment during rest to integrate in-

ormation and prepare for the subsequent cognitive task requirements

 Sadaghiani et al., 2010 ; Sadaghiani and Kleinschmidt, 2013 ). The acti-

ation and deactivation of different functional networks are supported

y the structural connections of the brain’s connectome, and therefore

he structural constraints play an important role in the pattern of switch-

ng ( Sporns, 2013 ). There are two main aspects of the functional con-

ectivity (FC) patterns: the temporal, which determines the length of

ach pattern, and the spatial, which determines the possible topological

tructure of the functional connectivity. 
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Within the fields of cognitive science, psychology, and philosophy,

t has been debated that there exist two fundamentally distinct modes

f cognition: on-line and off-line ( Costa and Rocha, 2005 ). On-line cog-

ition involves momentary input from our immediate environment and

s concerned with the task at present, which requires rapid embodied

rocessing ( Iverson and Thelen, 1999 ). When decoupled from the envi-

onment, cognition switches to a slower, off-line mode that enables more

eliberate decisions or the planning of future behaviors ( Wilson, 2002 ).

n everyday activities, one is more engaged in an on-line cognition

ode; however, when deeper understanding is needed or a hypothet-

cal situation is being constructed, one switches into off-line mode. 

In the DADA framework, within the use of temporal and spatial el-

ments of functional connectivity patterns, we define brain states in a

robabilistic metastable substate space ( Alderson et al., 2020 ). These

ubstates correspond to stochastic subclasses of standard and continual

rain states ( Vila-Vidal et al., 2019 ). Identified substates appear repeat-

dly and can be characterized by their probability of incidence, time

pans, and spatial characteristics ( Deco et al., 2019 ). Here, we hypoth-
22 
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size that the stochastic substates represent the continual changes be-

ween the two cognitive modes, namely on-line and off-line. The on-line

nd off-line modes switch rapidly and often; however, during task ac-

ivity, one is more engaged with the environment, and the substates

epresenting on-line mode are present more often compared with rest.

uring rest, the substates corresponding to the off-line mode of inter-

al planning have a higher occurrence rate. This would correspond to

he hypothesis that the substates with higher functional connectivity,

ower entropy, low modularity, and a high clustering coefficient should

e recognized in tasks with a higher frequency compared with rest, as

hey represent the focus, precision, and execution of a cognitive task. 

In different cognitive tasks, higher variability in FC predicts lower

ttention ( Fong et al., 2019 ). Entropy, as a global measure of switch-

ng between metastable substates, should be higher in less attention-

emanding modalities such as rest compared with cognitive tasks that

equire a higher cognitive load ( Hellyer et al., 2015 , 2014 ). Previous

tudies have demonstrated that canonical resting-state networks, con-

istent spatiotemporal patterns across different participants and data

ets identified in rest, are relatively stable even under task conditions

 Harmelech and Malach, 2013 ; Kieliba et al., 2019 ). However, a more

recise DADA division of FC patterns along the spatial and temporal axes

hould help to redefine finer metastable substates with different proba-

ilities and lifetimes in various cognitive modalities. In rest, FC should

isit different substates more often, as it requires higher cognitive flex-

bility because it serves as a preparatory stage for higher specialization

n more attention-demanding tasks. 

The standard FC analysis sliding window partitions the temporal axis

y the length parameter of the window, and inside each window inter-

al, connectivity is computed as a Pearson correlation coefficient. The

esulting set of connectivity matrices describes the time course of whole-

rain functional connectivity ( Hutchison et al., 2013 ). However, the pri-

ary shortcoming of the sliding window is the undefined length param-

ter, which can vary and affect the time resolution and statistical valida-

ion. Some methods have been proposed in different recording modali-

ies to overcome the sliding-window drawback, such as phase coherence

onnectivity or time-frequency analysis ( Chang and Glover, 2010 ; Vila-

idal et al., 2020 ), which adapts the window length to the frequency

ontent; however, it adds a new dimension to the parameter space. The

eading eigenvector method (LEIDA ) for dimension reduction as a pro-

osed plan to overcome multidimensional issues ( Cabral et al., 2017 )

s, in DADA, replaced by a more sophisticated non-linear dimension re-

uction autoencoder algorithm ( Hinton and Salakhutdinov, 2006 ). Au-

oencoder, which is a certain type of artificial neural network, in DADA

perates on the functional connectome of BOLD phase coherence matri-

es. 

Dimensionality reduction can be effective if there is an underlying

ow dimensional structure. If the structure occupies non-linearity or cur-

ature in the feature space, then autoencoder is a better choice as it

an encode more information with less dimensions compared to tradi-

ional linear methods like PCA or LEIDA. It has been hypothesized that

rain dynamics occupy low-dimensional smooth manifold despite the

arge number of its neuronal components and the multi-dimensionality

f neuroimaging data ( Gao and Ganguli, 2015 ; Jazayeri and Afraz, 2017 ;

irsa, 2020 ; Pillai and Jirsa, 2017 ; Shine et al., 2019 ). Numerous stud-

es have shown that not only in tasks ( Chaudhuri and Fiete, 2016 ;

allego et al., 2017 ; Williams et al., 2018 ) but also in rest or sleep, which

re known to have rich neuronal activity repertoires, the structure of the

ynamics is organized and can be characterized as a low-dimensional

ntrinsic manifold ( Chaudhuri et al., 2019 ; Rué-Queralt et al., 2021 ).

iven this evidence, within the context of the curved manifold, an au-

oencoder is the best option for encoding the data structure while pre-

erving most of the features’ relationship with each other. In this study,

he autoencoder’s more precise encoding provides a better separation of

ifferent substates and their evaluation. 

