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a b s t r a c t 

Information encoding has received a wide neuroscientific attention, but the underlying rapid spatiotemporal 

brain dynamics remain largely unknown. Here, we investigated the rapid brain mechanisms for encoding of 

sounds forming a complex temporal sequence. Specifically, we used magnetoencephalography (MEG) to record 

the brain activity of 68 participants while they listened to a highly structured musical prelude. Functional connec- 

tivity analyses performed using phase synchronisation and graph theoretical measures showed a large network 

of brain areas recruited during encoding of sounds, comprising primary and secondary auditory cortices, frontal 

operculum, insula, hippocampus and basal ganglia. Moreover, our results highlighted the rapid transition of brain 

activity from primary auditory cortex to higher order association areas including insula and superior temporal 

pole within a whole-brain network, occurring during the first 220 ms of the encoding process. Further, we dis- 

covered that individual differences along cognitive abilities and musicianship modulated the degree centrality of 

the brain areas implicated in the encoding process. Indeed, participants with higher musical expertise presented 

a stronger centrality of superior temporal gyrus and insula, while individuals with high working memory abil- 

ities showed a stronger centrality of frontal operculum. In conclusion, our study revealed the rapid unfolding 

of brain network dynamics responsible for the encoding of sounds and their relationship with individual differ- 

ences, showing a complex picture which extends beyond the well-known involvement of auditory areas. Indeed, 

our results expanded our understanding of the general mechanisms underlying auditory pattern encoding in the 

human brain. 
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. Introduction 

Memory is doubtless one of the most crucial cognitive abilities of

umans and animals, necessary to allow species to survive and act

 Klein et al., 2010 ). Among its building elements, information encoding

lays a fundamental role, allowing individuals to accomplish the crucial

oal of learning from experience. In the last decades of neuroscience,

uch has been done on information encoding, working both with hu-

ans and animal models ( Fazio et al., 2009 ; Herry and Johansen, 2014 ;

akeuchi et al., 2014 ). A large part of this research focused on encod-

ng of visual and spatial stimuli ( Hickey and Peelen, 2015 ; Stern et al.,

996 ), whereas a conspicuous number of studies explored auditory pro-

esses related to early and even pre-attentive elaboration of standard
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nd deviant sounds inserted in elementary auditory and more complex

usical sequences ( Conley et al., 1999 ; Lijffijt et al., 2009 ; Näätänen

t al., 2007 ; Vuust et al., 2012 ). 

The former approach led to several examples of visual encoding and

ecognition studies which employed faces as main stimuli, showing for

nstance the key role of fusiform gyrus ( Dobs et al., 2019 ; Kanwisher

t al., 1997 ; Schwarzlose et al., 2005 ). 

Conversely, regarding auditory research a large number of studies

eeply explored the early and pre-attentive processing of sounds and

imple temporal sequences. For instance, this research highlighted sev-

ral automatic event related potentials/fields (ERP/F) to standard and

eviant sounds such as the well-known N100 and mismatch negativity

MMN). Indeed, it has been shown that N100 and MMN were modulated
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y the stimulus characteristics, implying that an initial memory process-

ng was happening already in the primary auditory cortex ( Conley et al.,

999 ; Lijffijt et al., 2009 ; Näätänen et al., 2007 ; Vuust et al., 2012 ). 

Other studies have used proper musical paradigms to better under-

tand the brain mechanisms underlying processing of sounds and tem-

oral sequences. Such choice was driven by the fact that music is the

uman art that mainly acquires meaning through the logical combi-

ation of objects (sounds) extended over time ( Koelsch et al., 2004 ),

nd thus provides great opportunity to refine our understanding of how

he brain encodes and recognise temporal information. Along this line,

lassic studies from Koelsch and colleagues revealed signs of musical

yntax processing in the brain. Especially, they discovered the early

ight-anterior negativity (ERAN), a component of the ERP/F elicited by

armonically non-appropriate chords inserted in a sequence of coherent

nes ( Koelsch et al., 2004 ; Maess et al., 2001 ; Koelsch and Siebel, 2005 ).

imilarly, additional studies using event-related potentials revealed that

he brain selectively responded to violation of harmonic musical struc-

ure ( Leino et al., 2007 ; Villarreal et al., 2011 ). On another note, it has

een shown that music, as well as words, was able to prime the meaning

f subsequent words, suggesting parallels between the brain processing

f language and music ( Koelsch et al., 2004 ). 

Other studies showed the role of the neural entrainment to sounds

nd rhythms, proposing it as a key feature of both music processing and

ontrol mechanisms of neural sensory gain ( Obleser and Kayser, 2019 ;

ovembre and Iannetti, 2018 ). Such studies demonstrated that some

eural processes presented a temporal alignment with exogenous stim-

li arranged in regular sequences (e.g. regular series of beats or sounds).

urthermore, it has been shown that such mechanisms can present func-

ional neuroplasticity being modulated by individual differences in mu-

ical expertise ( Celma-Miralles and Toro, 2019 ) and aging ( Henry et al.,

017 ). 

Although this research clarified several aspects of how the brain

rocesses music and auditory information, it did not directly explain

ow the sounds were actually encoded. A more general approach on

ound processing investigation reported the activation of auditory cor-

ex brain regions such as Heschl’s and superior temporal gyri in re-

ponse to acoustic stimuli varying in temporal and spectral features

 Richiardi et al., 2011 ; Warrier et al., 2009 ) as well as a contribution

oming from higher-order brain areas ( Husain et al., 2006 ; Langers and

elcher, 2011 ). Further studies focused on cognitively demanding tasks

eveloped with musical materials, aiming to further understand how the

rain processes music and how music can help us to better understand

he brain. Along this line, several works focused on cognitive processes

nvolved in music listening such as memory, attention, and evaluation.

or instance, in a pioneer PET study by Zatorre et al. (1994) on melodic

erception and memory, authors discovered that perceptual analysis of

elodies recruited parts of the right superior temporal cortex, while

itch comparison of specific tones within the melodies involved mainly

ight prefrontal cortex. Similarly, Gaab et al. (2003) asked participants

o compare different simple melodic sequences and detected activation

f supramarginal and left inferior frontal gyri, superior temporal, su-

erior parietal, posterior dorsolateral frontal and dorsolateral cerebel-

ar regions. More recently, Kumar et al. (2016) showed that to hold

n mind a single sound was crucial the activity and connectivity be-

ween three main brain areas: primary auditory cortex, hippocampus

nd inferior frontal gyrus. An additional fMRI study ( Sikka et al., 2015 )

bout recognition of familiar music proposed that successful task perfor-

ance was associated to the activation of right superior temporal, supe-

ior frontal, bilateral inferior, bilateral precentral and left supramarginal

yri. Back to oscillations and neurophysiology, a recent work by Albouy

t al. (2017) showed the brain activity underlying memory retention,

ighlighting that theta oscillations in the brain dorsal stream predicted

articipants’ abilities to perform an auditory memory task where they

eld and manipulated sound information. 

Even though these studies provided a detailed description of the

rain areas mainly involved in a wide range of music processing tasks,
2 
hey did not reveal the fast-scale whole-brain connectivity patterns (ei-

her static or dynamic) underlying encoding of the single sounds forming

 structured, musical prelude. Moreover, as explicitly stated in their re-

iew on processing and encoding of temporal sequences, Dehaene et al.

 Dehaene et al., 2015 ) highlighted the urgency to unravel which is the

pecific contribution of cortical and subcortical brain networks to en-

oding of the single bits of information (e.g. sounds) forming temporal

equences such as a musical piece. 

Thus, in our study we investigated the rapid whole-brain networks

nderlying the encoding of sounds forming a complex temporal se-

uence such as a full structured musical piece. On the one hand, un-

erstanding such topic is a key step to discover the brain mechanisms

nderlying encoding of music. On the other hand, our investigation may

ontribute to the understanding of the more general neural mechanisms

nderlying pattern encoding and attribution of meaning to sound infor-

ation available in the external environment. 

