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A growing body of experimental evidence suggests that functional connectivity at rest is shaped by the un-
derlying anatomical structure. Furthermore, the organizational properties of resting-state functional net-
works are thought to serve as the basis for an optimal cognitive integration. A disconnection at the
structural level, as occurring in some brain diseases, would then lead to functional and presumably cognitive
impairments.
In this work, we propose a computational model to investigate the role of a structural disconnection
(encompassing putative local/global and axonal/synaptic mechanisms) on the organizational properties of
emergent functional networks. The brain's spontaneous neural activity and the corresponding hemodynamic
response were simulated using a large-scale network model, consisting of local neural populations coupled
through white matter fibers. For a certain coupling strength, simulations reproduced healthy resting-state
functional connectivity with graph properties in the range of the ones reported experimentally. When the
structural connectivity is decreased, either globally or locally, the resultant simulated functional connectivity
exhibited a network reorganization characterized by an increase in hierarchy, efficiency and robustness, a de-
crease in small-worldness and clustering and a narrower degree distribution, in the same way as recently
reported for schizophrenia patients. Theoretical results indicate that most disconnection-related neuropa-
thologies should induce the same qualitative changes in resting-state brain activity.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The spatial patterns observed in brain activity during rest are thought
to be shaped by the underlying anatomical structure (Bullmore and
Sporns, 2009; Jirsa et al., 2010; Skudlarski et al., 2008). The availability
of whole-brain maps of anatomical connections (Hagmann et al.,
2008; Kötter, 2004; Sporns et al., 2005) together with computational
models of the brain's large-scale neural dynamics have shed light on
the relationship between anatomical and functional connectivity
(Cabral et al., 2011; Deco et al., 2009; Ghosh et al., 2008; Honey et
al., 2007, 2009). Importantly, models can be used to predict the ef-
fects of structural alterations on brain dynamics (Alstott et al.,
2009; Honey and Sporns, 2008), which is beyond reach on the exper-
imental side, making models a unique tool for the comprehension of
brain diseases.

Brain networks have been widely studied by means of graph the-
ory (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010), whether
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derived fromwhite-matter connections (anatomical networks) or from
temporal correlations (functional networks) between brain areas. The
application of graph theoretical measures to functional networks de-
rived from blood oxygenation level-dependent (BOLD) signals mea-
sured using functional magnetic resonance imaging (fMRI) during rest
has shown clinical relevance. Indeed, this procedure has revealed signif-
icant alterations in the resting-state patterns of patients with neuropa-
thologies such as schizophrenia (Bassett et al., 2012; Liu et al., 2008;
Lynall et al., 2010) and Alzheimer's disease (Supekar et al., 2008),
among others.

In this study, we focus on the effects of a structural disconnection
on resting-state functional networks. Resting-state functional con-
nectivity is investigated using a model of large-scale ongoing brain
neural activity. The model consists of local neural populations dy-
namically coupled via white-matter anatomical pathways. The cou-
pling weights between neural populations scale the long-distance
excitatory strength between brain regions considering simultaneous-
ly two factors: 1) the number of white matter fiber tracts detected
between those regions using DTI/DSI tractography and 2) the excit-
atory synaptic weights. From the simulated ongoing brain activity,
we estimated the hemodynamic response and computed functional
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connectivity matrices. Subsequently, simulated functional networks
were characterized using graph theory following the methodology
from Lynall et al. (2010) for a reliable comparison. In a first step,
using a healthy anatomical connectome, we study how the topologi-
cal organization of simulated functional networks depends on the
global structural coupling strength. For a range of coupling strengths,
the simulated functional networks were found to have graph proper-
ties similar to the ones reported for healthy controls in the work of
Lynall et al. (2010). Subsequently, the effects of a pathological discon-
nection were simulated in two different ways: either by globally de-
creasing the coupling strength, or by randomly pruning anatomical
connections. Theoretical results indicate that, in the model, all discon-
nections should induce the same qualitative changes.

Schizophrenia is a disorder which has been hypothesized to be relat-
edwith disconnection effects, and sowehave compared our resultswith
experimentalmeasures from schizophrenia patients (Lynall et al., 2010).
We found that the reorganization of resting-state functional networks
observed between healthy volunteers and people with schizophrenia
can be explained by a structural disconnection, both schemes leading
to similar results. Overall, these results support the hypothesis that the
functional network alterations underlying schizophrenia are caused by
a disconnection (encompassing putative local/global axonal/synaptic
mechanisms), in agreement with current theories of schizophrenia
(Bullmore et al., 1997; Friston and Frith, 1995; Skudlarski et al., 2010;
Stephan et al., 2006; Wernicke, 1906; Winterer and Weinberger, 2004;
Zalesky et al., 2011). Taken beyond the schizophrenia disorder, our re-
sults could provide a new light towards the understanding of altered
resting-state functional connectivity occurring in other mental illnesses
characterized by disconnection.
Methods

Anatomical connectivity

The brain's anatomical connectivity (AC)—or connectome—is defined
as the map of neural connections in the brain. In low-resolution maps
such as the ones used here, nodes correspond to segregated brain re-
gions and links are derived from the white matter anatomical pathways
interconnecting them. These networks have shown to be a key ingredi-
ent to models of resting-state functional connectivity (Cabral et al.,
2011; Honey et al., 2009). Given that results can be influenced by the
parcellation scheme (Bassett et al., 2011; Zalesky et al., 2010), we used
two distinct structural networks (see Fig. 1) in order to be able to gener-
alize: one with N=90 brain regions defined using the Automated Ana-
tomical Labelling (AAL) template from Tzourio-Mazoyer et al. (2002),
and another with N=66 brain regions derived by Hagmann et al.
(2008). In both networks, the connectivity strength Cnp from region p
to region nwas assumed to be proportional to the number of fibers in-
coming to region n and inversely proportional to the size of that region
(as in Cabral et al. (2011)).

The anatomical brain network with 90 regions was constructed
using diffusion tensor imaging (DTI) from the brains of 21 healthy par-
ticipants following the methodology from Gong et al. (2009). For each
subject, a 90×90 weighted network was constructed. Networks were
then averaged across subjects resulting in a reliable representation of
the anatomical organization of cerebral cortex (see Supplementary Infor-
mation (SI)-Methods for details). For this network, the distance Dnp be-
tween a pair of regions was taken as the Euclidean distance between
the corresponding centers of gravity in the AAL template.

