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a b s t r a c t 

Functional connectivity (FC) in the brain has been shown to exhibit subtle but reliable modulations within a 

session. One way of estimating time-varying FC is by using state-based models that describe fMRI time series as 

temporal sequences of states, each with an associated, characteristic pattern of FC. However, the estimation of 

these models from data sometimes fails to capture changes in a meaningful way, such that the model estimation 

assigns entire sessions (or the largest part of them) to a single state, therefore failing to capture within-session 

state modulations effectively; we refer to this phenomenon as the model becoming static, or model stasis. Here, we 

aim to quantify how the nature of the data and the choice of model parameters affect the model’s ability to detect 

temporal changes in FC using both simulated fMRI time courses and resting state fMRI data. We show that large 

between-subject FC differences can overwhelm subtler within-session modulations, causing the model to become 

static. Further, the choice of parcellation can also affect the model’s ability to detect temporal changes. We finally 

show that the model often becomes static when the number of free parameters per state that need to be estimated 

is high and the number of observations available for this estimation is low in comparison. Based on these findings, 

we derive a set of practical recommendations for time-varying FC studies, in terms of preprocessing, parcellation 

and complexity of the model. 
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. Introduction 

Neural circuits across multiple brain areas integrate into large-scale

rain networks in order to accomplish complex cognitive functions. Just

ike smaller populations of neurons underlying these networks flexi-

ly synchronise and desynchronise their oscillatory firing patters to

ommunicate ( Fries, 2005 ), large-scale brain networks must also be

ble to fluctuate dynamically and change over time ( Breakspear, 2017 ;

alhoun et al., 2014 ), enabling flexible neuronal communication and

unctioning across the entire brain. Arguably, this is reflected in the

ata as some form of synchrony in the activity across areas, which is

ypically referred to as functional connectivity (FC). In fMRI, FC can
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e derived by measuring how different areas coactivate in their blood

xygen level dependent (BOLD) signal. Understanding these temporal

hanges in FC (i.e. time-varying FC) in fMRI can help to address a range

f questions, from the theoretical study of human cognition to a better

haracterisation of different neurological and psychiatric diseases. 

There are several approaches to modeling time-varying FC in fMRI;

or a recent review, see Lurie et al. (2019) . One avenue is the use of state-

ased models that estimate time-varying FC as a temporal sequence

f brain “states ”. These models reduce complex brain dynamics into a

ubset of patterns of transitions between quasi-stationary states, which

an be statistically described and compared between groups of subjects

r used to study conditions in a relatively straightforward way. While
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o  
pproaches using a single, more complex model to describe the entire

ime series (for instance a convolutional neural network or a high-order

ultivariate autoregressive model) can explain the data equally well or

ven better in terms of explained variance, a state-based model gives an

dvantage in interpretation if one is interested in disambiguating sig-

al changes in a time-resolved manner (for example what happens and

hen as a response to a stimulus). However, in fMRI, these models are

ot always effective to detect changes in FC over time. Sometimes, the

stimation leads to entire sessions collapsing into one single state, with

o changes within session —so that the model becomes static; that is,

ll the explanatory power of the model is focussed on explaining dif-

erences between subjects or sessions, instead of within-session modu-

ations. The reason behind this behavior is an open question: it could be

ecause there are no temporal changes in FC in the data; or it could be

ecause, even if there are temporal changes, the estimation is unable to

etect them. While some studies have claimed that there is insufficient

vidence that BOLD FC is dynamic ( Hindriks et al., 2016 ; Liégeois et al.,

017 ; Lindquist et al., 2014 ), several studies have shown that dynamic

spects of FC are relevant for behavior and cognition ( Cabral et al., 2017 ;

ornito and Bullmore, 2010 ; Gonzalez-Castillo and Bandettini, 2018 ;

arapanagiotidis et al., 2020 ; Liegeois et al., 2019 ; Vidaurre et al., 2017 ;

oytek and Knight, 2015 ; Xie et al., 2018 ) and that they can add im-

ortant information not contained in time-averaged FC ( Vidaurre et al.,

021 ). These findings suggest that temporal variation is present in BOLD

C and that it carries meaningful information. We here address the ques-

ion of how to quantify this variability effectively, and under which con-

itions the models become static (i.e. when “model stasis ” occurs), since

 deeper understanding of the issue can help us to configure these mod-

ls to work more optimally. 

Assuming temporal FC changes exist in the data, why would a

ime-varying FC model fail to detect them? One possible explanation

s in the nature of the data. We here refer to factors that affect the

ata as the data hypothesis . In particular, since unsupervised, data-

riven time-varying FC models aim at describing the most salient pat-

erns in the data, within-session fluctuations might just be too sub-

le, with overall differences between subjects being more dominant

 Lehmann et al., 2017 ). That is, if between -subject differences are larger

han within -session FC modulations (i.e. changes over time within a sub-

ect’s scanning session), a data-driven model will naturally prefer to

ocus on the between-subject variability instead of the temporal vari-

bility. By between-subject variability, we here mean time-averaged

C differences between subjects. By within-session variability, we here

ean temporal fluctuations in FC, i.e. differences between timepoints

ithin each subject’s scanning session. This is illustrated in Fig. 1 C.

s we will show, the balance between these two aspects of variabil-

ty (between-subject and within-session) depends on the preprocessing

ipeline, in particular on the choice of a parcellation ( Eickhoff et al.,

018 ; Pervaiz et al., 2020 ; Popovych et al., 2021 ), and how fine-

rained it is. Another explanation relates to challenges in estimating

he model; i.e. if the model inference has problems in finding within-

ession modulations. We refer to this explanation as the estimation hy-

othesis , which, in particular, might occur when the number of free

arameters per state to estimate in the model is too large in com-

arison to the available number of volumes or time points (across

ubjects). 