. Materials and methods 

.1. Participants 

Seventy volunteers participated in the study. However, the analyses

ere carried out on 68 of them since two have been excluded because of

echnical problems during part of the data acquisition. Thus, the final

ample was composed by 68 participants (35 males and 33 females,

ge range: 18 – 42 years old, mean age: 24.88 ± 4.17 years). Since our

xperiment involved a well-known piano musical piece, we recruited

3 classical pianists (13 males and 10 females, age range: 18 – 34 years

ld, mean age: 24.83 ± 4.10 years), 21 non-pianist musicians (10 males

nd 11 females, age range: 42 – 19 years old, mean age: 24.29 ± 5.02

ears) and 24 non-musicians (12 males and 12 females, age range: 21 –

5 years old; mean age: 25.46 ± 3.48 years). 

All experimental procedures complied with the Declaration of

elsinki – Ethical Principles for Medical Research and were approved

y the Ethics Committee of the Central Denmark Region (De Videnskab-

etiske Komitéer for Region Midtjylland) ( Klein et al., 2010 - Vuust et al.,

012 ; Uddin, 2015 ; Leino et al., 2007 ). 

.2. Experimental design and stimuli 

Participants’ brain activity was recorded by using MEG. At first, we

ad a resting state session that has been used later as baseline for evalu-

ting the brain functional connectivity during the task. Participants were

equired to sit down in the scanner for 10 minutes trying to relax but

ithout closing their eyes. The room was dark, and participants were

sked to fixate a cross on the screen and not to think about anything

n particular. Then, to study the brain dynamics of sound encoding, we

sked participants to actively listen to a MIDI version of the right-hand

art of the entire prelude in C minor BWV 847 by Johann Sebastian

ach, as depicted in Figure 1 a . To be noted, to have a musical piece

ith tones lasting approximately the same time and thus reduce the

otential confounds introduced by rhythmic variety, we have slightly

odified the last few bars of the Bach’s prelude. In our version of the

relude, such bars were formed by tones with the same approximate du-

ation. Importantly, the duration of each tone was on average 250ms,

ut it could vary in the short range: 220 - 280ms. This small variation

as introduced to make the execution of the musical piece less artifi-

ial and more musical. Participants were required to try to memorize

he prelude as much as possible. To facilitate their task, as well as to

ollect more data and increase the reliability of our findings, we played

he musical piece four times. Afterwards, participants were engaged in

 memory recognition task based on the Bach’s prelude that they pre-

iously listened to. The recognition task has been thoroughly described

n Bonetti et al. ( Bonetti et al., 2020 ) and has been considered in this

tudy as a validation task to ensure that participants actively listened to

he Bach’s prelude presented in our work and were able to distinguish
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Fig. 1. Overview of the analysis pipeline 

a – Participants were requested to attentively listen to a whole musical piece and to try to remember it as much as possible. As illustrated by the blue graphs, first 

we epoched and averaged together the brain signal underlying processing of each single tone. Then, first we focused our attention on the full time-window of sound 

encoding (1 – 220 ms) by computing analysis of brain activity and static functional connectivity (SFC). Second, we performed analyses on two main time-windows 

underlying sound encoding (as illustrated by the red graphs) by computing dynamic functional connectivity (DFC). b - MEG data during musical encoding has been 

collected, pre-processed and beamformed into source space within the 90 non-cerebellar brain regions of the AAL parcellation. Then, we calculated the envelope 

of the time-course of each brain region (top right). The red graphs show the two time-windows used in the DFC analysis (1 - 110 ms and 111 - 220 ms), while the 

blue refers to the full time-window used in the SFC. c – After computing analysis on brain activity and SFC, we investigated the DFC. To this aim, we computed 

the Hilbert transform of the envelope of each brain region and estimated the phase synchronization by calculating the cosine similarity between the instantaneous 

phases of each pair of brain regions. d – We obtained IFC matrices for both sound encoding task and resting state (used as baseline). Afterwards, we contrasted the 

task matrices versus the average of the baseline matrices to isolate the brain activity specifically associated to the sound encoding brain processes over time. e1 –

We used the whole-brain connectivity measures to derive the significant centrality of the brain regions within the whole-brain network. This was done for the two 

main time-windows of sound encoding (1 – 110 ms and 111 – 220 ms). e2 – Similarly, contrasting participants who were grouped according to their level of WM and 

musical expertise, we computed the significant centrality of brain regions associated to those different skills. 

3 
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t from different music when doing the recognition task a few minutes

ater. 

The stimuli were designed by using Finale (MakeMusic, Boulder, CO)

nd then presented through Presentation software (Neurobehavioural

ystems, Berkeley, CA). After the MEG recording, in the same or in an-

ther day, participants’ brain structural images were collected by mag-

etic resonance imaging (MRI) exam. Furthermore, participants’ general

nd auditory WM abilities and musical expertise were assessed. Specif-

cally, their musical expertise was collected using the Gold-MSI ques-

ionnaire ( Baker et al., 2018 ; Müllensiefen et al., 2014 ). With regards to

eneral WM we adopted one of the most used psychological tests for as-

essing cognitive abilities, namely Wechsler Adult Intelligence Scale - IV

WAIS-IV) ( Dumont et al., 2014 ; Wechsler, 1997 ), while for the auditory

M abilities we employed the Musical Earing Test (MET) ( Wallentin

t al., 2010 ), a newly developed tool that presents pair of complex

elodies requiring participants to state whether they are the same or

ifferent. 

.3. Data acquisition 

We acquired MEG and MRI data in two independent sessions. The

EG data were collected using an Elekta Neuromag TRIUX system

Elekta Neuromag, Helsinki, Finland) equipped with 306 channels. The

canner was located in a magnetically shielded room at the Aarhus Uni-

ersity Hospital, Denmark. The data were collected at a sampling rate of

000 Hz with an analogue filtering of 0.1–330 Hz. Before the exam, we

djusted the sound volume at 50 dB above the participants’ minimum

earing threshold. Furthermore, by using a 3D digitizer (Polhemus Fas-

rak, Colchester, VT, USA) we recorded the participant’s head shape and

he continuous location of four headcoils, with respect to three anatom-

cal landmarks (nasion, and left and right preauricular points). These

ata were then utilized to ensure a high-quality co-registration of the

EG data with the anatomical structure obtained during the MRI exam,

t a later stage of the analysis pipeline. 

The location of the headcoils was registered during the whole record-

ng session using a continuous head position identification (cHPI) and

herefore we tracked the exact head position within the MEG scanner at

ach moment. This allowed us to perform an accurate movement cor-

ection at a later stage of data analysis. 

The MRI data consisted in structural T1. The acquisition parameters

or the scan were: voxel size = 1.0 ×1.0 ×1.0 mm (or 1.0 mm 

3 ); recon-

tructed matrix size 256 ×256; TE of 2.96 ms and TR of 5000 ms and a

andwidth of 240 Hz/Px. 

.4. Data pre-processing 

We conducted Maxfilter ( Taulu and Simola, 2006 ) noise reduction

n the raw MEG sensor data (204 planar gradiometers and 102 mag-

etometers) for attenuating the interference that originated outside the

calp by applying signal space separation. Moreover, Maxfilter allowed

s to correct for head movement and down-sample the data from 1000

z to 250 Hz. 

The data were converted into Statistical Parametric Mapping (SPM)

ormat and further processed in Matlab (MathWorks, Natick, Mas-

achusetts, United States of America) by utilizing Oxford Centre for Hu-

an Brain Activity Software Library (OSL), a freely available toolbox

hat relies on a combination of Oxford Centre for fMRI of the Brain Soft-

are Library (FSL) ( Woolrich et al., 2009 ), SPM ( Penny et al., 2007 )

nd Fieldtrip ( Oostenveld et al., 2011 ), and in-house-built functions. 