The network with 66 regions, previously used in resting-state
computational models in Honey et al. (2009) and Cabral et al.
(2011), was derived from diffusion spectrum imaging (DSI) by
Hagmann et al. (2007) according to the Freesurfer parcellation
scheme (surfer.nmr.mgh.harvard.edu (Desikan et al., 2006)) and
averaged over 5 healthy subjects. In this case, the distance Dnp
between two regions was given as the average length of the fibers
detected connecting these two regions.

The AC in both parcellation schemes, AC66 and AC90, is given by
the matrices C and D (see Figs. 1B–C).

Simulating disconnection

In the model, local neural networks are connected with each other
according to the weight matrix Kwith Knp ¼ k

c1
Cnp. In general, discon-

nection implies that some or all of these weights decrease, meaning
that the disconnected weight matrix Kd has coefficients Knp

d ≤Knp. As
there is an infinite number of ways to implement disconnection, we
chose two representative examples of it. Note that the specific type
of disconnection occurring in a particular disease or in particular pa-
tients is out of the scope of the present paper, in which we are inter-
ested in the general effects of disconnection on the graph properties
of functional networks.

As a first implementation of disconnection, all weights decrease in
equal proportion, which is done by decreasing the global coupling
strength k (Kg=(Kg

C1
) C, where kgbk). In a second implementation,

we have chosen to remove links randomly from the original structur-
al matrix C90×90, a method called random pruning. To simulate the
progression of a disconnection disease, we generated a sequence of
pruned matrices C1

p, … , Cmp , … , CMp from the original one, where at
each sequence step, a fixed number of links was removed randomly.
The corresponding weight matrices write Km

p =( k
C1
) Cmp , where the

original prefactor k is kept unchanged. Choosing to remove 1% of
the total possible links of the binary C90×90 (that is 0.01 (90)2=81
links), which has about 39% of the possible links, a sequence of
M=39 pruned matrices was generated.

Neural dynamics model

To obtain the BOLD signal during rest, we first simulated the
brain's spontaneous neural activity. The model simulates the activity
of a network of N brain regions—or nodes—each representing a local
network of excitatory and inhibitory neurons. The main assumption
of the model is that functional connectivity at the brain-scale level
emerges mainly through the interplay between the long-distance
brain connectivity and the local node dynamics. For simplicity, the
neural networks within a node were assumed to be homogeneous,
that is without a specific structure. The nodes are connected via the
known AC, given by the N×N matrices of connection strengths C
and inter-regional distances D. We calculate the conduction delay
matrix τ dividing the distances by a chosen conduction velocity V
(V=10 m/s here).

The model is further defined by specifying the dynamics at the
node level and how these nodes interact. According to many studies,
local neural networks are considered to be in a stable asynchronous
state, meaning that neurons tend to fire irregularly and out of syn-
chrony and, in response to a constant input, the network firing rate
always decays towards a constant value. Assuming that during rest
the mean level of external stimulations remains constant, we hypoth-
esize that the perturbations of neural activity around the constant
asynchronous state are small. Therefore, dynamical equations for
the evolution of the neural network's firing rate can be written by
considering only their linearized version. These equations describe
the dynamics of firing rate deviations of local neural networks around
their asynchronous state.

To derive the local node dynamical equations, we use a theoretical
framework introduced in Mattia and Del Giudice (2002) which de-
scribes the dynamics of a neural network. Considering a homoge-
neous network of neurons, the Fokker–Planck equation (Risken,
1989) describes the temporal evolution of the probability distribution
of the neuronal variables over the neural network population. An as-
sociated equation gives the neural population firing rate. In this



Fig. 1. Large-scale healthy anatomical connectomes used in the model. (Top) Connectome derived from DTI using the AAL template, averaged across 21 healthy subjects. (Bottom)
Anatomical connectome derived by Hagmann et al. (2007) using DSI averaged over 5 healthy subjects. (A) Representation of the anatomical connectome. Regions are represented
by red spheres placed at their center of gravity. The thickness of the links is proportional to the number of fibers detected in each connection. (B) The weights of the connections are
proportional to the number of fibers detected. White color means that no fiber connecting the two corresponding regions was detected. Weights were normalized so that 0bCnpb1.
(C) Distance between regions (in mm), given as (top) the Euclidean distance between centers of gravity and (bottom) the average length of the fibers connecting a pair of regions.
The list of brain regions and corresponding indexes is reported in SI Tables 1 and 2.
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framework, the probability distribution is further decomposed using
the infinite series of eigenmodes of the Fokker–Planck equation,
giving a nonlinear dynamical equation for each of the coefficients
of the series' expansion. Under the hypothesis that the network has
a stable asynchronous state, which means a stable steady solution
for the Fokker-Planck equation, these equations can be linearized.
Then, it can be shown that the dynamics of this infinite set of linear
equations is controlled by the infinite set of eigenvalues λk=−1/
τk+iωk, where ωk/2π is an oscillation frequency and τk a damping
timescale. Among these modes, very few have a sufficiently large
damping timescale so that they effectively contribute to the dynam-
ics. Usually, one mode has a real eigenvalue, which describes pertur-
bations that simply decay exponentially in time, with a timescale τ0.
As we will use the model results to simulate the BOLD signal, the
dynamics produced by the (faster) oscillatory perturbations will be
filtered out when calculating the very slow BOLD signal (see
Simulated BOLD and functional connectivity). Therefore, we only
need to describe the dynamics due to the exponentially decaying per-
turbations. This dynamics is responsible for the low-frequency part of
the neuronal activity. Finally, for the local network n, the firing rate
deviations rn (t) obey the following first order stochastic differential
equation:

τ0
drn
dt

¼ −rn tð Þ þ k
c1

XN

p¼1

Cnprp t−τnp
� �

þ σηn tð Þ;n ¼ 1;…;N:

k is the global excitatory coupling level between nodes (k>0). Cnp
and τnp are the structural coupling strength and conduction delay
from region p to region n, specified by the Structural Connectivity
(SC). Note that the number of fibers, together with the synaptic
weights, are accounted for by the coupling strengths. As C has positive
coefficients, the Perron–Frobenius theorem shows that this matrix
has a real and positive eigenvalue c1 such that all other eigenvalues
are lower in modulus, and therefore have a lower real part. σ is the
noise level and the terms ηn (t) are uncorrelated white Gaussian noises
with zero mean and unit variance (〈ηn(t)〉=0 and 〈ηn(t)ηp(t′)〉=
δnpδ(t− t′), where δnp is the Kronecker symbol and δ (t) denotes the
Dirac delta function). This noise is not necessarily of external origin
(i.e. stimulation noise) and can be generated internally: finite size net-
works intrinsically induce noise in the dynamics (Mattia and Del
Giudice, 2002). As equations are linear, σ only scales the level of the
rate deviations. Given τ0, which is given by the internal state of local
networks (τ0=20ms here), the dynamics depends only on one param-
eter: k. As long-distance connections are excitatory, the reverberated
activity over the network can destabilize the damped local dynamics,
and therefore the asynchronous states. For this reason, k must be
bounded from above. For null delays, a classical stability analysis gives
the stability condition: kb1 (explaining why we have scaled down the
coupling by c1 in the previous equation).When delays are finite, this re-
mains a very good approximation.