In the present study, we simulated data with varying amounts of

ariability between and within subjects, and we fitted models to a real

ataset in different parcellations. We hypothesise that large between-

ubject variability and small within-session (temporal) variability cause

he time-varying FC model to become static and that this effect depends

n the parcellation (data hypothesis). We further hypothesise that fewer

bservations and more free parameters per state, in fact a small ratio of

umber of observations to free parameters per state, cause the time-

arying FC model to become static (estimation hypothesis). We finally

rovide some recommendations for the estimation of time-varying FC

ased on these points. 
2 
. Material and methods 

.1. Data and parameters 

.1.1. HCP dataset and preprocessing 

We used resting state EPI scans of the first 200 participants from the

uman Connectome Project S1200 (HCP, Smith et al., 2013b ; Van Es-

en et al., 2013 ), an open-access dataset of MRI data. Time-varying

C has previously been demonstrated in this dataset using a wide ar-

ay of different approaches ( Battaglia et al., 2020 ; Casorso et al., 2019 ;

hoe et al., 2017 ; Dai et al., 2019 ; Liegeois et al., 2019 ; Riccelli et al.,

017 ; Sporns et al., 2021 ; Vidaurre et al., 2017 ; Zalesky et al., 2014 ;

amani Esfahlani et al., 2020 ), making it a suitable example to evaluate

odel stasis. The dataset consists of structural and functional MRI data

f 1200 healthy, young adults (age 22–35). Each participant completed

our resting state scans. We here only used data from the first resting

tate scanning session of each participant. Data were acquired as de-

cribed in the HCP public protocols, which can be found in Van Essen

t al. (2012) . Briefly, scans were acquired in a 3T MRI scanner, using

ultiband echo planar imaging sequences with an acceleration factor of

 at 0.72 s repetition time (TR) and a spatial resolution of 2 × 2 × 2 mm

or functional scans. Resting state scans lasted 14 min and 33 s. 

Data were preprocessed following the HCP preprocessing pipelines

or resting-state fMRI ( Glasser et al., 2013 ; Smith et al., 2013a ). In brief,

fter “minimal ” spatial preprocessing and surface projection to trans-

orm data into grayordinate space, the data were temporally prepro-

essed using single-session Independent Component Analysis (ICA, us-

ng FSL’s MELODIC; Beckmann, 2012 ), as well as classification and re-

oval of noise components using FSL’s FIX ( Griffanti et al., 2014 ; Salimi-

horshidi et al., 2014 ). 

.1.2. Parcellations and time course extraction 

Group ICA parcellations estimate a data-driven functional parcella-

ion on the group level, which are subsequently regressed onto each

ubject’s individual functional scans to obtain subject-specific versions

f group ICs and their time courses. Group ICA parcellations were

reated for a varying number of parcels (we here used the variants

reated for 50 and 100 parcels, GroupICA50 and GroupICA100) us-

ng multi-session spatial ICA on the temporally concatenated data.

he time series for each participant were extracted using dual regres-

ion ( Beckmann et al., 2009 ). The Group ICA parcellations and cor-

esponding time series are publicly available from the HCP repository

 https://db.humanconnectome.org ). 

PROFUMO ( Harrison et al., 2015 ) is a similar approach to Group

CA, but it estimates group- as well as subject-level maps simulta-

eously, allowing it to better capture individual variability in FC

 Bijsterbosch et al., 2018 ). In PROFUMO, between-subject differences in

time-averaged) FC are therefore expected to be higher compared to the

roup ICA approach. We used a PROFUMO parcellation of 50 parcels,

ROFUMO50. 

As a priori defined functional parcellation, we used the Yeo par-

ellation ( Schaefer et al., 2018 ). This parcellation was created using

 gradient-weighted Markov Random Field on a separate dataset of

esting-state fMRI recordings of 1489 participants. This approach pro-

uces parcels which are similar in terms of function and connectivity.

e here used the grayordinate version of this parcellation consisting of

00 parcels (Yeo100 parcellation). 

As an anatomical parcellation, we used the Desikan-Killiany atlas

 Desikan et al., 2006 ). This atlas originally consists of 62 anatomi-

ally delineated cortical regions. The atlas was projected into grayor-

inate space and 18 subcortical regions were added, as described in

eco et al. (2021) . This resulted in 80 parcels (DK80 parcellation). Time

ourses in this parcellation were extracted as the mean across grayordi-

ates belonging to each parcel. 

Beside runs that use the full parcellations, we also ran the models

n subsets of each parcellation to vary the number of free parameters

https://db.humanconnectome.org
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er state in the model (as described under Section 2.3 ). In these reduced

uns, we randomly chose a subset of 10, 25, or 50 parcels from a par-

ellation, which time series were subsequently fed to the model. This

andom selection was repeated five times for each subset of a parcella-

ion. As an alternative strategy to reduce the number of free parameters

er state in the model, we also tested the effects of reducing the orig-

nal data dimensionality using Principal Component Analysis (PCA) or

y modeling each HMM-state as probabilistic PCA model ( “HMM-PCA ”)

 Vidaurre, 2021 ). 