The data were high pass filtered (0.1 Hz threshold) to remove too

ow frequencies for being originated by the brain. We also used a notch

lter (48 - 52 Hz) to control for interference of the electric current. The

ata were then down-sampled again to 150 Hz and few segments of the

ata, altered by large artifacts, were discarded after visual inspection.

hen, to correct for eyeblinks and heartbeat artifacts, we calculated in-

ependent component analysis (ICA) to decompose the original signal
4 
n independent components. Then, we individuated and discarded the

omponents that picked up the heartbeat and eyeblink activities and

e reconstructed the signal by using only the remaining components

 Mantini et al., 2011 ). Finally, data were epoched according to the be-

inning of each of the 605 musical tones of the prelude (pre-stimulus

ime of 100 ms and post-stimulus time of 220 ms) and baseline cor-

ected by removing the mean value of the pre-stimulus baseline from

he entire trial. Therefore, our trials were represented by the segment of

he signal starting with the onset of each musical tone and finishing with

he offset of the same tone. This procedure was carried out also for the

esting state. As conceivable, the resting state did not have any external

timulation, therefore we created trials in equal length and number at

seudorandom time-points of the recorded data. 

.5. Event related fields and power spectra analysis 

Prior to performing connectivity analysis, as illustrated in Figure 1 b ,

e tested the quality of our data by assessing the ERF and especially the

100, a well-known component of the ERF arising 100 – 150 ms af-

er sound stimulation ( Näätänen and Picton, 1987 ). To this purpose, we

veraged together all trials obtained after epoching the data and com-

ined planar gradiometers by mean root square ( Bruno and Romani,

989 ). Then, we calculated a t-test for each MEG gradiometer channel

nd time-point between the ERF to the sound and the averaged pre-

timulus brain activity. To correct for multiple comparisons, we adopted

CS ( Kroese et al., 2011 ). Specifically, we reshaped the previously cal-

ulated statistics for obtaining, for each time-point, a two-D approxima-

ion of the MEG channels layout and we binarized it according to the

 -values obtained from the previous t-tests (threshold 𝛼 = 1.0e-12). The

esulting three-D matrix ( M3 ) was therefore composed by 0s when the

-tests were not significant and 1s when they were. Then, we made 1000

ermutations of the elements of the original binary matrix M3 , identi-

ed the maximum cluster size of 1s for each permutation and built the

istribution of the 1000 maximum cluster sizes. Finally, we considered

ignificant the original clusters that had a size bigger than the 99.9% of

he permuted data maximum cluster sizes. 

To assess the contribution of each frequency, we estimated the power

pectra of the brain signal by employing complex Morlet wavelet trans-

orm (from 1 to 40 Hz with 1-Hz intervals) ( Daubechies, 1992 ). Then,

e calculated a t-test for each time-point within the range: 0.050 – 0.200

econds and the averaged power spectra of the 100ms pre-stimulus base-

ine. Emerging p -values were binarized according to threshold 𝛼 = 1.0e-

8 and then submitted to a two-D MCS. Specifically, we calculated the

lusters size of continuous significant values in frequency and time and

hen made 10000 permutations of the binarized p -values. For each per-

utation we detected the size of the maximum emerging cluster and

uilt a reference distribution with one value for each permutation. Then,

e considered significant the original clusters that had a size bigger than

he 99.99% of the permuted data maximum cluster sizes. 

Thresholds for binarizing the p -values matrices were very low since

e were comparing the brain activity versus baseline and therefore, as

onceivable, the results were highly significant and, to individuate the

trongest contribution of MEG channels, time-points and frequencies, it

as necessary to select very low thresholds. 

.6. Source reconstruction 

As depicted in Figure 1 b , the brain activity recorded on the scalp by

he MEG sensors was reconstructed in source space. First, each individ-

al T1-weighted MRI scan was co-registered to the standard Montreal

eurological Institute (MNI) template brain through an affine transfor-

ation and referenced to MEG sensors space by employing the Polhemus

ead shape data and the three fiducial points collected during MEG ses-

ion. Second, the MRI co-registered image was used in the source recon-

truction procedure that has been implemented separately for each par-
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icipant, as commonly done in the field ( Hillebrand and Barnes, 2005 ;

uang et al., 1999 ; Brookes et al., 2007 ). 

Our source reconstruction algorithm used an overlapping-spheres

orward model and a beamformer approach as inverse model

 Hillebrand and Barnes, 2005 ), with an eight-mm grid and both pla-

ar gradiometers and magnetometers. The spheres model represented

he MNI-co-registered anatomy as a simplified geometric model, fitting

 sphere separately for each MEG sensor ( Kroese et al., 2011 ). The beam-

orming used a different set of weights sequentially applied to the source

ocations for individuating the contribution of each source to the activ-

ty recorded by the MEG sensors at each time-point ( Hillebrand and

arnes, 2005 ; Hunt et al., 2012 ). To be noted, using an eight-mm grid

e reconstructed the MEG signal in 3559 brain sources. 

To assess the brain activity associated to the sound encoding task

e submitted the beamformed reconstructed activity to first-level sta-

istical analysis carried out by calculating a GLM for each time-point

nd at each reconstructed brain source ( Hunt et al., 2012 ). Then, after

alculating the absolute value of the reconstructed time-series to avoid

ign ambiguity of the neural signal, we conducted group-level analy-

is, using one-sample t-tests with spatially smoothed variance obtained

ith a Gaussian kernel (full-width at half-maximum: 50 mm). Finally, to

orrect for multiple comparisons, a cluster-based permutation test ( Hunt

t al., 2012 ) with 5000 permutations has been calculated on group-level

nalysis results. Considering an 𝛼 level = 0.05, we used a cluster forming

hreshold t -value = 1.7. 

.7. Static functional connectivity 

To investigate functional connectivity, we used the source localized

ata obtained by the beamforming algorithm. Then, these data were

onstrained from the 3559 reconstructed brain sources into the 90 non-

erebellar regions of the AAL parcellation, a freely and widely used

vailable template ( Tzourio-Mazoyer et al., 2002 ), in line with previ-

us MEG studies ( Brookes et al., 2016 ; Cabral et al., 2014 ; Hindriks

t al., 2015 ). This procedure was very important to reduce the dimen-

ionality of the data and focus on a well-known parcellation of the brain

hich helped to directly compare our results with previous studies. To

ote, we performed this algorithm after applying a bandpass filter cor-

espondent to 2 – 8 Hz to the data. This frequency band interval was

he one characterized by the highest power, according to the previous

ime-frequency analysis described two paragraphs above. In particular,

e chose 2 – 8 Hz instead of 2 – 5 Hz, as emerging from the power

pectra statistics, to have a broader frequency range usually employed

n studies on theta waves. Then, we proceeded with static functional

onnectivity analysis performed using Pearson’s correlations. Since the

ength of our epoched data were quite short (36 time-samples with our

ampling rate of 150 Hz, corresponding to 220 ms), to estimate more

eliable SFC through Pearson’s correlations, we concatenated and sub-

veraged groups of trials. Specifically, our 605 trials were concatenated

n seven chunks of data with 86 trials each (89 for one of the chunks)