The proposed DADA methodology ( Fig. 1 ) includes BOLD signal

ransformation into phase via the Hilbert transform to pre-process the
2 
MRI data for computing the phase coherence between all areas pair-

ise at each time point ( Goelman et al., 2017 ), yielding a dynamic FC

ith size NxNxT, where N represents the number of brain areas, and T

s the number of recorded time points. The reduction of dimensions is

erformed by an autoencoder. The functional connectivity dynamics of

ach time step are estimated by cosine similarity ( Hansen et al., 2015 ).

fter performing clustering (e.g. k-means, among others), the mean life-

ime of a substate, the probability of each substate, the switching rate,

nd the graph metrics were computed. For a global measure of switch-

ng between metastable substates, we employed entropy and Kullback-

eibler divergence and evaluated the performance of the DADA algo-

ithm in terms of clustering. 

. Methods 

.1. Ethics 

Full informed consent was acquired from all participants prior to the

tudy according to the Washington University–University of Minnesota

WU-Minn HCP) Consortium research procedures and ethical guidelines.

oreover, the study was authorized by the Washington University re-

iew board. 

.2. Participants 

The data set used for this study was selected from the March 2017

ublic data release from the Human Connectome Project (HCP), from

hich we selected a representative of 1003 participants. From this large

ortion of participants, we made another choice to reproduce in the

maller down sample of 100 unrelated participants (54 females, 46

ales, mean age = 29.1 + / − 3.7 years). This subset of subjects admin-

stered by the HCP ensures they are not members of the same family, as

his benchmark was crucial for excluding possible distinguishable con-

ounds and the obligation for family-structure co-variables in the study.

.3. Neuroimaging acquisition for fMRI HCP 

The 1003 HCP participants were scanned using a 3-T connectome-

kyra scanner (Siemens). 

One session performed on the same day included resting state fMRI

cquisition lasting approximately 15 min, with eyes open and adopting

 relaxed fixation on a projected bright cross on a dark background. The

ther sessions comprised seven different cognitive tasks. The full data

et containing all the details about the participants, the study protocol,

nd the preprocessing of the data for all tasks and rest sessions can be

btained at the HCP website ( http://www.humanconnectome.org/ ). 

.4. HCP tasks 

The HCP data set contains seven tasks: working memory, motor,

ambling, language, social, emotional, and relational, which are ex-

lained in greater detail on the HCP website ( Barch et al., 2013 ). The

CP protocol consisted of two separate sessions, with the first session

overing working memory, gambling, and motor tasks and the second

ession covering language, social cognition, relational processing, and

motion processing tasks. We selected the six most distinct tasks from

he HCP battery of tasks. The relational processing task includes shape

dentification, which is likewise represented in the emotion processing

ask. 

.5. Parcellations 

Canonical cortical parcellations were used to process all neuroimag-

ng data with added subcortical regions. For its coarser parcellation,

he Mindboggle-modified Desikan-Killiany parcellation ( Desikan et al.,

006 ) was used for a less refined parcellation (compared with the

http://www.humanconnectome.org/
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Fig. 1. General deep autoencoder dynamical analysis (DADA) representation of the detection of dFC states from BOLD using the autoencoder and clustering model . (A) BOLD 

signals from one subject at various brain areas ( N = 80). BOLD signals are further smoothed with a second-order Butterworth filter and transformed into phases 

of a BOLD signal via the Hilbert transform, and with BOLD phase coherence connectivity, dFC is computed. At each time point t, the cosine function of the BOLD 

phase difference between brain area b1 and brain area b2 yields a symmetric NxN dFC(b1, b2, t) matrix. (B) A nine-layer-deep autoencoder allows for representing 

the connectivity vector of dFC(t) with reduced dimensionality to 80 features (previously 80 × 80 features). (C) K-means clustering model detects dFC metastable 

substates with the optimal number of clusters with a high silhouette score and a low sum of squared distances. (D) The mean probability and mean lifetime for each 

metastable substate (cluster) and each task and rest condition are obtained. (E) Time evolution schematic illustration representing the BOLD signal and metastable 

substates as clusters in time. (F) Entropy and Kullback-Leibler divergence represent the global whole-brain measure for each subject and condition. (G) Classification 

of each condition in the seven metastable substates with probability and lifetime features (individual measurable properties). 

G  

d  

p  

r  

d  

g  

c  

s  

i

2

s

 

a  

(

I  

d  

a  

R  

s  

p  

a  

r  

t  

d  

2  

o  

s  

F  

I  

2  

v  
lasser parcellation ( Glasser et al., 2016 ), as further dimensionality re-

uction was performed) with a total of 62 cortical regions, 31 regions

er hemisphere ( Klein and Tourville, 2012 ). Moreover, 18 subcortical

egions were added, 9 regions per hemisphere: hippocampus, amyg-

ala, subthalamic nucleus (STN), globus pallidus internal segment (GPi),

lobus pallidus external segment (GPe), putamen, caudate, nucleus ac-

umbens, and thalamus. This addition formed a final parcellation con-

isting of 80 regions in the DBS80 parcellation, with an exact definition

n the common HCP CIFTI ‘grayordinates’ standard space. 