To mimic properties of more ordinary datasets, we also varied the

umber of subjects ( 𝑆) between 50, 100, and 200, the number of time

oints ( 𝑇 ) per subject between 200, 500, and 1200 time points, and the

raction 𝑅 of the sampling rate at 1.37 Hz (original rate 𝑅 = 1 , equiva-

ent to TR of 0.72 s), 0.68 Hz (half of the original rate 𝑅 = 

1 
2 , equivalent

o TR of 1.44 s), and 0.46 Hz (one third of the original rate 𝑅 = 

1 
3 ,

quivalent to TR of 2.16 s). The number of observations 𝑂 used in the

odel is the total amount of time points: 𝑂 = 𝑆 ∗ 𝑇 ∗ 𝑅 . In our analysis,

e modeled only the effect of the number of observations 𝑂, rather than

he effects of the number of subjects, of time points, and of the sampling

ate separately. 

Time course extraction results in one matrix of dimensions 𝑇 x 𝑁 per

ubject, where 𝑁 is the number of parcels. To compute time-varying FC,

e concatenated the time series across subjects, resulting in a matrix of

 𝑆 x 𝑇 ) x 𝑁 . The input and size at this step varies with the parcellation,

.e. 𝑁 = 50 for the GroupICA50 and PROFUMO50 parcellations, 𝑁 = 80
or the anatomical DK80 parcellation, and 𝑁 = 100 for the GroupICA100

nd Yeo100 parcellations in the full runs (i.e. with all regions or compo-

ents). In the reduced runs, 𝑁 corresponds to the number of randomly

hosen parcels from each parcellation (10, 25, or 50 parcels). We then

tandardised these time series row-wise by rescaling them so that the

ime course of each parcel has a mean of 0 and a standard deviation of

. 

.1.3. Simulations 

To be able to test the different levels of between-subject and within-

ession variability, we simulated new datasets based on the HCP data,

here we introduced differing amounts of between-subject and within-

ession variability into the generative model. This was done by gener-

ting new time series from a combination of synthetic covariance ma-

rices, representing either time-invariant (subject-specific) FC matrices

r time-varying FC matrices that activate or deactivate at different time

oints: 

 = 0 . 5 𝑌 bs + 0 . 5 𝑍 ws 𝑋, 𝑌 bs , 𝑍 ws ∈ ( ℝ ) Nx ( SxT ) 

Here, 𝑋 is the synthetic time series containing variability both be-

ween subjects and within sessions, 𝑌 𝑏𝑠 is the synthetic time series con-

aining only variability between subjects, and 𝑍 𝑤𝑠 is the synthetic time

eries containing only variability within sessions. In this notation, 𝑋,

 𝑏𝑠 , and 𝑍 𝑤𝑠 all represent subjects’ individual time series that have been

oncatenated. 

The time series 𝑌 𝑏𝑠 , containing only variability between subjects,

as generated by randomly sampling from a Gaussian distribution with

ean 0 and a different synthetic covariance matrix per subject: 

 

𝑠 
𝑏𝑠 

∼ 𝑁 

(
0 , ̂Σ𝑠 

𝑏𝑠 

)
𝑌 𝑠 
𝑏𝑠 

∈ ℝ 

𝑁𝑥𝑇 , Σ̂𝑠 
𝑏𝑠 

∈ ℝ 

𝑁𝑥𝑁 

here 𝑌 𝑠 
𝑏𝑠 

is the time series for subject 𝑠 , and Σ̂𝑠 
𝑏𝑠 

is the (symmetric,

ositive-definite) covariance matrix of subject 𝑠 , i.e. containing FC in-

ormation specific to this subject and different from the others. 

The time series 𝑍 𝑤𝑠 , with only variability within a session, was ob-

ained by sampling from an HMM distribution: 

 

𝑠 
𝑤𝑠 

∼ 𝐻 𝑀 𝑀 ( Θ) 𝑍 

𝑠 
𝑤𝑠 

∈ ℝ 

𝑁𝑥𝑇 

here 𝑍 

𝑠 
𝑤𝑠 

is the time series for subject 𝑠 . Critically, 𝑍 

𝑠 
𝑤𝑠 

contains only

ithin-session variability, since the HMM parameters Θ are at the group

evel (i.e. equal for all subjects). More specifically, when a given state 𝑘
3 
s active, 𝑍 

𝑠 
𝑤𝑠 

is sampled from a Gaussian distribution with mean 0 and

 state-specific synthetic covariance Σ̂𝑘 
𝑤𝑠 

: 

 