These equations were numerically integrated using the Euler meth-
od with a time-step of 0.1 ms. For every set of parameters considered,
we simulated the system for 1200 s (20 min). All calculationswere per-
formed using Matlab®.

Without noise, the dynamics of the firing rate deviations around
an otherwise constant state would always tend to zero after some
time, as long as the stability condition is verified. In the presence of
noise, the model permanently produces ongoing fluctuations across
the large-scale network by the excitatory reverberation of local activ-
ity on this recurrent network. Consequently, even if individual noises
are independent, the SC makes the rate fluctuations not independent,

image of Fig.�1
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explaining in principle the finding of large-scale structure in the brain
fluctuations.

Further, in order to gain theoretical insight into the large-scale
network dynamics, it is useful to consider the case of null delays.
This case corresponds to the Ornstein–Uhlenbeck process in N di-
mensions (Gardiner, 2004) but, what makes the dynamics interest-
ing here is the complicated—or disordered—connectivity matrix C,
which is the main ingredient in explaining the emergence of specific
functional networks as will be shown below. In this case, and using
the eigenvectors frame of C, the firing rate deviations can be written
as r(t)=∑ p=1

N Rp(t)Vp where r(t) and R(t) are the column vectors of
the original and transformed rate perturbations, respectively. Vp is
the pth unit right eigenvector of the matrix C, associated with the
eigenvalue cp. As the network has a 3 dimensional representation, Vp
represents a spatial map (Note that, when considering the case of
non-symmetric connectivity matrices, pairs of complex conjugate ei-
genvalues appear and both conjugate eigenvectors need then to be
used to define physically meaningful spatial maps). We sorted these ei-
genvalues in descending order of the real parts: c1>Re[c2]>…>Re[cN]
(Re[x] denoting the real part of x). Each transformed rate perturbation,
or mode, Rp(t) has temporal fluctuations described by the timescale
τp=τ0/(1−kRe[cp]/c1). From the ordering of the eigenvalues of C, we
have τ1>τ2>… > τN. Therefore, the global dynamics of the large-
scale network is a superposition of these temporal modes, but with dis-
tinct spatial maps for each mode. In particular, the modes associated to
the eigenvalues with the largest real parts have the largest timescales,
and therefore are the slowest ones. Moreover, when the coupling k in-
creases, all modes up to mode p (for which Re[cp]>0>Re[cp+1]), get
slower and the others get faster. The timescale of the first mode
τ1=τ0/(1–k) increases faster than all the other timescales τp, with
p≥2, and even diverges as k→1. If we add the fact that the variance
of mode Rp (t) is proportional to τp, the fluctuations in the network dy-
namics will be dominated (in variance) by the slowest modes, and
dominantly by R1(t), leading to correlations in the low-frequency part
of the neural activity. In particular, the BOLD signal, which can be seen
in a first approximation as a low-pass filtering of the neural activity
(Cabral et al., 2011), will present spatial correlations. As a result, the
mean of the correlation distribution of the BOLD correlation or FC ma-
trix will shift towards positive values.

Because of the finite axonal conduction velocity—in the range of 5
to 10 m/s—delays are in fact finite but generally shorter than 50 ms in
humans. Delays theoretically introduce an infinite number of degrees
of freedom but their practical effect on the dynamics depends on their
magnitude. When the linear dynamical equations are written in the
frequency domain, for a given frequency f, delays enter in the terms
exp (i2πfτnp). In this study, we are only interested in the BOLD signal
generated by the neural activity. Because the model used to calculate
the BOLD signal (the Balloon–Windkessel model; see next subsec-
tion) first filters the neural activity with a low-pass filter with ap-
proximate cut-off at fc=0.4 Hz (Cabral et al., 2011), and since
fcτnpb0.02, the delays have a very small effect on the slow part of
the neural activity which is responsible for the BOLD signal. Simula-
tions with and without delays confirm, in this particular case, the
negligible effect of the delays.

Simulated BOLD signal and functional connectivity

The BOLD signal of each region was estimated from the neural pop-
ulation activity using the Balloon–Windkessel hemodynamic model
(Friston et al., 2000, 2003). We focused our investigation on low fre-
quency (0.06–0.125 Hz) fluctuations of the BOLD signal, which have
previously been shown to be particularly sensitive to disease-related al-
terations in schizophrenia (Bassett et al., 2012; Lynall et al., 2010). Sim-
ulated BOLD signals were band-pass filtered in that frequency window
(0.06 Hz–0.125 Hz) and finally down-sampled at 2 s to have the same
temporal resolution as the MR scanner.
Functional connectivity (FC) was evaluated by computing the
Pearson correlation of band-passed simulated BOLD signals in differ-
ent brain areas. This measure is widely employed to derive resting-
state functional networks from fMRI signals (Biswal et al., 1995; Fox
and Raichle, 2007) and provides a simple characterization of tempo-
ral interactions between brain regions. Moreover, comparing with
measures from information theory (more precisely the mutual infor-
mation) which unravels all types of nonlinear interactions, it has re-
cently been shown that correlation captures most of the interaction,
and is a very good tool to study the functional connectivity graphs
(Hartman et al., 2011; Hlinka et al., 2011). Note that, only to compare
the simulated 66×66 FCmatrixwith the empirical one, the global signal
was regressed out (see Fig. 2D and Empirical functional connectivity).
The resulting correlation matrix—or FC matrix—can then be studied
using graph theory (Achard et al., 2006; Bassett et al., 2012; Lynall et
al., 2010; Rubinov and Sporns, 2010).

We analyzed the principal components (PC) of the simulated
BOLD signals to obtain a measure of global integration (GI). We com-
puted the covariance matrix and calculated the ratio of the first eigen-
value to the sum of all the others (Friston, 1996; Tononi et al., 1994):

GI ¼ λ1=
XN

j¼2

λj

From the Neural Dynamics Model subsection it can be seen that, as
k increases from a sufficiently high value, the first eigenvalue—or var-
iance of the first PC—increases faster than the others, and conse-
quently the GI increases. In fact, mathematically, as the mean of the
correlation distribution is positive and increases, the variance of the
first PC automatically increases, this PC being the main source of pos-
itive correlation.