.6. Pre-processing and extraction of functional time series in fMRI resting 

tate and task data 

The detailed pre-processing protocol of the HCP resting state

nd task data sets is explained in detail on the HCP website

 https://github.com/Washington-University/HCPpipelines/wiki/ 

nstallation- and- Usage- Instructions ). To briefly summarize, the stan-
3 
ard HCP functional pre-processing pipeline was used for the rest

nd task data, which employs standardized methods using FSL (FM-

IB Software Library), FreeSurfer, and the Connectome Workbench

oftware ( Glasser et al., 2013 ; Smith et al., 2013 ). The pre-processing

rocedures contained a correction for spatial and gradient distortions

nd head motion, intensity normalization and bias field removal,

egistration to the T1 weighted structural image, transformation to

he 2 mm Montreal Neurological Institute (MNI) space, and in rest

ata the use of the FIX artifact removal procedure ( Schröder et al.,

015 ; Smith et al., 2013 ). Parameters of head motion were regressed

ut. Moreover, in rest data head motion noise was regressed out and

tructured artifacts were eliminated via ICA analysis denoising and

IX method (independent component analysis followed by FMRIB’s

CA-based X-noisifier ( Griffanti et al., 2014 ; Salimi-Khorshidi et al.,

014 )). More information about the ICA-FIX method can be accessed

ia: https://github.com/Washington-University/HCPpipelines/blob/

https://github.com/Washington-University/HCPpipelines/wiki/Installation-and-Usage-Instructions
https://github.com/Washington-University/HCPpipelines/blob/master/ICAFIX/README.md
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aster/ICAFIX/README.md . The pre-processed time series of all

grayordinates’ are in HCP CIFTI ‘grayordinates’ standard space and

vailable in the surface-based CIFTI file for each participant for the rest-

ng state and each task. We employed a customised Matlab script using

he ft_read_cifti function from the Fieldtrip toolbox ( Oostenveld et al.,

011 ) to extract the average time series of all the ‘grayordinates’ in each

egion of the Glasser and DBS80 parcellations, which are represented

n the HCP CIFTI ‘grayordinates’ standard space. The BOLD signal from

oth task and rest data was filtered by 2nd order Butterworth filter in

he span of 0.008–0.08 Hz. 

.7. Dynamic functional connectivity 

The time considerate dynamic FC matrix (dFC) is computed us-

ng BOLD phase coherence connectivity ( Deco et al., 2017 ; Deco and

ringelbach, 2016 ; Ponce-Alvarez et al., 2015 ). The dFC has a size of

xNxT, where N is the number of brain areas —80 in the case of the

K80 parcellation —and T is the total number of time points recorded

add a time point for each task and rest). First, we filtered the BOLD

ignal using a second-order Butterworth filter ( Fig. 1 A). Then, for the

hase coherence estimation, we applied the Hilbert transform to calcu-

ate the phase of the filtered BOLD signals in all areas n, 𝜃(n, t). The

hase coherence between two brain areas n and p at time t, dFC(n , p , t),

s computed using the following equation: 

𝐹 𝐶 ( 𝑛, 𝑝, 𝑡 ) = cos ( 𝜃( 𝑛, 𝑡 ) − 𝜃( 𝑝, 𝑡 ) ) 

here cos() represents the cosine function ( Fig. 1 A). The cosine function

s useful for data rescaling, as cos(0) = 1 for areas that have a momen-

arily analogous phase, their BOLD signals are coordinated, and their

FC(n, p, t) is near 1. However, in the opposite case when two BOLD

ignals are not aligned, they are orthogonal, and their dFC(n, p, t) is

pproximately 0. As the phase coherence calculation does not provide

irectionality, the resultant matrix is undirected. Therefore, the matrix

s symmetric across the diagonal, and all the significant values can be

pprehended from the upper or lower triangular numbers of the matrix.

.8. Autoencoder 

To extract the dFC substates for the temporal axis, a method for

heir classification must be proposed. We used an unsupervised machine

earning method k-means clustering (more details below). However, the

FC(t) matrix for the clustering algorithm is high-dimensional NxN and

epresents a ‘curse of dimensionality’ problem that is primarily repre-

ented by nonintuitive geometry, sparsity, and a high number of irrele-

ant features (individual measurable properties of observables) in high-

imensional data sets ( Ronan et al., 2016 ). In previous studies ( Deco and

ringelbach, 2016 ; Hansen et al., 2015 ; Preti et al., 2017 ), only the up-

er or lower triangular parts of the dFC(t) matrix were extracted, as the

atrix is symmetric. In a more recent study ( Cabral et al., 2017 ), the

EIDA method of the leading eigenvector V 1 (t) of each dFC(t) method

as proposed. The leading eigenvector V 1 (t) possesses lower dimension-

lity (Nx1) compared with triangular elements (N(N-1)/2) and serves as

 representant of the dominant connectivity pattern of dFC(t). 

To further improve the features’ representation in lower-dimensional

pace (see a comparison in the results), in DADA, we employed

on-linear data transformation 10-layer-deep autoencoder algorithm

 Fig. 1 B). The artificial neural network is prepared with random weights

rained together by minimizing the difference between the original data

nd its reconstruction. The network consists of three parts: the encoder,

he code, and the decoder. In the encoder part, the model is trained

o reduce the dimensions of the input data into an encoded represen-

ation. Meanwhile, the code is a layer that consists of the compressed

epresentation of the input data. Finally, in the decoder, the model is

rained to reconstruct the input data from the code layer as close to

he original input as possible. Training of the network is achieved by

ptimizing weights with backpropagating error derivatives through the
4 
ecoder and then encoder layers of the autoencoder. The encoder in-

ut space ( ) and decoder input space (  ) are defined as transitions

 𝜙, 𝜓) minimising the reconstruction loss so that the output data differ-

nce with respect to the input data is minimised and can be represented

s follows: 

∶  →  

 ∶  →  

, 𝜓 = arg min 
𝜙,𝜓 

‖‖‖𝑋 − 

(
𝜓 ◦𝜙

)
𝑋 

‖‖‖2 
The autoencoder was structured as a 2000-500-250-125-80-125-250-

00-2000 schema inspired by Hinton and Salakhutdinov (2006) , with

he middle layer serving as the final output layer of the encoded vec-

or E(t). We performed optimization using a gradient-based Adam op-

imizer and employed a mean squared error loss function ( Kingma and

a, 2014 ). Before training the autoencoder, we used a random under-

ampler algorithm to balance the data set ( Lemaître et al., 2017 ). 