𝑠 
𝑡 
|𝑞 𝑠 
𝑡 
= 𝑘 ∼ 𝑁 

(
0 , ̂Σ𝑘 

𝑤𝑠 

)
𝑧 𝑠 
𝑡 
∈ ℝ 

𝑁𝑥 1 , 𝑞 𝑠 
𝑡 
, 𝑘 ∈ ℝ { 1 , …𝐾 } , Σ̂𝑘 

𝑤𝑠 
∈ ℝ 

𝑁𝑥𝑁 

Therefore, Σ̂𝑘 
𝑤𝑠 

accounts for state-specific variability, which depends

n the currently active state 𝑞 𝑠 
𝑡 
. The currently active state 𝑞 𝑠 

𝑡 
depends

n which state was active at the previous time point 𝑞 𝑠 
𝑡 −1 . The states are

ampled from a categorical distribution with the parameters 𝐴 , which

re the transition probabilities of the HMM ( 𝐴 𝑘 indicating the 𝑘 -th row

f the transition probability matrix): 

 

𝑠 
𝑡 
|𝑞 𝑠 
𝑡 −1 = 𝑘 ∼ 𝐶𝑎𝑡 

(
𝐴 𝑘 

)
𝑞 𝑠 
𝑡 −1 ∈ ℝ { 1 , …𝐾 } , 𝐴 ∈ ℝ 

𝐾𝑥𝐾 

To create the covariance matrices Σ̂𝑠 
𝑏𝑠 

and Σ̂𝑘 
𝑤𝑠 

, we first decomposed

he real covariance matrix of the first subject of the HCP dataset into its

ingular values: 

= UD 𝑈 

′ Σ, 𝑈, 𝐷 ∈ ( ℝ ) NxN 

here Σ is the covariance matrix of the first subject of the real dataset

HCP resting-state fMRI dataset) in GroupICA50 parcellation, 𝑈 are the

ingular vectors of the covariance matrix and 𝐷 contains the singular

alues of the covariance matrix. 

We created synthetic covariance matrices Σ̂𝑠 
𝑏𝑠 

for all subjects 𝑆 by

ultiplying the original singular values 𝐷 with subject-specific singular

ectors �̂� 

𝑠 
𝑏𝑠 

, which we created by randomly perturbing 𝑈 . 

̂ 𝑠 
bs 
= �̂� 

𝑠 

bs 
𝐷 ̂𝑈 

𝑠 ′
bs 

�̂� 

𝑠 

bs 
∈ ( ℝ ) NxN 

Similarly, to create the covariance matrices Σ̂𝑘 
𝑤𝑠 

for all states 𝐾, we

ultiplied the original singular values 𝐷with state-specific singular vec-

ors �̂� 

𝑘 
𝑤𝑠 

: 

̂ 𝑘 
ws = �̂� 

𝑘 
ws 𝐷 ̂𝑈 

𝑘 ′
ws �̂� 

𝑘 
ws ∈ ( ℝ ) NxN 

For each subject 𝑠 , the noisy singular vectors �̂� 

𝑠 
𝑏𝑠 

were generated by

ultiplying the original singular vectors 𝑈 element-wise with a subject-

pecific Gaussian noise matrix Ψ𝑠 and adding this product to the original

ectors 𝑈 : 

̂
 

𝑠 

bs 
= 𝑈 + 𝑈◦𝛿bs Ψ𝑠 ] Ψ𝑠 ∈ ( ℝ ) NxN , 𝛿bs ∈ ( ℝ ) [ 0 . 1 , 1 ] 

The Gaussian noise matrix Ψ𝑠 is scaled by the parameter 𝛿𝑏𝑠 , which

efines the final amount of between-subject variability contained in the

ynthetic time series 𝑌 𝑏𝑠 . 

Similarly, for each state 𝑘 , we generated the noisy singular vectors
̂
 

𝑘 
𝑤𝑠 

by multiplying the original singular vector 𝑈 element-wise with a

tate-specific Gaussian noise matrix Ψ𝑘 : 

̂
 

𝑘 
ws = 𝑈 + 𝑈◦𝛿ws Ψ𝑘 Ψ𝑘 ∈ ( ℝ ) NxN , 𝛿ws ∈ ( ℝ ) [ 0 . 1 , 1 ] 

This Gaussian noise matrix Ψ𝑘 is scaled by the parameter 𝛿𝑤𝑠 , which

efines the amount of within-session variability contained in the syn-

hetic time series 𝑍 𝑤𝑠 . 

We varied the parameters 𝛿𝑏𝑠 and 𝛿𝑤𝑠 between 0.1 and 1 in steps

f 0.1. A small value for 𝛿𝑏𝑠 results in a time series 𝑌 𝑏𝑠 , in which all

ubjects’ time-averaged FC matrices are similar. A large value for 𝛿𝑏𝑠 ,

n the other hand, results in a time series 𝑌 𝑏𝑠 , in which subjects’ FC

atrices are very different from each other. A small value for 𝛿𝑤𝑠 results

n a time series 𝑍 𝑤𝑠 , in which FC almost does not vary over time (i.e.

C is essentially static). A large value for 𝛿𝑤𝑠 , on the other hand, results

n a time series 𝑍 𝑤𝑠 , in which FC varies greatly over time. Although

e use a specific, real subject’s covariance matrix as the basis for the

imulations, the concrete FC configuration does not affect our analyses,

ince we only consider the relative effect of introduced between-subject

nd within-session variability. 

We generated time series from all combinations 𝑋 of 𝑌 𝑏𝑠 and 𝑍 𝑤𝑠 ,

esulting in 100 simulated time series. We then used these time series as

nput to compute time-averaged FC, as described under Section 2.2 , and

o the time-varying FC model to evaluate the model’s stasis, as described

nder Section 2.3 . 