Empirical functional connectivity

In order to validate themodel's performance in reproducing healthy
resting-state functional connectivity, we compared simulated function-
al networks with an empirically derived FC matrix previously used in
Honey et al. (2009) and Cabral et al. (2011). This empirical FC matrix
was constructed in the parcellation scheme from Hagmann et al.
(2007) from the resting brain activity of 5 healthy subjects with eyes
closed—the same subjects from which the corresponding SC was
obtained. It consists on the correlation matrix of the mean BOLD signal
in each of the 66 regions. Before computing the correlation, the BOLD
signal was preprocessed for artifact removal including global signal re-
gression (see Honey et al. (2009) for details). Simulated and empirical
FC66 matrices were compared using Pearson correlation.

Building graphs from functional networks

The set of synthetic functional networks generated with the use of
the computational model were characterized using graph theory. To
evaluate functional networks by means of graph theory, the FC matrix
needs be binarized into an adjacency matrix where correlations above
a certain threshold are set to 1 and 0 otherwise. The definition of thresh-
olds depends on either onewishes to create equi-sparse graphs (ensuring
a fixed percentage of edges) or equi-threshold graphs (ensuring a mini-
mum correlation value to define an edge, resulting in a variable number
of edges) (Bassett et al., 2012). Since the employed graph-theoretical
measures are known to depend on the graph's connection density
(Bassett et al., 2008, 2012; van Wijk et al., 2010) all our measures refer
to equi-sparse graphs defined over a fixed range of connection densities
to overcome this dependency. In more detail, from each FC matrix, 14
graphs were constructed with connection densities ranging from 37% to
50% (1% increment) in the same way as in Lynall et al. (2010). Moreover,
our networks have 90 and 66 nodes, whereas the experimental results



Fig. 2. Dependency of simulated functional connectivity (FC) on the coupling strength k. (A) Mean correlation of simulated BOLD signals obtained with increasing coupling strength
k. (B) Global integration of the BOLD covariance matrix. (C) Correlation between the FC matrix and the underlying anatomical connectivity (AC) matrix. In plots A–C we report the
values for the FC matrices with 66 and 72 nodes. (D) Comparison between empirical (healthy) and simulated FC66. The values reported are averaged over 10 runs of 1200 s (error
bars=±1 STD). STD=standard deviation. (E) Example of simulated FC matrices, obtained with increasing coupling strengths k.
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refer to only 72 nodes—a subgroup of the 90 regions defined in the AAL
scheme. To overcome the complex dependency of the measures on the
number of nodes (Fornito et al., 2010; van Wijk et al., 2010) and on the
parcellation scheme (Wang et al., 2009), we have selected the exact
same 72 nodes from theAAL templatewhen analysing the functional net-
works obtained from simulations with the AC90, resulting in a FC with 72
nodes (FC72). Note that essentially subcortical regionswere discarded, but
see SI Table 1 for the list of regions considered. We also report the results
using the 66 regions (FC66) to investigate the impact of a different number
of nodes in the results.

The various graph measures were estimated for graphs obtained at
densities in the range 37–50%, with the exception only for degree distri-
bution parameters, which were only estimated for graphs with 37% den-
sity. Measures were averaged across the cost range, providing global
measures of the topology of each FC matrix. In addition, the same
thresholding technique was applied to 100 random graphs with the
same range of connection costs to compare with the simulation results.
Graph theoretical measures

The graph theoretical measures employed were evaluated using
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) and the
MatlabBGL Toolbox (Gleich, 2009). For all simulated FC matrices, we
first estimated well-known graph measures such as efficiency, clustering
and small-worldness. The efficiency is the inverse of the mean shortest
path length, i.e. the average number of links (paths) necessary to connect
any pair of regions (Latora and Marchiori, 2001). The average clustering
indicates the probability of two regions connected to a third one being
also connected to each other, forming triangles. Small-worldness depends
directly on the two previousmeasures and evaluates if high efficiency co-
exists with high clustering, when compared to an equivalent random
graph (Humphries et al., 2006;Watts and Strogatz, 1998) (see SI-Methods
for more details).
We also estimated the hierarchy coefficient β, which is taken as the
(positive) exponent of the power-law relationship between the cluster-
ing, Cl, and the degree, d, of the nodes in the network such that Cl~d -β

(Bassett et al., 2008; Ravasz and Barabasi, 2003). β was estimated using
the least-squares nonlinear fitting function from Matlab®. The higher
the hierarchy coefficient, the more network hubs—defined so for having
a large number of connections—have low clustering, meaning that they
are more connected to nodes poorly connected to each other.

In addition, we calculated robustness measures, which indicate the
graph's resilience to the removal of nodes.When anode is removed either
randomly (random attack) or in descending degree (targeted attack), the
graph can fragment into independent subgraphs. To estimate the robust-
ness of a graph, each time anodewas removed,we recalculated the size of
the largest connected component, s. Plotting the size s(n) versus the num-
ber of nodes removed, n, the robustness parameter is defined as the area
under this curve (Achard et al., 2006).More robust networks retain a larg-
er connected component even when a large proportion of nodes have
been eliminated. To take into account the size of the network,we normal-
ized this value by N(N−1)/2, so that the maximum robustness is 1.

Finally, we evaluated the degree distribution of graphs obtained at
37% connection density. This distribution gives the probability of
node degrees (Boccaletti et al., 2006), where the node degree is sim-
ply defined as the number of edges connecting a node (see Figs. 3J–L).
For each simulation,we determined the variance of the degree distribu-
tion. In addition, the degree distributionwasfitted to a gammadistribu-
tion P(d)∝dα−1 exp(−d/dc), which was found to be the best fit for
experimental results (Lynall et al., 2010). The power exponent, α, and
the lower exponential degree cut-off, dc, were estimated using the
least-squares nonlinear fitting function from Matlab®.