.9. Metastable substates —K-means clustering 

By applying unsupervised machine learning methods on all the en-

oded vectors E(t) across time points, subjects, and conditions, we iden-

ified a discrete number of dFC substates. 

We implemented k-means clustering with k clusters, namely seven

 Figs. 1 A and 4 A), as seven clusters proved to be appropriate accord-

ng to the list of our evaluation method which includes having sev-

ral runs with a high silhouette score, short fit time, and small sum of

quared distances to the closest centroid for all observations ( Fig. 4 B).

evertheless, we do not, of course, claim that this number of states is

 biological ground-truth. Other possible strategies exist that can guide

he number of states using, for example, a measure such as free en-

rgy ( Bishop, 2006 ) or using non-parametric methods tapping the power

f infinite Hidden Markov models ( Beal et al., 2001 ). Importantly, as

hown by Vidaurre et al. (2018) the different number of states just of-

er different levels of detail in the brain dynamics with solutions using

ewer clusters simply merging part of solutions with more clusters. We

ncluded entropy analysis for 6 and 8 states in the Supplementary ma-

erial ( Fig. 5 ) showing similar results with different ranges of entropy

alues. 

From the clustering method, we acquired k different func-

ional connectivity recurrent patterns. We used the silhouette score

 Rousseeuw, 1987 ) to assess the quality and validity of the clustering

eparation. For a reasonable clustered structure, the average silhouette

core should be at least 0.51 ( Kaufman and Rousseeuw, 2005 ). 

.10. Modularity and average clustering coefficient 

To obtain modularity measurement, we first used the Louvain al-

orithm for community detection in a weighted undirected graph with

he best possible grouping of nodes in a network. We then optimized

or modularity to measure the frequency of connections inside commu-

ities compared with connections between communities. Modularity is

efined as follows: 

 = 

1 
2 𝑚 

∑
𝑖𝑗 

( 

𝐴 𝑖𝑗 − 

𝑘 𝑖 𝑘 𝑗 

2 𝑚 

) 

𝛿
(
𝑐 𝑖 , 𝑐 𝑗 

)
; 

here m stands for the number of edges, A ij is the adjacency matrix, k i 
s the degree of i , and 𝛿 is 1 if i and j belong to the same community and

s 0 otherwise. 

For each of dFCs resulting from analyzing every time point in each

ubject and each condition, we defined the clustering of a node in a

eighted undirected graph (dFC considered as an adjacent matrix) as

https://github.com/Washington-University/HCPpipelines/blob/master/ICAFIX/README.md
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he geometric average of the subgraph edge weights ( Onnela et al.,

005 ): 

 𝑢 = 

1 
𝑑𝑒𝑔 ( 𝑢 ) ( deg ( 𝑢 ) − 1 ) 

∑
𝑣𝑤 

(
𝑤 

′
𝑢𝑣 𝑤 

′
𝑣𝑤 𝑤 

′
𝑢𝑤 

)1∕3 
here deg(u) is the degree of u, and w 

’ is for normalized weights by

he maximum weight in the network. After obtaining the clustering

oefficient for each node in a network (our dFC), we computed the

verage to estimate the average clustering coefficient for each dFC.

ll the measures were computed using the NetworkX Python package

 Hagberg et al., 2008 ). 

.11. Entropy and Kullback-Leibler divergence 

For each subject and condition, we calculated the entropy of the

robability of a substate (cluster) occurrence ( Fig. 1 E). The entropy is

omputed using the following equation: 

 ( 𝑋 ) = − 

∑
𝑝 ( 𝑥 ) 𝑙𝑜𝑔 𝑝 ( 𝑥 ) 

here p(x) is the probability of a substate. From this, we obtained a

lobal measure of the nature of changing from one substate to another.

he higher the entropy, the less predictable the pattern of occupancy in

ll the substates. 

For each pair of conditions, we measured the Kullback-Leibler diver-

ence using the following equation: 

 𝐾𝐿 ( 𝑃 ‖𝑄 ) = 

∑
𝑥 ∈𝑋 

𝑃 ( 𝑥 ) 𝑙𝑜𝑔 
( 

𝑃 ( 𝑥 ) 
𝑄 ( 𝑥 ) 

) 

here P(x) is a probability distribution for one condition, and Q(x) is a

robability distribution for the second condition. We symmetrized the

ivergence between the two conditions as follows: 

 𝐾𝐿 = 

(
𝐷 𝐾𝐿 ( 𝑃 ‖𝑄 ) + 𝐷 𝐾𝐿 ( 𝑄 ‖𝑃 ) ∕2 )

From measuring the Kullback-Leibler divergence, we estimated the

ifference between the probability distributions for all pairs of condi-

ions. 

.12. Classification 

We run a multiclass logistic regression classification algorithm to as-

ess the separability of each task based on two features (individual mea-

urable properties): the probability and lifetimes for each metastable

ubstate ( Fig. 1 G). We selected logistic regression, as it performed better

han the k-neighbor and support vector classifier in terms of accuracy.

oreover, we employed a grid search to optimize for the best parame-

ers and used k-fold cross-validation (five folds) to score the performance

n the test (20%) and training (80%) data. The number of data points

n each class was balanced with the random under-sampler algorithm

 Lemaître et al., 2017 ). 

.13. Between conditions comparisons 

To detect significant differences between groups, we utilized a

ermutation-based paired t -test. This is a non-parametric two-sample

ypothesis test that applies permutations of group labels to assess the

ull distribution contrary to depending on the test-type standard distri-

utions. The null distribution is estimated individually for each condi-

ion. A t -test is used to analyze the group comparison for each of 5000

ermutations. 