C. Ahrends, A. Stevner, U. Pervaiz et al. NeuroImage 252 (2022) 119026 

2

 

l  

r  

n  

t  

n  

c  

t  

m  

w  

e  

t  

2

a

 

2  

m  

t  

s  

H  

d  

S

 

s  

𝐾  

n  

o  

i  

s  

t  

d  

a  

s  

a  

F  

s  

#  

fi  

j  

o  

o  

c  

m  

w  

a  

d  

a  

a  

b  

F  

m  

i  

m  

m  

m

 

p  

p  

s

i  

w

𝐷

 

a  

(  

o  

a

2

 

e  

t  

o  

b  

t  

d  

v  

e  

m  

c  

e  

p  

f  

fl  

t  

p

 

o  

(  

S  

o  

s  

t  

m  

s  

2  

u  

s  

w  

d  

p  

p  

e  

o  

o  

t  

r  

p  

o  

i  

b  

t  

i  

c  

i  

v  

T

 

T  

m

.2. Time-averaged functional connectivity and FC similarity 

To compute time-averaged functional connectivity, Pearson’s corre-

ation was computed for each pair of regions ( Smith et al., 2013c ). The

esulting 𝑁 x 𝑁 matrices represent the time-averaged FC of each scan-

ing session within each parcellation. In order to assess how consistent

hese FC networks were for each of the parcellations, we estimated the

etwork similarity across scanning sessions. This was done by first cal-

ulating the group average of the time-averaged FC in each parcellation,

hen unwrapping the upper triangular elements of this group average FC

atrix into a [ 𝑁 
2 − 𝑁 
2 ] x 1 vector, and correlating this group-level vector

ith the corresponding vectors of the session-specific FC matrices. For

ach parcellation, FC similarity was thus defined as the correlation be-

ween the group mean FC, and the FC of all individual scanning sessions.

.3. Time-varying functional connectivity: Hidden Markov Model (HMM) 

nd model stasis 

We used the Hidden Markov Model (HMM; Vidaurre et al., 2016 ,

017 ) to describe time-varying FC. The HMM is a type of state-based

odel that estimates a sequence of states and a probability distribu-

ion for each state, such that each time point in the time series is as-

umed to have been generated from its assigned state distribution. The

MM has been used to estimate time-varying FC on fMRI and MEG

ata in previous work ( Karapanagiotidis et al., 2020 ; Quinn et al., 2018 ;

tevner et al., 2019 ; Vidaurre et al., 2016 , 2017 ). 

We used a version of the HMM that assumes a multivariate Gaus-

ian distribution per state, with 𝐾 = 6 states for the simulated data and

 = 12 for the HCP data. We additionally investigated the effect of the

umber of states 𝐾 on model stasis by varying 𝐾 ∈ ℝ { 4 , …60 } in steps

f 4. In order to focus on FC, each state was here defined in terms of

ts covariance only ( Vidaurre, 2021 ), i.e. by setting the mean of each

tate to zero and not allowing the inference to change this value. Once

he model was estimated, we computed the fractional occupancy (FO),

efined as the proportion that each state occupies in the time series of

 particular subject. We used FO as indicator of the model becoming

tatic. This is illustrated in Fig. 1 . In the example, different states are

ssigned to portions of the time series of Subject 3, resulting in a small

O percentage for each of the states. For Subject 4, however, a single

tate (#1) is assigned to all time points of this subject, i.e. the FO of state

1 in Subject 4 is 100%. This means that the model effectively fails in

nding any temporal changes in functional connectivity for this sub-

ect, describing only the more salient difference between all time points

f this subject compared to the other subjects. To evaluate the model’s

verall stasis, we then used the maximum FO value of each subject and

omputed the average across the group. In practice, this means that a

odel that assigns states only to entire subjects, such as in the example

ith Subject 4, will have a mean maxFO of 100%. On the other hand,

 model that finds recurring states over time that are perfectly equally

istributed across time points of all subjects will have a mean maxFO of

pproximately 1 
𝐾 

(i.e. each of the 𝐾 states occupies on average the same

mount of each subject’s time series). We here used stasis, as measured

y the model’s mean maxFO, as an indicator of how well a time-varying

C model is able to estimate temporally recurring states. While the mean

axFO across the group does not capture the full distribution of maxFOs

n all subjects, we use it as a summary measure to be able to represent

odel stasis of each model as a single value. Example distributions of

axFO values across groups of subjects and the corresponding mean

axFO are shown in Supplementary Fig. 3. 

To test our estimation hypothesis, we calculated the number of free

arameters per state of each model. If this number is too large in com-

arison to the number of observations 𝑂, the estimation may become

tatistically challenging. The number of free parameters per state 𝐷𝐹 

n a HMM with 𝐾 states, each defined by a full covariance matrix but
4 
ithout modeling the mean, and 𝑁 parcels can be computed as 

𝐹 = 

𝐾 ∗ ( 𝐾 − 1 ) + ( 𝐾 − 1 ) + 

𝐾∗ 𝑁 ∗ ( 𝑁 +1 ) 
2 

𝐾 

. 

We implemented the model using the HMM-MAR toolbox avail-

ble at https://github.com/OHBA- analysis/HMM- MAR in MATLAB

 The Mathworks Inc, 2016 ). Although the HMM is only one example

f a time-varying FC model, the concepts discussed here are likely to

pply also to other models of time-varying FC. 