nd then averaged together to obtain seven sub-averaged concatenated

rials leading to a new matrix M . Such matrix M had dimensions: 90

rain regions x 252 time-points (seven concatenated sub-averaged tri-

ls of 36 time-points each: 36 ∗ 7 = 252). Then, we performed source

eakage correction ( Colclough et al., 2015 ) by orthogonalization and

alculated Pearson’s correlations between the envelope ( Cabral et al.,

014 ) of the time-series of each pair of brain areas. This procedure was

arried out for both task and resting state (used as baseline) and resulted

n two 90 ×90 matrices for each participant, one for the task and one for

he baseline. Those two matrices were contrasted by applying Wilcoxon

igned-rank test for each pair of brain areas. The resulting z -values ma-

rix Z was submitted to a degree MCS for assessing which brain area was

ignificantly central within the brain network, after contrasting task ver-

us rest. In graph theory, the degree of each vertex v (here each brain

rea) of the graph G (here the matrix Z describing the whole-brain func-

ional connectivity) is given by summing the connection strengths of v
5 
ith the other vertexes of G , returning a value of the centrality of each v

n G ( Rubinov and Sporns, 2010 ). In this MCS, we computed the degree

f each vertex of Z , obtaining a 90 x one vector ( 𝑠 𝑡 ). Then, we made

0000 permutations of the elements in the upper triangle of Z and we

omputed a 90 x one vector 𝑑 𝑣,𝑝 containing the degree of each vertex v

or each permutation p . Combining vectors 𝑑 𝑣,𝑝 we obtained the distri-

ution of the degrees calculated for each permutation. We considered

ignificant the degrees stored in 𝑠 𝑡 that were higher than the 99.9% of

he degree distribution values calculated by permuting Z 10000 times.

he threshold of 99.9% derived from simulations of the MCS function

ith matrices composed by uniformly distributed random values. Set-

ing a 99.9% threshold yielded to a number of false positive nearly equal

o zero, while a more common 95% threshold gave rise to few false pos-

tives. 

.8. Phase synchronization estimation 

To unravel the brain dynamics of the sound encoding and thus refine

ur understanding of the dynamic changes of connectivity over time,

e studied the phase synchronization over time between brain areas for

heta band. 

By applying Hilbert transform ( Layer and Tomczyk, 2015 ) on the

nvelope of the reconstructed time-courses (matrix M described in the

aragraph above) we obtained the analytic signal 𝑆 ( 𝑛 𝑖 ,𝑡 ) expressed by the

ollowing equation: 

 ( 𝑛 𝑖 ,𝑡 ) = 𝐴 ( 𝑛 𝑖 ,𝑡 ) 𝑒 
𝑗 𝜃( 𝑛 𝑖 ,𝑡 ) (1) 

here 𝐴 ( 𝑛 𝑖 ,𝑡 ) refers to the instantaneous amplitude and 𝜃( 𝑛 𝑖 ,𝑡 ) to the in-

tantaneous phase of the signal for brain region 𝑛 𝑖 at time 𝑡 . A graphi-

al depiction of Hilbert transform is reported in Figure 1 c . Then, since

atrix M was made up by seven concatenated sub-averaged trials, af-

er estimating the instantaneous phase, we discarded the time-samples

orresponding to the first and last trials to prevent boundary artefacts

ntroduced by instantaneous phase estimation and we averaged the re-

aining five, obtaining a new matrix M2 composed by the 90-brain

egion instantaneous phases x 36 time-samples. To estimate the phase

ynchronization between two brain areas 𝑛 𝑖 and 𝑛 𝑚 of the matrix M2 at

ime 𝑡 , we calculated the cosine similarity expressed by equation (2) : 

𝐹 𝐶 ( 𝑛 𝑖 , 𝑛 𝑚 ,𝑡 ) = cos 
(
𝜃( 𝑛 𝑖 ,𝑡 ) − 𝜃( 𝑛 𝑚 ,𝑡 ) 

)
(2)

We carried out this procedure for each time-point and each pair of

rain areas of the matrix M2 , obtaining one 90 ×90 symmetric instan-

aneous functional connectivity (IFC) matrix for each time-point show-

ng the phase synchronization of every pair of brain areas. This proce-

ure was carried out for both task and resting state and is illustrated in

igure 1 d . 

.9. Brain dynamics of sound encoding 

To estimate the instantaneous connectivity matrix Zt associated to

he task, first we averaged over time the IFC matrix computed for the

est. Second, for each time-point t i , we contrasted the task IFC ma-

rix at time 𝑡 versus the resting state IFC matrices by using Wilcoxon

ing-rank test. Then, as described above, an MCS computed on Zt as-

essed the significantly central brain regions within the brain network

or each time-point. We refer to this measure as instantaneous brain de-

ree ( 𝐼𝐵 𝐷 𝑡 ). Moreover, the sum ( 𝑠𝐼𝐵𝐷) over time of 𝐼𝐵 𝐷 𝑡 for the brain

rea 𝑛 showed us its centrality within the whole-brain network during

he whole sound encoding process, as expressed by equation (3) : 

𝐼 𝐵 𝐷 ( 𝑛 ) = 

𝑇 ∑
𝑡 =1 

𝐼 𝐵 𝐷 ( 𝑛,𝑡 ) (3)

Then, we focused our attention towards only two main, equally long

ime-windows ( Figure 1 e 1 ): 1 - 110 ms and 111 - 220 ms. 

Our interest in working on such fast time-windows related to

he neural relevance of such timing. Indeed, as pointed out by
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ehaene et al. (2011) , the first 200 – 250 ms of elaboration of stimuli

eem to play a crucial role for making temporal information available

n human awareness. Thus, we were particularly interested in exploring

he brain connectivity dynamics of sound encoding in this framework.

n top of this, we decided to break this short window down into two

urther time-windows slightly longer than 100 ms each. Since 100 ms is

 key timing of ERF components (e.g. onset of N100, interval between

100 and P200), we thought was of particular interest to look into the

nderlying functional connectivity. On top of this, considering the noise

nherent in the data and potentially added by our elaborated signal pro-

essing pipeline, we believed that looking into further and shorter time-

indows may have increased the probability of detecting non-reliable

ndings. 

Back to our analysis, we were interested in comparing the overall

egree centrality of each of our 90 brain areas in the first versus sec-

nd time-window. The degree centrality was expressed by the two 90 x

ne vectors named: 𝑠𝐼𝐵 𝐷 ( 𝑛 )1−110 𝑚𝑠 and 𝑠𝐼𝐵 𝐷 ( 𝑛 )111−220 𝑚𝑠 . Then, for each

rain region n we calculated the vector difference 𝑣𝑡𝑑𝑜 , as expressed by

quation (4) : 

𝑡𝑑𝑜 = 𝑠𝐼 𝐵𝐷 ¬( 𝑛 ) 1−110 𝑚𝑠 − 𝑠𝐼 𝐵𝐷 ¬( 𝑛 ) 111−220 𝑚𝑠 (4)

Finally, to assess whether vector 𝑣𝑡𝑑𝑜 contained any significant

alue, we used a further MCS approach. Specifically, we made 10000

ermutations of the matrices 𝐼𝐵 𝐷 1−110 𝑚𝑠 and 𝐼𝐵 𝐷 111−220 𝑚𝑠 and we

ummed the two matrices, independently, over the temporal dimen-

ion. This returned two 90 x one vectors, 𝑣𝑡 𝑜 𝑝 and 𝑣𝑡 𝑣 𝑝 . Subtracting 𝑣𝑡 𝑣 𝑝 
rom 𝑣𝑡 𝑜 𝑝 we obtained the difference vector 𝑣𝑡 𝑑 𝑝 for the permutation

 . Performing this procedure for every permutation, we obtained the

istribution of the difference vectors. Then, we compared the original

ifferences in vector 𝑣𝑡𝑑𝑜 with the distribution of difference vectors,

ndependently for positive and negative differences, to get their associ-

ted p -values. Finally, we considered significant the brain areas whose

 -values were lower than: 

′ = 𝛼∕ ( ROIs ∗ tails ) = 2 . 7e − 04 (5)

here 𝛼 corresponds to 𝛼 level = 0.05, ROIs are the number of brain re-

ions (90) and tails refers to the two tails of the normal distribution of

ifference vectors created by MCS (which corresponds to positive and

egative differences in vectors 𝑣𝑡 𝑑 𝑝 ). In other words, since our hypothe-

is was that some brain regions were different in the two time-windows,

ut we did not hypothesize which ones, we looked at the results for each

rain region and each direction of the difference (time-windows one >

ime-windows two and vice versa). Therefore, we had to correct for mul-

iple comparisons by calculating the new strict threshold 𝛼′ expressed

y equation (5) . 