.14. Data and code availability statement 

The data for all tasks and rest sessions are publicly available at the

CP website ( http://www.humanconnectome.org/ ). The codes are pub-

icly available at https://github.com/katerinaC/brain _ dynamics . 
(

5 
. Results 

.1. Metastable substates 

After we applied the k-means clustering (which performed better

ompared with the ward and dbscan clustering methods) algorithm on

ll the output encoded vectors E(t), we assigned each dFC to seven FC

attern groups for all subjects ( n = 100) in all tasks and rest. From this

ssignment, we could obtain a mean FC pattern for each cluster —or

etastable substate ( Fig. 2 ). For each of the mean FC patterns, we cal-

ulated the normalized degree connectivity by summing all the connec-

ions for one brain area (represented by a single row in the FC matrix)

ivided by the number of all possible connections (number of columns

n the FC matrix). By estimating the normalized degree, we could extract

he connectedly dominant brain areas for each of the seven metastable

ubstates (Supplementary Fig. 2). 

The most connected substate with the highest normalized degree

onnectivity (0.8) in the right thalamus was substate #5. Then followed

ubstate #1, with its highest normalized degree (0.7) in the right thala-

us as well. Next was substate #4, with its highest normalized degree

0.6) in the right thalamus. Following this was substate #6, with its high-

st normalized degree (0.5) in the right thalamus. Regarding the less

onnected substates, next was substate #2, with its normalized degree

0.3) in the right thalamus. Then came substate #7, with its normal-

zed degree (0.2) in the right superior parietal lobule. Finally, the least

onnected substate was represented by #3, with its highest normalized

egree (0.2) in the right putamen. Overall, the most dominant brain ar-

as with high normalized degrees in all metastable substates were the

ight and left thalami, right and left superior frontal lobules, and right

nd left precunei. 

The distribution of metastable substates occurrences is represented

ere by the average probability of exhibiting each of the seven defined

rain FC configurations in each modality (i.e. rest, language task, gam-

ling task, social task, working memory task, emotion task, and motor

ask) for each subject ( Fig. 3 A and D). The highest probability of express-

ng the most connected substate, namely substate #5, was in the work-

ng memory (mean ± standard error of the mean = 0.165 ± 0.00039),

ocial (0.158 ± 0.0004), and emotion tasks (0.163 ± 0.0006). Mean-

hile, the lowest probability of occurrence was detected in the rest

0.138 ± 7.06 × 10 − 5 ) and language tasks (0.126 ± 0.00048). A sim-

lar distribution revealed metastable substate #1 to have the second

ighest connectivity and highest prevalence for the working mem-

ry (0.169 ± 0.00027), social (0.166 ± 0.0004), and motor tasks

0.161 ± 0.00035). Correspondingly, rest (0.126 ± 7. 03 × 10 − 5 ) still

xhibited this FC pattern with the lowest probability. On the contrary,

etastable substate #3, which had the lowest connectivity, exhibited

he highest probability of emergence in the rest (0.168 ± 9.08 × 10 − 5 )

nd language (0.166 ± 0.0003) tasks and the lowest probability

n the motor task (0.106 ± 0.00036). The second least connected

etastable substate, namely substate #7, appeared most in the rest

0.163 ± 5.9 × 10 − 5 ) and gambling tasks (0.167 ± 0.0004) and least

n the working memory task (0.124 ± 0.0002). The moderately con-

ected metastable substate #6 arose in all the modalities with fair

imilarity, save for the rest (0.137 ± 9.8 × 10 − 5 ) and gambling tasks

0.157 ± 0.00047), which significantly differed from the remaining

asks. 

Similar patterns could be observed in the metastable substate life-

imes ( Fig. 3 B a D). The longest mean lifetime in the most connected

etastable substate, namely substate #5, was in the working memory

0.878 ± 0.00066) and motor (0.851 ± 0.0009) tasks and shortest in the

anguage (0.816 ± 0.0009) and rest tasks (0.83 ± 0.0002). In the least

onnected metastable substate, namely substate #3, the longest lifetime

as in the rest (0.871 ± 0.0002) and language (0.859 ± 0.0008) tasks

ompared with the shortest lifetime in the motor task (0.783 ± 0.0007).

urthermore, in the median metastable substate #6, a significant

ifference in lifetime was demonstrated between the gambling task

0.855 ± 0.00095) and rest (0.835 ± 0.0002). 

http://www.humanconnectome.org/
https://github.com/katerinaC/brain_dynamics
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Fig. 2. FC patterns. Seven reccurring metastable substates, as identified by clustering the reduced DADA’s vectors of all participants and time points. Each surface 

brain render represents each of the seven states as a normalized connectivity degree. State renders 1 and 5 depict connected states across modalities compared with 

state renders 3 and 7, which denote the most disconnected states that are most pronounced in rest compared with during cognitive tasks. Rendered with Connectome 

Workbench (available at https://www.humanconnectome.org/software/connectome-workbench ). 
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By comparing the DADA’s autoencoder dimensionality reduction

ith the previously suggested LEIDA method ( Cabral et al., 2017 ;

eco et al., 2019 ), we could assess the capacity and effectiveness of the

lustering separation ( Fig. 4 C and D). The average silhouette score for

he seven clusters with the autoencoder (0.54) was above the threshold

f 0.51 necessary for a reasonable clustered structure ( Fig. 4 A). Mean-

hile, when using the LEIDA method (0.098), the value is below the

oint ( Fig. 4 B). 

.2. Switching between metastable substates 

We calculated the probability of transitioning from one metastable

ubstate to another for each cognitive task and rest. These calculated
6 
robabilities are represented in transition matrices, where rows ( i ) rep-

esent the probability transition from substate i to another substate j
epresented by columns ( j ); therefore, each element of position ( 𝑖, 𝑗 )
epresents the transition probability 𝑝 𝑖𝑗 ( Fig. 5 A). 