.4. Structural equation modeling (SEM) 

To provide a synthesis of the hypothesised relationships, we mod-

led all effects in a structural equation model (SEM). SEM characterises

he causal links between variables, which are combined in a network

f structural equations. In these structural equations, the relationships

etween variables are explicitly declared. Each variable can be declared

o have a direct effect on an outcome variable or an indirect effect by

eclaring this variable simultaneously as an outcome and a predictor

ariable. A single variable can also have both a direct and an indirect

ffect on an outcome variable. Here, we combined a series of linear

odels and linear mixed effects models in a piecewise SEM, also called

onfirmatory path analysis ( Shipley, 2000 ). Rather than estimating co-

fficients in a single variance-covariance matrix as in traditional SEM,

iecewise SEM first estimates each part of the model independently be-

ore evaluating them at the level of the full model. This allows increased

exibility on the level of the constituting parts of the SEM in terms of

heir distributions, making it possible e.g. to include random effects in

arts of the model. 

We fitted two separate SEMs: one to the outcomes of HMMs run

n simulated data and one to the outcomes of HMMs run on the real

HCP) data. The structures of the SEMs are illustrated in Fig. 5 . In both

EMs, there are two parts. The first part constitutes the effect of the

bserved variables on FC similarity, and the second part links the ob-

erved variables and FC similarity to mean maxFO as an indicator of

he HMM’s model stasis. In the SEM on simulated data, the first part

odeled the effects on FC similarity of two factors: 1. the number of ob-

ervations 𝑂 (which here depends only on the number of subjects 𝑆) and

. between-subject variability (the value of the parameter 𝛿𝑏𝑠 , described

nder Section 2.1.3 ). The second part modeled the effects on model sta-

is of four factors: 1. the number of observations 𝑂, 2. FC similarity, 3.

ithin-session variability (the value of the parameter 𝛿𝑤𝑠 , described un-

er Section 2.1.3 ), and 4. the inverse of the number of free parameters

er state 𝐷𝐹 (which varies based on the number of parcels 𝑁 from each

arcellation). The number of observations 𝑂 has therefore both a direct

ffect on model stasis and an indirect effect via FC similarity. In the SEM

n real data, the first part modeled the effect on FC similarity of only

ne factor: the number of observations 𝑂 (which here varies based on

he number of subjects 𝑆, the number of time points 𝑇 , and the sampling

ate 𝑅 ). We additionally included a random intercept for the different

arcellations in this model. In the second part, we modeled the effects

n model stasis of four factors: 1. the number of observations 𝑂, 2. the

nverse of the number of free parameters per state 𝐷𝐹 (which varies

ased on the number of parcels 𝑁 from each parcellation), 3. their in-

eraction, and 4. FC similarity. In this SEM, we included both a random

ntercept and random slope of the effect of FC similarity for each par-

ellation. The number of observations 𝑂 has again both a direct and an

ndirect (via FC similarity) effect on model stasis. An overview of all

ariables in both the real data and the simulated data can be found in

able 1 . 

We used the piecewiseSEM-package ( Lefcheck, 2016 ) in R ( R Core

eam, 2020 ) to fit the SEM models as a combination of linear and linear

ixed effects models. 

https://github.com/OHBA-analysis/HMM-MAR
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Fig. 1. Between-subject variability in time-averaged FC may affect stasis in a time-varying FC model. (A) Time-averaged FC ( 𝑵 by 𝑵 ) matrices for each subject 

were obtained by pairwise correlating time courses of all parcels from each subject. Subjects are represented in the time series as different colors. As observed, the 

time-averaged FC matrix from Subject 4 is very different from the time-averaged FC matrices of the other subjects. (B) Given a prespecified number of states 𝑲 , the 

Hidden Markov Model (HMM) estimates both the state-specific FC matrices and when the states become active. In the example for Subject 3, all states transiently 

occur and recur over time. In opposition to this temporal recurrence in Subject 3, the HMM time course for the time points corresponding to Subject 4 stays stable 

at a high probability for state 1. The temporal recurrence of states can be measured by their fractional occupancy (FO), indicating the proportion of the entire time 

series that a given state occupies. In this example, state FOs for Subject 3 indicate that all states take up a similar amount of the time series with certain states being 

relatively more prevalent than others. In Subject 4, however, the FO of state 1 is at 100% while all others are at 0%, since state 1 occupies the entire time series of 

this subject. This is summarised by the term “stasis ”: The model is static when one state’s FO approaches 100% and all others are close to 0%. (C) Between-subject 

variability refers to differences in time-averaged FC between subjects. For instance, we can compute the FC over all timepoints of Subject 1 and compare it to the FC 

of all timepoints from Subject 2. Within-session variability refers to differences in FC between timepoints in a session. For instance, the HMM identifies timepoints, 

at which State 1 is active, and timepoints, at which State 𝒌 is active, in Subject 1 ′ s session. We can then compare the FC of State 1 with the FC of State 𝒌 . 

5 
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Table 1 

Overview over variables manipulated in real (HCP) data and simulations. 