.10. Brain dynamics of sound encoding and individual differences 

In conclusion, as illustrated in Figure 1 e 2 , we aimed to assess

hether the neural networks underlying sound encoding differed across

articipants grouped according to general and auditory WM, and musi-

al expertise. To highlight more clearly the differences, we selected for

ach WM test two groups formed by participants whose scores where at

east one SD apart from each other. According to psychometric guide-

ines ( Taylor and Heaton, 2001 ), this procedure is particularly relevant

hen aiming to clearly distinguish participants based on their WM (or

eneral cognitive) abilities as measured by the test. Indeed, such ap-

roach was adopted since we wanted to include only participants that

ere clearly differentiated by the tests. With regards to the WAIS test

roups the best scorers had a range of 110 – 130, while the worst of 76

93 (according to the standardization of the WAIS test one SD corre-

ponds to 15). In relation to MET test, we observed that our best scorers

ad a range of 43 – 52 while worst scorers of 28 – 36. The mean across

ll participants was 40.24 with a standard deviation of 6.28. Thus, also

n this case the two groups were differentiated by at least one SD. Fi-

ally, for musicianship, we considered the 24 non-musicians and the
6 
usicians (both pianists and non-pianists) that received a formal mu-

ical education for at least 10 years, a threshold widely suggested by

revious literature (e.g.) ( Sloboda et al., 1996 ). Those participants were

4. This threshold was set in order to compare people with no musical

xpertise at all with individuals who engaged in a long-term professional

ducation. In addition to those three measures of individual differences,

e have computed a further analysis to control whether the previous

amiliarity of the Bach’s prelude (i.e. participants who knew our Bach’s

relude versus participants who had never heard it before the experi-

ent) modulated the brain connectivity patterns during sound encod-

ng. In this case, we had 34 participants who were already familiar with

he Bach’s prelude and 31 who had never heard it before the experiment.

ne participant did not answer this question and thus was excluded from

he analysis. Finally, as described in the previous section, we focused

n the number of times that each brain region was significantly central

ithin the brain, contrasting those values across the two groups by an

CS analogous to the one described above. This procedure was carried

ut independently for the two WM and the musicianship analyses (since

e had three independent tests, we divided the threshold 𝛼′ described

y equation (5) by four, obtaining a new threshold = 6.8e-05). In Figure

F1 , to provide full information, brain regions centrality is depicted also

or the remaining participants. 

. Results 

.1. Experimental design and data analysis overview 

In our study, we aimed to investigate the fine-grained spatiotemporal

ynamics of the brain during the encoding of sounds forming a full,

tructured musical piece. To this aim, we used MEG to record the brain

unctioning of 68 participants while they listened to a slightly edited

usical instrumental digital interface (MIDI) version of the full prelude

n C minor BWV 847 composed by Johann Sebastian Bach. 

As described in the Methods and depicted in Figure 1 a , participants

ere requested to attentively listen to the music, trying to memorize

ts structure and sounds as much as they could. The analysis pipeline

mployed in our study is depicted in Figure 1 (and described in detail

n the Methods). Our results on brain functioning underlying sound en-

oding have been organised as follows: 1) sensor space and beamformed

ource localised activity, 2) static source localised connectivity, 3) dy-

amic source localised connectivity and 4) dynamic source localised

onnectivity in subsamples characterized by different levels of general

GWM) and auditory working memory (AWM) and musical expertise. 

First, we detected the brain activity in MEG sensor space using

nivariate tests and Monte Carlo simulations (MCS). Then, we recon-

tructed the sources of the brain signal using a beamforming algorithm

 Figure 1 b ). Second, we computed the static functional connectivity

SFC) by calculating Pearson’s correlations between the envelope of each

air of brain areas. Third, we computed dynamic functional connectiv-

ty (DFC) using the instantaneous phase obtained from Hilbert transform

or each time-point of the brain areas timeseries ( Figure 1 c ). After con-

rasting the brain connectivity patterns for sound encoding versus rest-

ng state ( Figure 1 d ), we computed the DFC for two short time-windows

1 – 110 ms, 111 – 220 ms), as depicted in Figure 1 e 1 . Fourth, we anal-

sed the DFC in subsamples of individuals characterized by different

evels of GWM, AWM and musical expertise ( Figure 1 e 2 ). DFC analysis

onsisted of detecting the whole-brain connectivity patterns and then

he significant centrality of specific brain areas within the whole-brain

etwork. 

Notably, we employed a wide set of analytical techniques, ranging

rom the well-established investigation of brain activity at MEG sensor

pace and after source localisation to more recent approaches such as

FC. We believe that covering several different analytical techniques

ith different strengths and limitations is of great importance since al-

owed at the same time to obtain a collection of coherent results and

xplore new analytical solutions. Indeed, on the one hand our results
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Fig. 2. N100 component 

a – Waveform depicting the N100 component of the ERF. The plot shows the brain activity averaged over the significant gradiometer channels emerged by MCS. The 

grey area illustrates the significant time-window. Thinner lines depict standard errors. b – Power spectra depiction over time for all MEG channels. c – Gradiometers 

(top) and magnetometers (bottom) topoplots of the N100 component amplitude computed over the significant time-window emerged by MCS. Values correspond to 

neural signal in fT/mm for gradiometers and fT for magnetometers. d – Neural sources of the N100 component (t-values from group level analysis). e – SFC estimated 

by computing Pearson’s correlations between the envelope of each pair of AAL brain regions. The left matrix refers to sound encoding task, while the middle one to 

resting state (used as baseline). Finally, the right matrix depicts the t -values emerged by contrasting task versus baseline . 
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onfirmed and expanded the existent literature on the sound encoding

n the brain by using very solid and established methodologies such as

he investigation of brain activity and SFC. On top of this, we added a

urther layer of analyses which involved DFC. As shown in the following

aragraphs, these last algorithms allowed us to complement our origi-

al analyses and obtain new exciting perspectives with a less common

pproach. 

.2. Event related fields and power spectra analysis 

At first, as depicted in Figure 2 a and 2 c to assess the quality of the

ata, we analysed the ERF associated to the processing of the tones. To

his aim, after carrying out standard pre-processing steps (see Methods

or details), we epoched the data in correspondence to each musical

one (trials), we averaged the trials and combined planar gradiometers

y sum root square. Then, we calculated a t-test for each time-point in

he time-range 0.050 – 0.200 seconds and for each gradiometer chan-

el contrasting the task versus its own baseline. Finally, we performed

luster-based MCS to detect significant clusters (t-test threshold = 1.0e-
7 
6, MCS threshold = 0.001). Results showed two significant clusters in

he time-range 0.053 – 0.160 seconds. Specifically, we observed a larger

luster in the right hemisphere (cluster size: 81, p < 0.001) and a smaller

ne in the left (cluster size: 40, p < 0.001). These results are reported in

etail in Table ST1 . 