In rest, the highest probability was found for switching to substates

3 and #7 (0.16 and 0.17), while the lowest probability was found for

witching to substates #1 and #4 (0.12 and 0.13). In the emotion task,

he lowest probability was to remain in substate #3 (0.11), while the

ighest probability was in transitioning from substate #3 to substate

5 (0.18). Meanwhile, in gambling task, the least probable transition

as from substate #5 to #1 (0.1), while the most probable transition

as from substates #1, #3, and #5 to #7 (0.17). During the language

ask, the highest probability of transitioning was from substates #1 and

https://www.humanconnectome.org/software/connectome-workbench
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Fig. 3. Probabilities and lifetimes of metastable substates under different conditions . (A) Boxplot representing probability of a metastable substate occurring for each 

modality (i.e. rest, language task, gambling task, social task, working memory task, emotion task, and motor task), each substate, and each subject. Metastable 

substates #1, #4, and #5 are less likely for rest compared with other tasks, especially the motor, working memory, and social tasks; however, metastable substates 

#3 and #7 are highly likely for the rest, language, and gambling tasks compared with the other tasks. Stars indicate a significant difference from all the other conditions 

(permutation-based paired t -test [ p < 0.005] with Bonferroni correction) (B) Boxplot representing lifetime of a metastable substate for each tested modality. The 

longest dwell time for the rest and language tasks is in state #3. Overall, the main significant differences, as estimated by a permutation-based paired t -test with 

Bonferroni correction, in the probabilities and lifetimes of states are between the group of tasks and the group of rest. Stars indicate a significant difference from all 

the other conditions (permutation-based paired t -test [ p < 0.005] with Bonferroni correction) (C) Probability distributions for each of the seven metastable substates 

with shifted distributions in states #3 and #7. (D) Substate probabilities plotted against substate lifetimes, demonstrating the different distributions in rest compared 

with the tasks, as rest distribution is more compact in terms of both probability and lifetime, making it more easily distinguishable from the task distributions. 

7 
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Fig. 4. Clustering. (A) Voronoi diagram. Schematic representation of the partition of a 2D plane into k regions, in which each point in each cell is closer to its 

cluster centre than any other centre. The seven cluster regions represent the most evenly spread partition, which likewise performed the best with the HCP data, 

as observable from the high silhouette coefficient. (B) The score of two quality measurements from 10 runs: the sum of squared distances and silhouette score. (C) 

Average silhouette coefficient values of the k-means clustering algorithm in DADA with the use of the autoencoder for dimension reduction (0.54) (D) Average 

silhouette coefficient values of the k-means clustering algorithm in LEIDA with the use of the leading eigenvector for dimension reduction (0.098). 
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6 to #3 and from #5 to #2 (0.17), while the lowest probability of

ransitioning was from substates #4 and #5 to #5 (0.11). Next, in the

otor task, the lowest probability was in switching from substate #3 to

3 (0.08), while the highest probability was in switching from substate

3 to #1 and #4 (0.17). Furthermore, in the social task, the most prob-

ble transition occurred from substates #3 and #5 to #1 (0.17), while

he least probable transition occurred from substate #3 to #3 (0.1). Last,

n the working memory task, the highest probability was in transition-

ng from substate #5 to #5 (0.18), while the lowest probability was in

ransitioning to substate #3 (0.11 and 0.12). 
8 
.3. Modularity and average clustering coefficient 

We calculated graph metrics for all weighted FC matrices for each

ondition and substate, finding many statistical differences between

asks and rest in each substate that pass a permutation-based t -test with

 < 0 . 005 (Supplementary Table 1). Modularity measures the structure

f a network by dividing the network into communities called modules

 Zamora-López et al., 2016 ) (Supplementary Fig. 3A). High modularity

ndicates high connectedness between nodes within the same module

nd was present in substates #2, #3, #6, and #7, which have low global
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Fig. 5. Transitions, entropy, and Kullback- 

Leibler divergence . (A) In transition matrices, 

rows display the probability of being in each 

substate, while columns indicate the probabil- 

ity of switching to any of the other seven sub- 

states. In rest, the highest probability of switch- 

ing is to substates #3 and #7 (from 0.15 to 

0.17). Meanwhile, in the motor, social, and 

working memory tasks, the switching proba- 

bilities are low in substate #3 and higher in 

substates #1 and #4. Furthermore, the work- 

ing memory task switching probabilities are the 

most opposite to those of rest, with the most 

likely switching to substates #1, #4, and #5 

and the least likely switching to substates #3 

and #7. In the language, emotion, and gam- 

bling tasks, these differences are more subtle, 

especially in the language task, which has the 

switching probabilities most similar to those of 

rest. In the emotion task, the highest probabil- 

ity of switching is from substate #3 to substate 

#5 (0.18). Meanwhile, in the language task, 

the most plausible switching is from substates 

#1 and #5 to substate #7 (0.17). (B) The en- 

tropy of the probability of a metastable sub- 

state occurrence was calculated for each sub- 

ject and condition. A significant difference was 

present in terms of entropy (permutation-based 

paired t -test, p < 0.005, Bonferroni correction) 

between the rest and the task conditions. High 

entropy and a larger dynamical repertoire at 

rest suggest a greater preparedness than that 

observed during a task. (C) Estimation of the 

Kullback-Leibler divergence obtains the differ- 

ences between probability distributions for all 

pairs of conditions. The language task demon- 

strates the largest distance of probability distri- 

bution from all the tasks, with the most distant 

distribution to the motor, social, and working 

memory tasks (5.2). Meanwhile, the rest prob- 

ability distribution is most similar to the lan- 

guage (2.0) and gambling (2.5) tasks. 
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onnectivity. Meanwhile, low modularity was displayed in substates #1

nd #5, which have high global connectivity (Supplementary Fig. 3B

nd C). 