Results

Overall, we found that the simulated functional networks generated
with the neurodynamical model specified in Neural Dynamics Model

http://www.stanford.edu/group/SOL/dissertations/pagerank-sensitivity-thesis-online.pdf
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Fig. 3. Dependency of simulated functional networks on the structural coupling strength and comparison with empirical results reported in health and schizophrenia. (A–I) Sim-
ulated functional networks obtained with the model with increasing structural coupling strength k are characterized using graph theory. Black error-bars (mean±1 STD) corre-
spond to results from simulated FCs considering the same 72 brain regions used in Lynall et al. (2010), whereas orange error-bars correspond to results using another
anatomical parcellation (66 regions). For comparison we indicate the values for healthy controls (blue) and schizophrenia patients (red) reported in Lynall et al. (2010). Shaded
bands indicate the confidence interval of 1 STD. In addition, measures of equivalent random networks are reported (grey), showing that, as the coupling is decreased (from
right to left), simulated functional networks become randomized. (J–L) Example of degree distributions obtained with increasing coupling k. Error bars indicate the confidence in-
terval of 1STD across 10 simulation runs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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depend largely on the underlying structural connectivity. First, using a
healthy AC we studied how parameters such as correlation strength,
global integration and a number of measures from graph theory, vary
as a function of the global coupling strength k. This coupling strength,
encompassing axonal and synaptic mechanisms, uniformly scales all
the connection weights between brain regions defined by the neuroan-
atomical network (see Anatomical connectivity). Then, we considered
two particular disconnection schemes: one by decreasing the global
coupling strength, the other by randomly removing links from the ana-
tomical network while the absolute coupling strength remained fixed.
Furthermore, we theoretically generalized the previous results to any
disconnection scheme. Finally, we analyzed our results in light of the
schizophrenia literature, mainly focusing on a recent study from Lynall
et al. (2010) who reported altered resting-state functional networks in
people with schizophrenia in terms of graph theory.

Simulated functional connectivity

Using our model of ongoing brain neural activity, we studied how
the anatomical connectivity leads to the functional connectivity, and
particularly how this depends on the global coupling. For low cou-
plings (k≤0.5) the simulated BOLD signals are weakly correlated
(Fig. 2A) because there is no dominant mode in the neural activity,
as seen by the global integration measure (Fig. 2B). As the coupling
strength increases above these values, and due to the progressive
emergence of a dominant mode, positive correlations build up and
the FC matrix becomes increasingly shaped by the underlying SC
(Fig. 2C). Above a sufficient coupling, more and more regions that
are not structurally connected become also correlated: the correlation
with the empirical FC keeps increasing (Fig. 2D) while the correlation
between AC and FC decreases (Fig. 2C). However, in the proximity of
the critical coupling the dynamics becomes too globally integrated
(lim kc→1(GI)=∞) (see Fig. 2 B). Remarkably, both FC66 and FC72 de-
pend similarly on the coupling strength (in SI Fig. 2 we show that
these properties are maintained even when considering the simulat-
ed dataset with 90 regions, FC90). The variance in results (errorbars)
is due to the effect of the dynamical noise in the model and to the fi-
nite duration of the simulated time series (1200 s here).

Graph properties of simulated functional connectivity

We analyzed simulated functional networks using a number of mea-
sures from graph theory. As shown in Fig. 3, the different measures
employed appear to vary with the coupling strength in a continuous
fashion. When the coupling value is too small (k≤0.5), the simulated
FC graphs share properties of random graphs (reported in grey in
Figs. 3A-I). In this region the small-world index is close to 1 (Fig. 3B),
the average clustering coefficient is low (Fig. 3D) and the degree distri-
bution is narrow (Fig. 3I) andbell-shaped (Figs. 3G–H, J)with a lowprob-
ability of both low- and high-degree nodes, typical of a randomgraph. As
a consequence of having less high-degree hubs, randomgraphs aremore
robust to attacks, because these can maintain connectedness even after
the removal of a large number of nodes (Figs. 3EF). On the other hand,
a higher hierarchy in random graphs indicates that nodes with higher
clustering are the ones with lesser degree (Fig. 3C). As the coupling in-
creases from 0.5 to 0.95 the functional networks reorganize and most
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of the metrics evolve towards values characteristic of healthy human FC
(reported in blue) (Lynall et al., 2010). Namely the clustering coefficient
and the small-world index increase, the hierarchy decreases and the de-
gree distribution becomes wider (Figs. 3I, L). In addition, functional net-
works become less robust to attacks, especially the targeted ones
(Figs. 3E–F). Remarkably, we find that healthy human FC graph proper-
ties can be approximately obtained when the coupling is in the range
0.85bkb0.9.

Effects of global and local disconnection

For the first type of disconnection considered, the coupling was uni-
formly reduced and all graph properties were found to change mono-
tonically (Fig. 3). In order to simulate other types of disconnection,
which are more localized, we pruned the original structural connectiv-
ity matrix, building a sequence of pruned matrices by successively re-
moving 1% of the possible links in a random fashion (see Simulating
disconnection). The absolute global coupling level (k/c1) is otherwise
kept constant. We started from the healthy case using a fixed coupling
value of 0.87, with which we obtained approximate healthy human FC
graph properties. As illustrated in Figs. 4AC, we found that successive
pruning induces monotonical changes in the graph properties of emer-
gent FCs, in the same way as decreasing the global coupling.

Calculating the leading eigenvalue cm,1
p of the prunedmatrices (see

Fig. 4B), we found that it decreases as pruning progresses. Therefore,
keeping the absolute global coupling level k constant is equivalent to
taking a global coupling km

p =kcm,1
p /c1, which decreases as pruning

evolves (see SI-Text for a theoretical demonstration and SI Figs. 3
and 4). In other words, pruning the matrix is equivalent to decreasing
the global coupling, and consequently, the graph properties change in
the same direction as for the previous disconnection scheme.

More generally, as we theoretically demonstrate in SI-Text, for any
conceivable disconnection the leading (positive) eigenvalue of a
Fig. 4. Effects of pruning links in the anatomical connectivity (AC) on the properties of emerg
correlation and the global integration of BOLD signals decrease as links are removed from th
matrices decreases. (C) Graph theoretical properties of simulated functional connectivity ob
ing 1% of the possible links in a random fashion.
connectivity matrix decreases (at least when this matrix is symmet-
ric). This generalization includes even the case of removed nodes
(as done by Alstott et al. (2009) to simulate lesions), where removing
a node is equivalent in the model to remove all connections to that
node (see SI-Text). Here, we found numerically the same behaviour
for non-symmetric connectivity matrices. In conclusion, according
to the present model, any disconnection leads to the same type of to-
pological reorganization of resting-state functional graphs.

Importantly, we found that when the AC is only partially pruned
(up to 15% of removed links), it is possible to recover the graph prop-
erties of healthy functional networks by increasing the global cou-
pling strength (see SI Fig. 3). Only when the underlying AC is
further disconnected, then the few remaining links are not sufficient
to shape the resulting FC with graph properties characteristic of
humans, and remain random even at high global coupling.

Simulated functional networks in schizophrenia

In this section, we concentrated on the specific case of disrupted
functional networks in schizophrenia during rest. In the work from
Lynall et al. (2010) the graph measures explored herein were found
to expose significant differences between functional networks from
healthy controls and patients with schizophrenia. Notably, they found
that functional networks frompeoplewith schizophreniaweremore ef-
ficient, less small-world, more hierarchical, less clustered, more robust,
and with more homogeneous regional degrees (i.e. narrower degree
distribution) than healthy functional networks.