Then, we reconstructed the neural sources of the signal by applying

 beamforming approach and calculating a general linear model (GLM)

or each of the 3559 reconstructed brain sources and each time-point

ithin the significant time-range emerged by MCS on sensor data (0.053

0.160 seconds). Significant clusters were assessed by a cluster-based

ermutation test. Figure 2 d shows that the activity was mainly local-

zed within primary auditory cortex and insula. Complete results are

eported in Table ST2 . Finally, to restrict our subsequent functional

onnectivity analysis to a specific frequency band, we performed the

ower spectra associated to the task by complex Morlet wavelet trans-

orm (from 1 to 60 Hz with 1-Hz intervals) to define which frequencies

ere mainly involved in the sound processing. We then calculated t-

ests for each frequency and time-point within the range 0.050 – 0.200

econds and the averaged power spectra of the baseline. Binarized val-
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es (threshold = 1.0e-18) were submitted to a two-dimensional (two-D)

CS (threshold = 0.001). As reported in Figure 2 b , the analysis returned

 significant cluster (size: 69, p < 0.001) for frequency range: 3 – 5 Hz

ithin the time-range: 0.053 – 0.200 seconds. 

.3. Static functional connectivity 

We constrained the reconstructed sources of the MEG signal from the

559 brain sources obtained from the beamforming algorithm to the 90

on-cerebellar parcels of automated anatomical labelling (AAL) parcel-

ation. Since the length of our epoched data were quite short (36 time-

amples with our sampling rate of 150 Hz, corresponding to 220ms), to

stimate more reliable SFC through Pearson’s correlations, we concate-

ated and sub-averaged groups of trials. This procedure returned a final

ime-series matrix M , made up by seven concatenated sub-averaged tri-

ls, with dimensions: 90 brain regions x 252 time-points. Then, we per-

ormed source leakage correction by orthogonalization ( Colclough et al.,

015 ) and calculated Pearson’s correlations between the envelope of the

ime-series of each pair of brain areas. This procedure was carried out

or both task and resting state (used as baseline) and resulted in two

0 ×90 matrices for each participant, one for the task and one for the

est. Those two matrices were contrasted by applying Wilcoxon signed-

ank test for each pair of brain areas. The resulting z -values matrix Z

as submitted to a degree MCS (MCS threshold = 0.001) for assessing

hich brain area was significantly central within the brain network, af-

er contrasting task versus rest. 

As depicted in Figure 2 e and Figure SF2 , the analysis returned

 significant centrality of the following brain regions: left precentral

 p = 3.5e-05), Rolandic operculum ( p < 1.0e-07), caudate ( p < 1.0e-

7), putamen ( p = 4.4e-06), thalamus ( p < 1.0e-07), Heschl’s gyrus

 p = 3.0e-05), temporal superior ( p < 1.0e-07), right temporal pole mid-

le ( p = 6.6e-06), temporal pole superior ( p < 1.0e-07), temporal supe-

ior ( p = 1.8e-05), Heschl’s gyurs ( p < 1.0e-07), thalamus ( p < 1.0e-07),

allidum ( p < 1.0e-07), putamen ( p < 1.0e-07), amygdala ( p < 1.0e-07),

ippocampus ( p < 1.0e-07), insula ( p < 1.0e-07), frontal medial orbital

ortex ( p = 6.5-e-04), subgenual ( p < 1.0e-07), Rolandic operculum ( p <

.0e-07), frontal inferior operculum ( p = 8.2e-05). 

.4. Dynamic functional connectivity 

To unravel the dynamics of the functional connectivity during sound

ncoding, we calculated the instantaneous phase of the signal envelope

f the matrix M described in the previous paragraph by applying Hilbert

ransform. Then, since matrix M was made up by seven concatenated

ub-averaged trials, after estimating the instantaneous phase, we dis-

arded the time-samples corresponding to the first and last trials to pre-

ent boundary artefacts introduced by instantaneous phase estimation

nd we averaged the remaining five, obtaining a new matrix M2 com-

osed by the 90-brain region instantaneous phases x 36 time-samples.

fterwards, to estimate the phase synchronisation between each pair of

rain areas we computed the cosine of the difference (cosine similarity)

f those instantaneous phases ( Figure 1 c ). This procedure resulted in

 90 brain regions x 90 brain regions DFC matrix for each time-point

nd each condition (task and rest). Then, analogous to the SFC anal-

sis, to estimate the instantaneous connectivity specifically associated

o the task, we contrasted the sound encoding versus rest DFC matri-

es using Wilcoxon sing-rank test. Then, as described above, a degree

CS assessed the significantly central brain regions within the brain

etwork underlying the sound encoding task. Finally, in this case we

anted to investigate the different degree centrality of the brain areas

n the two subsequent time-windows that we defined in the study (1 –

10 ms and 111 – 220 ms). We have performed this by contrasting the

egree centrality of the 90 brain areas for time-window one versus time-

indow two and correcting for multiple comparisons by using MCS. As

llustrated in Figure 3 and Figure SF3, the results highlighted that right

olandic operculum ( p < 1.0e-07) and Heschl’s gyrus ( p = 2.2e-06) were
8 
ore central within the first 110ms, while right insula ( p = 2.2e-06) and

uperior temporal pole ( p = 2.2e-06) were more central in the second

ime-window. 

.5. Dynamic functional connectivity and individual differences 

In conclusion, we aimed to assess whether the neural networks ac-

ivated during sound encoding differed across participants grouped ac-

ording to WM abilities (general, assessed by WAIS-IV, and auditory,

ssessed by MET) and musical expertise. To highlight more clearly the

ifferences, we selected for each WM test two groups formed by par-

icipants whose scores where at least one SD apart from each other.

ccording to psychometric guidelines ( Taylor and Heaton, 2001 ), this

rocedure is particularly relevant when aiming to clearly distinguish

articipants based on their WM abilities as measured by the test. In-

eed, such approach was adopted since we wanted to include only par-

icipants that were clearly differentiated by the tests. With regards to

he WAIS test groups the best scorers had a range of 110 – 130, while

he worst of 76 – 93 (according to the standardization of the WAIS test

ne SD corresponds to 15). In relation to MET test, we observed that

ur best scorers had a range of 43 – 52 while worst scorers of 28 – 36.

he mean across all participants was 40.24 with a standard deviation of

.28. Thus, also in this case the two groups were differentiated by at least

ne SD. Finally, for musicianship, we considered the 24 non-musicians

nd the musicians (both pianists and non-pianists) that received a for-

al musical education for at least 10 years. Those participants were 24.

his threshold was set to compare people with no musical expertise at

ll with individuals who engaged in a long-term professional education.

n addition to those three measures of individual differences, we have

omputed a further analysis to control whether the previous familiarity

f the Bach’s prelude (i.e. participants who knew our Bach’s prelude ver-

us participants who had never heard it before the experiment) affected

he brain connectivity patterns during sound encoding. Thus, for each of

he three variables (AWM, GWM and musical expertise), we calculated

ndependent contrasts between the groups and corrected for multiple

omparisons by using MCS. 

Figure 4 shows that higher GWM was associated to higher central-

ty of right Rolandic operculum ( p = 1.2e-05) and lower GWM to left

 p = 6.4e-05) and right putamen ( p = 6.4e-05). With regards to AWM

kills, the best participants reported higher centrality of right ( p <

.0e-07) and left insula ( p = 6.6e-06), left frontal middle orbital cor-

ex ( p = 1.1e-06), right temporal middle gyrus ( p = 6.6e-06) while worst

nes had a higher centrality of right occipital inferior ( p < 1.0e-07), oc-

ipital superior ( p = 6.4e-05) and frontal medial orbital cortex ( p = 6.4e-

5). Finally, musicians exhibited higher centrality of right insula ( p <

.0e-07), subgenual cortex ( p = 5.7e-05), left supplementary motor area

 p = 1.1e-06), while non-musicians of right caudate ( p < 1.0e-07) and oc-

ipital inferior ( p < 1.0e-07), as illustrated in Figure 4 . Finally, the last

nalysis on familiarity with the Bach’s prelude showed that participants

ho had never heard the prelude before the experiment presented a

ignificantly stronger centrality of the right medial orbito-frontal cortex

 p < 1.0e-07) when encoding the sounds. Additional information about

M, analysis methods and sound encoding brain networks related to all

articipants are provided in the Methods section and in Supplementary

aterials ( Figure SF1 ). 