The clustering coefficient measures the number of closed triplets

ver the number of all possible triplets in a graph ( Zamora-López et al.,

011 ) (Supplementary Fig. 4A) and indicates how close the graph is to a

omplete graph. For our weighted undirected graph, the clustering was

haracterized as the geometric average of the subgraph edge weights.

he highest average clustering coefficient was detected in substates #1

nd #5, which had high global connectivity (Supplementary Fig. 4B and

). 
9 
.4. Entropy and Kullback-Leibler divergence 

Considering global measures such as entropy and Kullback-Leibler

ivergence, we found a statistical significance in terms of entropy be-

ween rest (mean ± standard error = 1.94 ± 0.0003, p < 0.005) and all

he cognitive tasks (i.e. emotion, gambling, language, social, emotion,

nd working memory) ( Fig. 5 B). 

The language task exhibited the largest distance of probability distri-

ution from all the tasks as calculated by Kullback-Leibler divergence,

ith the furthest distance to the motor, social, and working memory
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Fig. 6. Classification metrics . (A) Precision-recall curve 

for multi-class classification for substate #1: preci- 

sion = true positives / true positives + false positives; 

recall = true positives / true positives + false nega- 

tives). The best performance in the precision-recall was 

the gambling task class with an area under the curve 

(AUC) = 0.29 (B) Receiver operating characteristic curve 

for multi-class classification for the conditions classified 

within the substate #1. Presenting the true positive rate 

(sensitivity = true positive / (true positive + false neg- 

atives)) over the false positive rate (expectancy = false 

positive / (false positive + true negative)). The best per- 

forming was rest, with AUC = 0.80, while the second 

best was the working memory task, with AUC = 0.76. 

Both results are at an acceptable discrimination level. 

More precision-re- call curves and ROC are presented in 

the supplementary materials. (C) Legend of the confu- 

sion matrices with task order. Normalized confusion ma- 

trices displaying the true labels (rows) against the pre- 

dicted labels (columns) for each substate and task. The 

model could very well distinguish rest in substates #1 

(0.69), #3 (0.66), #4 (0.83), #6 (0.62), and all substates 

(0.6). Moreover, it distinguished the language task with 

high precision in substates #1 (0.49), #5 (0.53), and #7 

(0.83). Meanwhile, the motor task was well separated in 

substates #3 (0.59) and #4 (0.43). 
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asks (5.2). On the other hand, the rest probability distribution was clos-

st to the language (2.0) and gambling (2.5) tasks ( Fig. 5 C). 

.5. Classification 

Good separation between rest and the tasks with the probability of

ccurrence feature was present within substates #1 ( Fig. 6 A and B), #3,
10 
4, and #6 (supplementary material) when the classification was per-

ormed for each substate separately; however, there was also fair separa-

ion for rest when the classification was performed on all substates (sup-

lementary material). The degree of correctly predicted classes within

ormalized confusion matrices ( Fig. 6 C) for the rest condition in these

ubstates was greater than 60%: in particular, #1 (69%), #3 (0.66%),
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4 (83%), #6 (62%), all (60%). Other notable predicted labels occurred

ithin the gambling task in substates #2 (46%), #7 (46%), #6 (43%),

he motor task in substate #3 (59%), the working memory task in sub-

tate #5 (53%), the language task in substate #5 (49%), and the emo-

ion task within all substates (46%). Overall, the cross-validated accu-

acies of test data for each substate classification passed the baseline

14.3%) of random prediction: #1 (29.9%), #2 (20.6%), #3 (37.9%),

4 (26.9%), #5 (26.7%), #6 (18.5%), #7 (28.7%). In the case of all

ubstates, the performance was lower (16.5%), though still above the

aseline level. More classification performance scores are presented in

he supplementary materials (precision-recall plots and receiver operat-

ng characteristic curves). 

. Discussion 

Here, we provide empirical evidence for the prediction of a recent

ognitive theory of the higher cognitive load, postulating that fulfilling

asks offers higher information integration ( Gilson et al., 2018a ). We

ound that while performing various cognitive tasks, there was a higher

robability of more connected metastable substates compared with in

est (i.e. substates with a higher clustering coefficient and lower modu-

arity are more probable in a task than in rest). 

These results can be considered in the context of the common distinc-

ion in cognitive theory between on-line and off-line cognition modes.

est represents the off-line cognition mode with less connected substates

ith higher modularity (separation into communities) and a lower clus-

ering coefficient (local connectivity), which suggests an increase in the

umber of major hubs in these more globally disconnected substates.

n contrast, the on-line cognitive mode is found during tasks charac-

erized by more globally connected substates with a higher clustering

oefficient and lower modularity. 

The novel DADA framework makes it possible to identify the

etastable substates and how their probability changes during tasks and

est. This is made possible via the implementation of improved dimen-

ionality reduction in the form of a multilayer deep autoencoder. This

ethod proved to reduce the dimensions and better prepare the data

or further clustering compared with the previously introduced LEIDA

ethod . The clustering silhouette score performance indicated accept-

ble division into clusters that served to detect dominating discrete dFC

atterns in time, even if the dFC evolution switches more fluently. By

sing an autoencoder algorithm, the DADA method lowers the signal-

o-noise ratio in the FCD and provides insight into repeating topological

hanges in the FC. 