Variables In real (HCP) data In simulations 

Between-subject variability 𝛿𝑏𝑠 – [0.1 … 1] 

Within-session variability 𝛿𝑤𝑠 – [0.1 … 1] 

Number of subjects 𝑆 50, 100, 200 20, 100 

Number of timepoints 𝑇 100, 500, 1200 1200 

Sampling rate 𝑅 1, 1 
2 
, 1 

3 
1 

Parcellation GroupICA50, GroupICA100, PROFUMO50, DK80, Yeo100 GroupICA50 

Number of parcels 𝑁 10, 25, 50, all parcels 10, 50 (all parcels) 

Number of HMM states 𝐾 12, ({4,..60}) 6, ({4,…60}) 

(Number of observations 𝑂) 𝑂 = 𝑆 ∗ 𝑇 ∗ 𝑅 

(Number of free parameters per state 𝐷𝐹 ) 𝐷𝐹 = 
𝐾 ∗( 𝐾 −1 )+( 𝐾 −1 )+ 𝐾∗ 𝑁 ∗( 𝑁 +1 ) 

2 
𝐾 

Outcome measures 

FC similarity Time-averaged FC group correlation between all subjects 

Model stasis Mean maximum fractional occupancy 

3

 

3  

f  

s

3

 

o  

p  

a  

s  

t  

d  

t

3

s

 

j  

t

 

u  

s  

F  

s  

w  

t  

r  

p  

s  

t  

f

 

v  

p  

s  

l  

i  

t  

e  

f  

m  

s

 

s  

T  

t  

b  

t  

j  

p  

p

3

r

 

i  

s  

o  

r

 

e  

(  

H  

(  

D  

o  

m  

l  

F  

t  

p  

p  

t  

f  

p  

s  

o  

b  

c  

m

 

p  

(  

m  

(  

(  

t  

t  

p

3

 

d  
. Results 

We address the factors from the two hypotheses ( 3.1 Data hypothesis,

.2 Estimation hypothesis) one by one, distinguishing between results

rom simulated data and real data (HCP data). Statistics from the full

tructural equation models (SEM) are summarised under Section 3.3 . 

.1. Data hypothesis 

We first investigated which aspects of the data influence the ability

f a time-varying FC model to detect temporal changes in FC (data hy-

othesis). Namely, we tested the effects of between-subject variability

nd of within-session variability on FC similarity and on model stasis in

imulated time series ( Section 3.1.1 ). We then focussed on the effect of

he parcellation used to extract time series from the HCP resting state

ata on FC similarity, on model stasis, and on the relationship between

hem ( Section 3.1.2 ). 

.1.1. Between-subject and within-session variability in simulated time 

eries affect model stasis 

Here, we show on synthetic data that large differences between sub-

ects or small differences over time can cause the time-varying FC model

o become static. 

In order to address the question of variability in the data, we sim-

lated new data with different degrees of between-subject and within-

ession variability (described under Section 2.1.3 ). First, we calculated

C similarity of these new FC matrices, which confirmed that this mea-

ure robustly reflects between-subject variability 𝛿𝑏𝑠 , independently of

ithin-session variability 𝛿𝑤𝑠 (see Fig. 2 A, top panel). In the full struc-

ural equation model (SEM), FC similarity (which we can measure in the

eal data) is near perfectly explained (standardised coefficient of − 0.97,

 < 0.0001) by between-subject variability 𝛿𝑏𝑠 (the ground-truth in the

imulations, which we cannot directly measure in the real data). We can

herefore assume that, in the real data, FC similarity is a reliable proxy

or between-subject variability. 

FC similarity was not significantly affected by the number of obser-

ations 𝑂 (i.e. by varying the number of subjects 𝑆) (coefficient: − 0.02,

 = 0.99). As hypothesised, model stasis depends on both between-

ubject and within-session variability, where high between-subject and

ow within-session variability cause the model to become static. Decreas-

ng differences between subjects and increasing temporal variability in

he data lead to a lower rate of model stasis. This is shown for an ex-

mplary solution in Fig. 2 A, bottom panel. In the full model, the ef-

ects of between-subject and within-session variability are of a similar

agnitude, with standardised coefficients of − 0.53 ( p < 0.0001) for FC

imilarity and − 0.54 ( p < 0.0001) for within-session variability. 

In summary, this indicates that the between-subject vs. within-

ession variability balance is an important contributor to model stasis.

hat is, if subjects in the dataset are very dissimilar, differences across
6 
ime points need to be large in order for a time-varying FC model to

e able to identify dynamically changing states. In real datasets, it may

herefore be important to work towards high similarity between sub-

ects while retaining temporal variation as much as possible during pre-

rocessing. One central factor in achieving this may be the choice of

arcellation, which we tested next . 

.1.2. The parcellation affects FC similarity, model stasis, and the 

elationship between them 

We next investigated the effect of the parcellation on FC similar-

ty, on model stasis, and on the relationship between them. As we will

ee, FC similarity does not simply explain model stasis, but the choice

f parcellation can strongly affect FC similarity, model stasis, and the

elationship between these two variables. 