Depiction of the connectivity underlying sound encoding between

he significantly different brain regions emerged contrasting partici-

ants’ groups and the rest of the brain. For each of the five columns, the

onnectivity is depicted within brain templates (top) and in schemaballs

middle). For each pair of brain templates, the left one is a posterior re-

guration from the left hemisphere, while the right one a posterior rep-

esentation. Finally, we depicted within brain templates the significant

ifferences of brain regions’ centrality obtained by contrasting different

roups of participants (bottom of each column). The top left column

efers to all participants to have an immediate visual comparison, the

op middle column represents participants grouped for general WM abil-
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Fig. 3. Dynamic functional connectivity of sound encoding 

a – Connectivity underlying sound encoding depicted within a brain template showing the strongest connections between the significantly central brain regions and 

the rest of the brain during two main rapid time-windows (1 – 110 ms on the left and 111 – 220 ms on the right). For each pair of brain templates, the left one is a 

refiguration from the left hemisphere, while the right one a posterior depiction. b – Schemaball showing the strongest connections between the significantly central 

brain regions and the rest of the brain during the two time-windows. c – Significantly central brain regions within the whole brain network during sound encoding 

depicted in the two time-windows. In all depictions, the colorbar values refer to the temporal extent (in ms) of the brain regions’ significance. 
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ties, the top right relates to auditory WM abilities. Then, the bottom left

olumn shows the contrast between musicians and non-musicians and

he bottom right column shows the difference between participants fa-

iliar versus non-familiar with the Bach’s prelude. The colorbars depict

igh WM scorers, musicians and participants familiar with the Bach’s

relude with red shades, while low WM scorers, non-musicians and par-

icipants non-familiar with the Bach’s prelude with blue shades. Values

how the temporal extent (in ms) of the significant differences. 

. Discussion 

In this study, we investigated the rapid spatiotemporal brain mecha-

isms for encoding of sounds forming a full, structured musical piece, as
9 
ompared to resting state. Notably, investigating the brain functioning

ithin the first 220 ms after sounds onset, we detected the brain mech-

nisms that may be partly responsible for making temporal information

vailable to human awareness ( Dehaene et al., 2011 ). 

We detected significant activation and centrality, primarily in the

ight hemisphere, of several brain regions linked to memory, attentional

nd auditory processes such as primary auditory cortex, frontal opercu-

um, basal ganglia, insula and hippocampus. Additional analysis em-

loying phase synchronization and therefore dynamical changes over

ime of the connectivity patterns highlighted stronger centrality of au-

itory cortex regions such as right Heschl’s and superior temporal gyri

s well as frontal operculum within the first 110 ms of the processing

f each sound. Conversely, the second time-window that we defined
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Fig. 4. Brain dynamics and general and auditory WM, musical expertise, and familiarity with the Bach’s prelude. 
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110 – 220 ms) showed a higher centrality of right insula and superior

emporal pole. In conclusion, we presented results connecting individ-

al differences among WM skills and musical expertise, and the brain

etwork underlying sound encoding. Specifically, stronger auditory WM
10 
kills and musical expertise were linked to higher centrality of subgen-

al cortex, insula and supplementary motor area, while higher general

M abilities were connected to stronger centrality of right frontal op-

rculum. 
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.1. Brain activity, static functional connectivity and sound encoding 

Coherent with our results, primary auditory cortex has been widely

hown responsible for processing of sound stimulations by a plethora

f well-known studies ( Winer and Schreiner, 2011 ; Zatorre, 2003 ). Ad-

itionally, we detected the strongest activity within the right hemi-

phere, another result largely described and replicated by previous stud-

es ( Tervaniemi and Hugdahl, 2003 ). Although our focus was on brain

onnectivity, replicating the activation of the auditory cortex in re-

ponse to sound stimulation was a first necessary sanity check to be

ade. Moving toward connectivity analysis, we observed a rather inter-

sting picture. While the brain activity was largely reconstructed on the

rimary auditory cortex and insula, the brain static connectivity anal-

sis revealed a large set of higher-order brain areas that were highly

orrelated between each other and central within the whole-brain net-

ork. Notably, this result survived the correction for source leakage

 Colclough et al., 2015 ), an issue with MEG source reconstruction that

ould have altered these findings. Conversely, this evidence strongly

uggests that to process and encode sounds the sole activation of primary

uditory cortex may need to be complemented by a further brain mech-

nism, which is the synchronization of a subnetwork of brain areas. In-

eed, such areas, even if not strongly active, presented very similar time

eries which may be interpreted as the neural marker of a dense commu-

ication happening within this subnetwork of areas ( Yoo et al., 2018 ).

emarkably, looking at the brain regions forming this subnetwork, we

ound that most of them were areas not directly implicated in auditory

rocessing. For instance, we detected brain regions such as hippocam-

us, an area repeatedly connected to memory encoding ( Frank et al.,

000 ; Preston and Eichenbaum, 2013 ; Vago et al., 2014 ) and frontal op-

rculum, a brain region that has been linked to linguistic production and

rocessing ( Behroozmand et al., 2015 ; Indefrey et al., 2001 ). Consider-

ng the main functions of these areas highlighted by previous literature,

e argue that their involvement in our task may relate to the encod-

ng of the information carried by the sounds. Another key central area

hat we detected was insula, whose involvement could be related to the

alience of the stimuli to be encoded, coherent with studies that showed

he role of insula in processing stimulation salience ( Cauda et al., 2011 ;

ddin, 2015 ). Basal ganglia also played a role in the sound encoding

rain network. These subcortical regions have been shown important for

everal different tasks and are likely most known for their involvement

n motor activities and associative learning ( Ashby et al., 2010 ; Packard

nd Knowlton, 2002 ). Since in this study participants were actively at-

empting to memorize the musical piece, basal ganglia centrality within

he brain may be interpreted as a sign of the learning process occurring

hile listening to the piece. In conclusion, our results suggested the rel-

vance to conduct both activity and connectivity analyses to obtain a

ore complete picture of the sound encoding processes. 

On another relevant note, it is important to underline that in our task

articipants actively listened to the musical piece and tried to mem-

rize it as much as possible. This is not a typical approach used in

free/naturalistic’ listening to music ( Taruffi et al., 2017 ; Alluri et al.,

012 ; Haumann et al., 2021 ) and has been employed in our study since

e wanted to characterize the specific functional connectivity patterns

f active sound encoding. Previous studies on naturalistic listening to

usic highlighted large networks of brain areas involved in passive mu-

ic processing ( Toiviainen et al., 2014 ; Toiviainen et al., 2020 ). Inter-

stingly, those studies reported the insurgence of brain networks which

hared similarities with the default-mode network ( Taruffi et al., 2017 ),

robably because passive listening to music led participants towards

ind-wandering states. Other analogous studies reported activity in mo-

or areas of the brain ( Alluri et al., 2012 ) and in regions mainly related

o the limbic system ( Brattico et al., 2011 ) when listening to music.

hese findings may relate to the relevance that movement has when

rocessing music (especially for participants with musical expertise) as

ell as for the emotional content that a naturalistic listening to music

an easily evoke. Interestingly, the network of brain areas that we de-
11 
ected was different, since it did not relate much with default mode or

otor networks, but comprised areas mostly related to auditory, mem-

ry, attentional and evaluative processes. Further, this network evolved

ven more clearly when contrasting it with the functional connectivity

hat we observed in resting state. Thus, our findings suggest that the

ynchronization between these areas reflect the brain functional con-

ectivity underlying the active encoding of the sounds. Future studies

hould replicate our results and further expand the knowledge on sound

ncoding by directly comparing active encoding of sound information

ot only versus resting state (as done in the current study) but also ver-

us passive listening to music. 