Our results of the highest normalized degrees in each of the

etastable substates revealed that the thalamus plays a major role in

ll the substates that represent higher connectivity. This corroborates

he notion of the thalamus being an important hub that connects major

ognitive areas, such as the hippocampus, striatum, medial prefrontal

ortex, and regions that have a regulatory role, such as the septum, hy-

othalamus, and areas in the brainstem. Hypothalamus cells serve as a

egulating agent in the flow of information in the forebrain as a capacity

f internal states, such as emotion and sleep. Moreover, the thalamus

ontrols episodic memory, which is a prerequisite for many cognitive

oles, such as problem-solving, inference, and memory consolidation

 Varela, 2014 ; Varela et al., 2014 ). Other identified regions with high

ormalized degrees, such as the (left and right) superior frontal gyri,

recunei, superior parietal gyri, putamina, and lingual gyri, were previ-

usly recognized as structural hubs of the adult human brain (data from

roup averaged connectome from the HCP data set) that play an impor-

ant role in information integration and communication between brain

egions ( Bell and Shine, 2016 ; Gong et al., 2009 ; Hagmann et al., 2008 ;

ldham and Fornito, 2019 ; van den Heuvel and Sporns, 2013 , 2011 ).

hese findings validate the robustness of our method, which can detect

mportant functional and structural hubs. 

We identified seven prevalent stochastic metastable substates of typ-

cal and perpetual brain states. They appear recurrently and have dif-
11 
erent probabilities of switching from one substate to another. How-

ver, the number of substates and their respective FC representations

s detected by our method depend on the dimensionality of the input

ata —particularly the parcellation and temporal scale. We used coarse

arcellation with 80 regions of interest with a repetition time (TR) of

.72 s. The appropriate number of metastable substates and their re-

pective pattern might change with different imaging and post-process

onditions. 

Lower modularity and a higher clustering coefficient in highly con-

ected substates describe high global connectedness; however, a low

lustering coefficient and high modularity in low connected substates

ndicate the importance of the identified hubs that are locally connected

nd create more separate communities. In tasks, the brain more often

isits substates that are highly connected with lower modularity and

 higher clustering coefficient compared with in rest. This indicates

rain activity in more rigid resting state networks (RSNs) or intrinsic

onnectivity networks (ICNs) ( Seeley et al., 2007 ) during rest, while

uring tasks, the brain overcomes these networks and forms new con-

ections between different brain areas, creating novel networks with

owered modularity. There are many significant differences in both the

odularity and clustering coefficient metrics between the task and rest

onditions, so they represent a promising method for distinguishing be-

ween cognitive modalities. Further graph analysis with a dynamic as-

ect ( Gilson et al., 2019 , 2018b ) of the distinct metastable substate pat-

erns deserves greater attention in future studies. 

Transition probability indicates the preferred switching from one

tate to another or eventually dwelling in one state during a prolonged

eriod. Moreover, it suggests how much energy is necessary for such

witching to occur. The more probable the transition from one state to

nother, the less energy required to make the transition, while less prob-

ble transitions require more energy consumption ( Gu et al., 2015 ). In

asks, there is a higher preference for certain states compared with rest,

ith a higher probability of switching to or remaining in these states in-

icating fewer energy demands. However, if switching to a less probable

tate in a task, more energy is required compared with rest, where the

robability of switching to different states is more similar. These results

ndicate the preference of a specific substate or set of substates in tasks

ompared with rest that is more prone to switching between different

ubstates. 

The significantly largest entropy in rest endorses findings from pre-

ious studies ( Escrichs et al., 2019 ; Saenger et al., 2018 ). In rest, the

rain’s regime is orchestrated by increased metastability, meaning that

he system’s dynamics are more unpredictable or random and span a

ider dynamical regime than in cognitive tasks. Furthermore, higher en-

ropy means that sampling for the rest condition would yield higher un-

ertainty regarding the system’s state at a particular time-point ( Carhart-

arris et al., 2014 ). This result likewise aligns with computational mod-

ls of the whole-brain network dynamics that were optimally stimulated

or the rest condition, when the parameters of the system are in a criti-

al range, while the system is constantly repelled away from equilibrium

 Breakspear, 2017 ; Cabral et al., 2014 ; Deco and Jirsa, 2012 ). Higher en-

ropy might appear to be disadvantageous with increased randomness,

ut in a condition when no instant reaction is required, such a state is

esirable, as higher entropy allows for more easily learning a new task

ith lower specialized performance ( Fong et al., 2019 ; Nogueira et al.,

018 ; Yang et al., 2019 ). Rest can, therefore, be viewed as a preparatory

ff-line state that provides the grounds for more efficient performance

uring a specific on-line task. 

The results of Kullback-Leibler divergence revealed that the language

ask probability distribution is the furthest from other tasks but is not

hat far from the rest condition. This might be due to the characteristics

f the task ( Binder et al., 2011 ), where half of the time, participants

isten to short stories and must then answer some semantical questions

bout the story. This scenario appears to be cognitively similar to rest-

ng when one is occupied with flickering thoughts that might generate

hort stories. The rapid thought switches that occur during rest can be
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elated to the language task with its second control part consisting of

asic arithmetic calculations. 

The classification scores indicate that our method is suitable for dis-

inguishing between tasks and rest; however, it is not fine enough to clas-

ify between cognitive tasks. Yet, there is a higher-performing prediction

ithin the substates compared with all substates overall, in which only

hree classes dominated, indicating promising results for future analy-

es. 

In conclusion, we have presented empirical evidence for a major cog-

itive theory. Specifically, we have demonstrated that the human adult

rain during rest tends to occupy metastable substates with lower con-

ectivity, higher modularity, and a low clustering coefficient. On the

ther hand, during attention-demanding tasks, the brain is more likely

o shift to highly connected metastable substates. Thus, all conditions

isit each of the defined metastable substates, indicating a rearranging

rom on-line to off-line cognition. High entropy during rest implies a

reparatory period with high amenability towards the upcoming on-line

ognitive task. 
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