In the present work, disrupted functional networks in schizophrenia
are hypothesized to be related to a widespread decrease in the long-
range excitatory strength between brain regions, i.e. the coupling para-
meter k in themodel. This decreased coupling could be caused by a path-
ological disconnection, in agreement with current pathophysiological
theories of schizophrenia (Stephan et al., 2006). On one side, the
ent functional connectivity (FC) obtained with fixed coupling (k=0.87). (A) The mean
e anatomical network AC90. (B) As links are removed, the first eigenvalue of the pruned
tained with increasingly pruned AC matrices. Pruning consisted on successively remov-

image of Fig.�4


1349J. Cabral et al. / NeuroImage 62 (2012) 1342–1353
disconnection could be due to a decrease in white matter connectivity
(Wernicke, 1906), supported by a number of studies reporting lower
fractional anisotropy (Lim et al., 1999; Mitelman et al., 2006; Skudlarski
et al., 2010), less axonal fibers interconnecting gray-matter regions
(Zalesky et al., 2011) and myelin-related dysfunction (Davis et al.,
2003) in patients with schizophrenia. Even so, the hypothesis of anatom-
ical disconnection in schizophrenia still needs further validation (see for
example van den Heuvel et al. (2010)). Alternatively, the decoupling in
the model could still be interpreted as related to a damage occurring at
the synaptic level, associated to a deficient modulation of synaptic plas-
ticity (Friston, 1998; Stephan et al., 2006) and/or possibly related to re-
ports of dopaminergic (Winterer, 2006; Winterer and Weinberger,
2004), cholinergic (Mobascher et al., 2011; Winterer, 2010), or gluta-
matergic (Coyle et al., 2003) malfunction in schizophrenia. Importantly,
the mechanisms leading to a decreased coupling strength are not neces-
sarily exclusive and could coexist (Stephan et al., 2006).

In order to compare our graph theoretical results in a statistical
way with the ones from Lynall et al. (2010), we started by defining
two groups of coupling strengths (with 30 values each), one repre-
sentative of healthy controls, KH, and another of patients with schizo-
phrenia, KS. We have chosen to define these values based on the global
integration of BOLD signals (see Simulated BOLD signal and functional
connectivity) whichwas found in Lynall et al. (2010) to be significantly
reduced in people with schizophrenia (GIS=32.6±11%) compared to
healthy volunteers (GIH=43.1±8.4%). Based on these measures, we
defined a set of 30 values taken from a Gaussian distribution g(GIH)
with mean=43.1 and 8.4% standard deviation and 30 values taken
from another distribution g(GIS) with mean=32.6% and 11% standard
deviation (see Fig. 4A for an illustration). Then, we extrapolated the
coupling strengths necessary in the model to match each of the
expected GI values. In this way, we obtained two groups of coupling
strengths with 30 values each (KH=0.85±0.01STD and KS=0.81±
0.02STD), statistically representative of the healthy controls and the pa-
tients with schizophrenia in terms of global integration of BOLD signals.
Subsequently we ran simulations using these coupling values and ana-
lyzed the resulting functional networks using graph theory.

In a first step, we analyzed the sensitivity to fragmentation of
functional graphs obtained at KH and KS. Bassett et al. (2012) found
that equi-threshold graphs built from resting-state functional net-
works from healthy controls lose connectedness at lower costs than
the ones from schizophrenia patients. To evaluate if the same phe-
nomenon occurs in our simulated networks we calculated the size
of the largest connected component as a function of the graph densi-
ty, with densities ranging from 0% to 100% (with 1% increment). We
did it using the complete simulated set of 90 regions (same as used
in Bassett et al. (2012)) Remarkably, the same type of tendency was
observed in simulated functional graphs (see Fig. 5B left). Moreover,
above 27% cost, all simulated graphs exhibited full connectedness, so
at the costs used for graph theory (37–50%) all graphs are fully con-
nected. In addition, we also estimated the sensitivity to fragmentation
using equi-threshold graphs, where functional connections were con-
sidered as a link only when the correlation was above a certain thresh-
old, ranging from 0 to 1 (0.01 increment) (see Fig. 5B right). In this case,
functional graphs from schizophrenia patients fragment at lower
thresholds. This illustrates the fact that fragmentation, as well as other
graph measures, depend largely on the thresholding technique. For
the following analysis, we show the results using exactly the same
thresholdingmethod from Lynall et al. (2010) for a reliable comparison,

The graph metrics obtained for each population (KH and KS) are
shown in Fig. 5C (black +) in comparison with the equivalent exper-
imental results (blue and red error bars). Notably, all the changes in
the metrics followed the same tendency as reported experimentally.
Namely, as can be observed in Fig. 5C the functional graphs obtained
at lower coupling (KS) were more efficient, less clustered, more hier-
archical, less small-world and more robust to both random and
targeted attack than the functional graphs obtained with around 5%
higher coupling (KH). In addition, in the group with lower coupling
the degree distributions had a smaller variance and fitted to gamma
distributions with higher power exponent and smaller degree cut-
off (Figs. 5C–D). Functional graphs obtained at higher couplings, on
the contrary, exhibit a degree distribution with a larger variance
which reflects in higher probability of both high and low degree
nodes, as observed also by a less steep cumulative degree distribution
(Fig. 5E). Finally, the percentage of variance accounted for by the first
PC was significantly reduced at lower couplings, as expected, but no
significant difference was found in the remaining PCs (Fig. 5F). Al-
though most of the metrics were found to be in the same range as
the ones reported experimentally (error bars in Fig. 5C), some of
the metrics, such as the robustness to targeted attack and the hierar-
chy in the healthy population, were consistently different from
experiments.

These results show a tight relationship between the global inte-
gration of BOLD signals and graph theoretical properties of functional
networks. Moreover, they corroborate our hypothesis that the func-
tional network alterations observed in schizophrenia could result
from a decrease in the coupling strength between cortical regions,
which scales the global integration of BOLD signals and consequently
the properties of emergent functional networks. Please note that a
homogeneous reduction in the coupling strength affects functional
connectivity in a heterogeneous fashion. Again, we remind that this
pathological disconnection could originate either from disruption of
axonal connectivity or by malfunction at the synaptic level, unifying
current theories of schizophrenia.
Discussion

In the present work, we used a modeling approach to investigate
the role of structural connectivity in shaping functional networks as
measured with fMRI during rest. Structural connectivity is ensured
by brain mechanisms involved in long-range signal transmission in
the brain, including axonal connectivity (dependent on the number,
density and coherence of axon fibers) and synaptic mechanisms
(e.g. neurotransmission and plasticity). As shown here, a disruption
of these mechanisms, at either a global or a local level (such as occur-
ring in certain brain pathologies), can have dramatic impacts on the
resulting functional networks.