.2. Dynamic functional connectivity of sound encoding 

A further relevant result that we achieved comes from the study of

unctional connectivity rapid dynamics that allowed us to identify two

ain time-windows of sound encoding brain processes. This procedure

eturned two similar networks of brain regions that were however dif-

erentiated by a diverse centrality of few areas. Primary auditory cortex

as central mainly in the early time window whereas its connectivity

as less marked in the later time interval which was more distant from

he sound onset. This result relates to previous literature highlighting

ts role for the first sensorial processing of upcoming auditory stimuli

 Elhilali et al., 2004 ). Interestingly, our results confirmed the relevance

f auditory cortex not only in terms of activation, but also with regards

o synchronization with the other brain areas in the first rapid process-

ng of the sounds. More surprisingly, the same result regarded frontal

perculum which could be as well important for the brain network as-

ociated to the first processes of sound encoding. This result was less

xpected since frontal operculum has usually been associated to later

rocesses in language studies ( Rolston et al., 2015 ). Interestingly, our

vidence may suggest that when encoding sounds the frontal opercu-

um could be needed already in the initial processing of the sounds. On

he contrary, right insula was predominantly central within the second

ime-window. In accordance with what we described above, insula may

elate to salience of the stimuli and in this case could have played an

mportant role for achieving a more fine-grained encoding and catego-

ization of the upcoming sounds. Once again, this interpretation would

e coherent with previous studies highlighting insula’s role in salience

ppraisal of stimuli ( Cauda et al., 2011 ; Uddin, 2015 ). In conclusion,

y investigating the brain connectivity dynamics within the first 220

s after sounds onset, we described the neural mechanisms in terms

f functional connectivity that are presumably responsible for making

emporal information available to human awareness, as suggested by

revious investigations that explored the dynamics of human conscious

rocessing ( Dehaene et al., 2011 ). Finally, although we employed solid

ignal processing methods, we wish to highlight that dynamic connec-

ivity measures are intriguing, but possibly more prone to artifacts than

ore established techniques such as static functional connectivity anal-

sis that we have previously discussed. Thus, while our results on static

unctional connectivity provides us with a solid and exciting new per-

pective on the brain mechanisms underlying sound encoding, the dy-

amic functional connectivity outcomes should be managed with a bal-

nced mix of interest and caution. 

.3. Sound encoding, working memory abilities and musical expertise 

An additional achievement of this study is represented by the mod-

lation of sound encoding brain networks based on participants’ WM

kills and musical expertise. First, general WM was associated to cen-

rality of frontal operculum. This result can be seen considering the sev-

ral studies that highlighted the fundamental role of frontal and pre-

rontal cortices for WM tasks ( Christophel et al., 2017 ; Constantinidis

nd Klingberg, 2016 ; Fuster, 2015 ). Indeed, in our study higher ver-

us lower WM skills participants had a stronger centrality of the most

rontal brain region that formed the significant sound encoding brain
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etwork. Remarkably, when considering auditory WM, we did not ob-

erve any difference related to frontal operculum. However, we detected

 significant centrality of bilateral insula and right temporal middle

ortex. Considering that these regions have been shown important for

omplex processing of auditory stimuli ( Kumar et al., 2016 ; Remedios

t al., 2009 ), we may speculate that their involvement in an auditory

emory task may offer an additional help to encode sounds. While this

ay happen for best auditory WM scorers, worse participants may rely

nly on more primitive auditory cortices. Although these results pro-

ide new interesting perspectives, we highlight that the current study

ocused on the fast-scale whole-brain connectivity underlying encoding

f single sounds and not on WM tasks. Thus, our results suggest that

eneral cognitive abilities (such as WM) can produce a small, but signif-

cant modulation of the brain encoding of single sounds, as suggested by

ther studies linking WM skills and brain processing of sounds ( Bonetti

t al., 2018 ). However, they do not tell us much on the brain processes

nderlying WM tasks such as information storage during goal-directed

ehaviour ( Sreenivasan et al., 2014 ) involving sound information. Fu-

ure studies are therefore called for to investigate such relevant topic

nd integrate the existing knowledge. 

In relation to musical expertise, the higher centrality of left supple-

entary motor area and right insula for musicians compared to non-

usicians is worthy to be mentioned. Since motor learning is a key

eature of musical practice, we claim that musicians may also recruit

otor areas when encoding sounds. This result could be seen in light of

everal studies that showed the role of motor brain areas in musicians

uring music listening ( Alluri et al., 2017 ; Burunat et al., 2015 ; Bangert

t al., 2006 ). Similarly, also insula has been shown more active when

usicians compared to non-musicians listened to an early rehearsed and

amiliar musical piece ( Mutschler et al., 2007 ). Finally, the analysis on

he familiarity with the Bach’s prelude showed that participants who had

ever heard the prelude before the experiment presented a significantly

tronger centrality of the right medial orbito-frontal cortex during the

ncoding of sounds. Although this last result may lead to different inter-

retations, we might argue that to encode the sounds participants with

o prior knowledge of the musical piece needed a higher synchroniza-

ion of a frontal area such as the medial orbito-frontal cortex which has

een shown implicated in several cognitive tasks by previous research

 Gourley et al., 2016 ; Elliott et al., 2000 ) and thus may play a privileged

ole also in the encoding of sounds. 

. Conclusions 

In conclusion, this study revealed the rapid spatiotemporal dynamics

f brain activity and connectivity underlying encoding of sounds form-

ng a full, structured musical piece, as compared to resting state, in a

arge sample of almost seventy participants. Remarkably, the integra-

ion between activity and connectivity provided us with a complete pic-

ure of the brain networks involved in this complex cognitive process,

etworks that the sole brain activity missed to reveal. Indeed, while the

rain activity was largely reconstructed on the primary auditory cortex

nd insula, the large-scale whole-brain connectivity analysis revealed a

ide set of higher-order brain areas that were highly synchronized be-

ween each other and central within the whole-brain network. Remark-

bly, during the encoding process such areas were not strongly active

ut presented very similar time series which may indicate the dense

ommunication happening within this subnetwork of areas. Moreover,

hese brain regions are not classically implicated in auditory processing,

uggesting that encoding of sounds requires the integration of several

ifferent brain structures that may collaborate to extract and store the

nformation carried by the sounds. Further, our investigation within the

rst 220 ms after sounds onset allowed us to detect the brain mecha-

isms that may be partly responsible for making temporal information

vailable to human awareness ( Dehaene et al., 2011 ). On top of this, our

tudy highlighted the potential role of DFC and phase synchronization

nalyses to unravel the rapid transition of the brain connectivity pat-
12 
erns from primary auditory cortex to higher order association areas.

ndeed, our results suggested that primary auditory cortex centrality

ould be implicated in the first processing of the present sound, while

he integration between insula and superior temporal pole with the rest

f the brain may play a crucial role for a more fine-grained elaboration

f the sounds to be encoded. Finally, the DFC approach allowed us to

omplement our results with additional analyses that revealed a subtle

ut relevant modulation of the brain networks underlying sound encod-

ng in participants characterized by different levels of WM abilities and

usical expertise. 

Taken together, these results advanced our knowledge of the brain

onnectivity functional networks and rapid dynamics occurring when

ound information is encoded. Further, our findings may even provide a

urther understanding of the general mechanisms underlying encoding

f the single objects (i.e. sounds) of a sequence (i.e. musical piece) in

he human brain. As a natural development of our work, future research

s called for to broaden our results by looking into the brain connectiv-

ty emerging during encoding not only of single sounds, but of longer

equences. 
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