Large-scale neural models of brain dynamics are promising tools to
explore the non-trivial relationship between anatomical and functional
brain connectivity. In particular, thesemodels allow for an investigation
of the role of different factors (here, the long-range excitation) in the
BOLD signal dynamics, the resulting functional networks and their to-
pological properties. Furthermore, investigating the impact of such fac-
tors in the AC-FC relationship helps understanding the mechanisms
underlying healthy resting-state activity and its breakdown in disease.
In general, our results show that resting-state functional networks de-
pend largely on the structural coupling strength.

First, the results from our model show that stronger structural cou-
pling generates more globally correlated and globally integrated BOLD
signals. This is due to the increased excitatory reverberation across the
large-scale network, which increases the timescale and the relative var-
iance of the slowest dynamical mode, faster than for the other modes.
Using a healthy anatomical connectome, we found an optimal structural
coupling strength for which the simulated functional networks have
graph-theoretical properties very similar to those of resting-state func-
tional networks in healthy brains. Namely, simulated functional graphs
exhibit small-world properties, characterized by high clustering and rel-
atively high efficiency, low hierarchical organization, and a high proba-
bility of both high- and low-degree nodes, as indicated by the degree
distribution parameters. The robustness to attacks is decreased with
more hub regions. As the coupling is reduced, emergent functional
graphs become successivelymore randomand, in the case of an extreme



Fig. 5. Properties of simulated functional networks in health and schizophrenia. (A) Definition of coupling values KH and KS representative of the healthy controls and the schizophrenia
patients, based on the global integration values reported experimentally for the two groups, GIH and GIS. Using a fitting function, we searchedwhich coupling valueswould give the same
GI distributions, resulting in two distributions of couplings KH (0.85±0.01STD) and KS (0.81±0.02STD). (B) Fragmentation of simulated functional networks. Networks simulatedwith KS

were found to be more connected at lower densities when comparing equi-sparse graphs (left). However, comparing equi-threshold graphs, they fragmented at lower thresholds than
networks obtained with KH. (C). Graph theoretical metrics of simulated FC matrices (black +) together with experimental values in health (blue: mean±std) and schizophre-
nia (red mean±std) reported in Lynall et al. (2010). (D–E) Pooled degree probability density (D) and cumulative degree distribution (E) for the two populations obtained with
KH (blue) and KS (red). (F) Percentage of variance accounted for by the first 10 principal components of the simulated BOLD signal. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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disruption of the structural coupling (i.e. >50% of couplingdecrease) the
simulated functional networks share properties of random networks.

Disconnection effects were studied by considering a uniform de-
crease in the structural connectivity strength. Nevertheless, patholog-
ical disconnections may happen only between specific brain regions
and therefore affect distinct functional systems depending on the
location of the disruption. To take into account the effects of local dis-
connections in our study, we have also considered pair-wise discon-
nections occurring in a random and non-uniform way. As links are
randomly removed from the anatomical connectome and the abso-
lute coupling is kept constant, we find that the simulated functional
networks reorganize in the same way as if the (relative) structural
coupling was decreased. We provide a theoretical demonstration to
explain why this is actually the case. For symmetric connectivity,
we found that any type of disconnection, including the case where
nodes are eliminated from the network, will decrease the leading
positive eigenvalue of the matrix and therefore the absolute coupling
appears lower, generalizing our results for such type of connectivity.
Moreover, we found that, when the AC is only partially pruned, it is
possible to recover the graph properties of healthy functional net-
works by increasing the global coupling strength. Only when the un-
derlying AC is further disconnected, then it is no more possible to
obtain FC graph properties characteristic of humans, even at high
coupling levels.

image of Fig.�5
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Disrupted functional networks in schizophrenia

Schizophrenia is generally thought to be linked to a pathological
disconnection, supported by mounting evidence of disrupted inter-
regional functional interactions (measured with fMRI). However,
the pathophysiological origin of this disconnection remains under
debate. Possible explanations rely mainly on the neural structures
involved in signal transmission, i.e. axons and synapses. Importantly,
in our model the coupling parameter encompasses bothmechanisms
and therefore can be interpreted in the light of both theories of
schizophrenia.

Results show that disrupted structural connectivity—or disconnection
—occurring at either a global or a local level, is indeed a strong candidate
to explain the alterations reported in functional brain networks of people
with schizophrenia during rest. Importantly, very good quantitative
agreement with the functional network reorganization observed in
schizophrenia was found with a uniform decrease of only 5% in the cou-
pling or a removal of about the same proportion of existing links (both
types of measures being equivalent in terms of fiber changes). This was
characterized by a decrease in small-worldness and clustering and an in-
crease in hierarchy, efficiency, robustness and degree homogeneity.

Existing experimental studies (Bassett et al., 2012; Lynall et al.,
2010) have shown that the BOLD signals from schizophrenia patients
are significantly less globally integrated than the ones from healthy
controls. Based on these results, we defined a range of coupling values
that originate, through themodel, simulated BOLD signals with statisti-
cally similar values of global integration found in disease and healthy
states. We found that less globally integrated simulated BOLD signals
give rise to simulated functional networks with properties matching
the ones characteristic of the schizophrenia disease.

Our results propose a general scenario for understanding elements
of schizophrenia, unifying structural (e.g. axonal and/or synaptic mech-
anisms), dynamical (e.g. BOLD signal integration) and functional con-
nectivity studies (e.g. graph properties of functional networks).

Relationship between structural coupling strength and cognitive performance

The role of the topological organization of functional networks on
the performance of cognitive integration has long been speculated
(Sporns et al., 2004). For example, a small-world topology of func-
tional networks is thought to support both modular and distributed
processing dynamics (Bassett and Bullmore, 2006; Sporns et al.,
2002), leading to optimal information processing in the brain. In ad-
dition, Lynall et al. (2010) found a strong link between a number of
graph theoretical measures of functional networks and a verbal fluen-
cy score (indicative of cognitive performance).

Here we propose that the functional network (dis) organization
leading to cognitive impairment can be directly linked to a disruption
of the underlying structural connectivity (potentially axonal or syn-
aptic). This hypothesis is corroborated by a number of studies that
have reported a link between structural connectivity and behav-
ioural/emotional symptoms in schizophrenia (Hoptman et al., 2004;
Skelly et al., 2008; Skudlarski et al., 2010; Stephan et al., 2009).
With the present model, we show a direct relationship between
graph measures of functional networks (previously related to cogni-
tive performance) and the underlying structural connectivity. These
results reinforce the idea that a stronger structural coupling between
cortical regions allows a better integration of the functional networks,
hypothetically leading to an increased cognitive performance. Note
that a widespread decrease in the structural coupling between brain
regions results in a heterogeneous decrease in inter-regional regional
functional connectivity. Therefore the relationship suggested by these
results between lower structural coupling and decreased cognitive
performance should be seen as independent from functional connec-
tivity strength. Indeed, the relationship between functional connectiv-
ity strength and cognitive performance is likely to be more complex. A
recent study from Hawellek et al. (2011) has found that inter-regional
functional connectivity within the default mode network increased
(rather than decreased) with the decline of cognitive performance in
multiple sclerosis. However since the global signal was regressed out
in the preprocessing of BOLD signals—which greatly complicates the in-
terpretation of BOLD signal correlations (Murphy et al., 2009), it is pre-
mature to draw conclusions based on this result.

Relation to other modeling studies

Over the last few years, several large-scalemodels of the brain activ-
ity have studied how the resting FC could bederived from theACusing a
neural mass model at the local node level. Following several reduction
lines, local nodemodels have included a conductance-based biophysical
model (Alstott et al., 2009; Honey et al., 2007, 2009), the FitzHugh–
Nagumo model (Ghosh et al., 2008), the Wilson-Cowan model (Deco
et al., 2009) and a phase oscillator like in the Kuramoto model (Cabral
et al., 2011). Independently, here we propose a new derivation based
on the framework of the Fokker-Planck equation, which is able to de-
scribe the full network dynamics, taking into account the effect of
noise. Under the hypothesis that the local dynamics is asynchronous,
a hypothesis with significant experimental support, we derived a sim-
plified linear model based on the supplementary hypothesis that devi-
ations from this dynamical state are small. At the end, we have not
only a rigorous derivation of the model, but also the advantage that
the linearity of the model allows for a theoretical understanding of the
behavior of the large-scale model and of the resulting FC. Such an un-
derstanding ismuchmore difficult in the other nonlinearmodels.More-
over, although there is a qualitative difference between models, the
performance of our model in predicting the empirical FC is very similar
to the one from existingmodels, indicating no clear advantage of taking
into account nonlinear effects to predict the resting FC.

Other modeling studies have studied the impact of lesions in func-
tional connectivity during rest (Alstott et al., 2009; Honey and Sporns,
2008). Although lesions were simulated by removing nodes or corti-
cal areas in the brain, it can be seen as a particular type of disconnec-
tion, where all links to a certain node (or area) are removed. One of
the main findings was that FC alterations can be widespread even
when the lesion is local. Moreover, FC changes were found to be
very dependent on the brain regions affected by the lesion (Alstott
et al., 2009). Although a study of the spatial alterations in FC is be-
yond the scope of the present study, the present model sheds a new
light on these previous results.

In our model, the slowest modes are responsible for the low-
frequency correlations, in particular the slowest one. When we con-
sider the case of a global disconnection, we do not change the connec-
tivity matrix, and in that case, the smooth FC changes are mainly due
to the change in relative variance of the first (slowest) mode, which
reflects spatially in its spatial map. When we consider a local discon-
nection (or a lesion), the connectivity matrix changes and the spatial
maps also change: therefore, FC changes non-locally, crucially and
non-trivially depending on the lesion site, in the same way eigenvec-
tors depend non-trivially on the underlying matrix.

Limitations and further studies

Although computational models serve to test existing theories and to
make predictions, results must be interpreted in light of the model
limitations.

First, we used averaged anatomical connectomes. Although averag-
ing helps eliminating spurious connections detected by the tracking al-
gorithm and therefore provide a robust and reliable version of the
human connectome, the variability across subjects in those terms is
neglected. In Fig. 4 we define variability across subjects by means of
the structural coupling k, which is proposed to be one (but not the
only) source of variability across subjects. Furthermore, the anatomical
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connectomes refer to healthy participants and disconnection effects
were modeled by inducing uniform or heterogeneous alterations in
the SC. We believe our model results would benefit if simulations were
ran using anatomical connectomes from people with disconnection-
related pathologies. Due to the increasing availability of anatomical
connectomes in health and disease (e.g. from the Human Connectome
Project www.humanconnectomeproject.org) such studies should be
implemented in the future. In addition, the use of low-resolution
parcellation templates (e.g. 66 and 90 regions) limits our model to re-
produce only large-scale patterns of BOLD activity. Using connectomes
with higher spatial resolution would allow a more comprehensive
study regarding smaller substructures of the brain's network. Even so,
in general terms, the characteristics of functional networks explored
herein were found to vary with the structural coupling in a consistent
way, with disregard to the parcellation schemes used (90 and 66 re-
gions). Note that the graph measures reported by Lynall et al. (2010)
and reproduced in thiswork canonly be qualitatively compared because
functional networks were derived in a similar way and the same
thresholding technique was applied. For example, in a recent study
from Yu et al. (2011) functional networks derived using independent
component analysis exhibited higher (rather than lower) clustering co-
efficients and path lengths in schizophrenia. Therefore, we find it neces-
sary to establish standardized methods for analyzing brain networks by
means of graph theory, to allow a direct comparison of these measures
across studies. In addition, it should be noted that the randomization ef-
fects observed not only in the model but also in experiments depend
largely on the thresholding technique. In fact, to avoid comparing graphs
with different densities, fixed cost values were established to build
graphs, which forces then lower correlation thresholds and subsequent-
ly a decrease in correlation significance.

Beyond the decrease of BOLD FC in schizophrenia, Rubinov et al.
(2009) have reported an increase of FC using EEG. However, since the
presentmodel only considers low frequency neural activity for the com-
putation of the BOLD FC, this apparent contradiction cannot be investi-
gated in this study.

Finally, it is important to have in mind that experimental results are
also subject to methodological limitations due to limited sample sizes
and artifacts introduced by the imaging techniques. For example, the
mean FC strength reported in the experiments (Lynall et al., 2010)
was consistently higher than in simulations. This correlation shift to
higher positive values could be induced by some remaining global arte-
facts in the BOLD signal (like those due to heartbeat and respiration)
since no pre-processing step was intended to eliminate them.

Appendix A. Supplementary data

Supplementary materials related to this article can be found on-
line at http://dx.doi.org/10.1016/j.neuroimage.2012.06.007.
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