Time courses were extracted from the HCP data in five differ-

nt parcellations: We used three data-driven functional parcellations

GroupICA50, GroupICA100, and PROFUMO50, Beckmann et al., 2009 ;

arrison et al., 2015 ), one a priori defined functional parcellation

Yeo100, Schaefer et al., 2018 ), and one anatomical parcellation (DK80,

eco et al., 2021 ; Desikan et al., 2006 ). As shown in Fig. 2 B, the choice

f parcellation affects FC similarity, model stasis (as measured by mean

axFO), and the relationship between them. We included the parcel-

ation as random intercept in the first part of the full SEM (predicting

C similarity) and as random intercept and slope in the second part of

he full SEM (predicting model stasis). This increased the variance ex-

lained by the full SEM as compared to a model excluding the effect of

arcellation by 32% ( R 

2 
reduced = 0.40, R 

2 
full = 0.72). In the full SEM,

he remaining effect of FC similarity on model stasis, i.e. the fixed ef-

ect not depending on parcellation, is not significant (coefficient − 0.06,

 = 0.80). This indicates that the effect of FC similarity on model sta-

is is not as straightforward as we hypothesised, but strongly depends

n the parcellation. As opposed to our hypothesis that higher similarity

etween subjects in time-averaged FC decreases model stasis, the par-

ellations that, on average, created the most similar time-averaged FC

atrices between subjects, increased model stasis the most. 

Besides the parcellation, FC similarity is also significantly ex-

lained by the number of observations 𝑂, yielding a coefficient of 0.23

 p < 0.0001). Across all runs, the parcellations ranked from least to most

odel stasis are: 1. GroupICA50 (M: 0.36 ± 0.12 S.D.), 2. PROFUMO50

M: 0.37 ± 0.12 S.D.), 3. GroupICA100 (M: 0.41 ± 0.20 S.D.), 4. Yeo100

M: 0.46 ± 0.17 S.D.), 5. DK80 (M: 0.55 ± 0.16 S.D.). On average, the

hree data-driven functional parcellations used here outperformed both

he example of an a priori functional and the example of an anatomical

arcellation, in the model’s ability to detect dynamic changes in FC. 

.2. Estimation hypothesis 

Estimating a large number of free parameters per state from limited

ata poses a statistical challenge in the estimation of any model. We
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Fig. 2. Evidence for the data hypothesis. (A) In the simulated data, between-subject variability but not within-session variability affects FC similarity between 

subjects (top panel). The bottom panel shows how between-subject and within-session variability affect model stasis (as measured by mean maxFO) in a time-varying 

FC model. In the graph area where between-subject variability is high and within-session variability is low, the model is static (yellow area). (B) In the real data, 

FC similarity and model stasis depend on the parcellation. We here represent each parcellation with a different color. In the top panel, we illustrate the linear 

regression line and corresponding 95% confidence interval between FC similarity and model stasis (represented by the mean maxFO statistic) within each of the 

parcellations. The graph shows how both the position and the slopes for these regression lines are different between parcellations. In the bottom panel, we show the 

distribution of mean maxFO values within each of the parcellations. The thick black line within each violin plot indicates the mean value of mean maxFO in the 

respective parcellation and the grey lines indicate their interquartile range. Dots within each parcellation correspond to runs with different dimensionality parameters 

as described under Section 2.1 , i.e. different numbers of subjects 𝑆, time points 𝑇 , sampling rates 𝑅 , and (subsets of) parcels 𝑁 . Note that the points in the bottom 

panel plot are jittered along the x-axis to better visualise all models (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.). 
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Fig. 3. Evidence for the estimation hypothesis. (A) In the simulated data, we first increased the number of free parameters per state 𝐷𝐹 by manipulating the number 

of parcels 𝑁 included from the parcellation (middle panel). This increased the yellow area of the graph, i.e. the area where the time-varying FC model is static. 

In addition to increasing the number of free parameters per state 𝐷𝐹 , we then also decreased the number of observations 𝑂 by simulating fewer subjects 𝑆 (right 

panel). This further increased the area where the time-varying FC model is static, so that it is now only possible for the model to detect dynamics (blue area) when 

between-subject variability is very low and within-session variability is very high. (B) In the real data, both decreasing the number of free parameters per state 𝐷𝐹 

(left panel, where we show the inverse of the number of free parameters per state) and increasing the number of observations 𝑂 (middle panel) reduce model stasis, 

as indicated by lower values in mean maxFO. Finally, the ratio of observations to free parameters per state (right panel) is a strong negative indicator of model 

stasis. This ratio is small in all models that are mostly static (high values of mean maxFO) and high in all models that are mostly dynamic (low values of mean 

maxFO). Given the differences between parcellations established in Section 3.1.2 , we distinguish between parcellations in these plots. This distinction is here only 

for illustrative purposes and not included as random effects in the full SEM. The shaded area around each regression line represents the 95% confidence interval. 

Note that the points in the left panel plot are jittered along the x-axis to better visualise each model (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.). 
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ext quantified the influence of the number of free parameters per state

nd the number of observations on model stasis. We show that a high

umber of free parameters per state and a low number of observations

an cause the model to become static. Additionally, we here show the

ffect of varying the number of states on model stasis. 

.2.1. Varying the number of free parameters per state and the number of 

bservations affect model stasis 

In the simulated data, we found that both increasing the number of

ree parameters per state 𝐷𝐹 by including more parcels of the parcel-

ation (i.e. increasing 𝑁) and decreasing the number of observations 𝑂

y simulating fewer subjects increase model stasis. This is illustrated in

ig. 3 A where, compared to the models described above under Section

.1.1 (plotted in the left panel), we increased the number of free pa-

ameters per state 𝐷𝐹 (middle panel), and additionally decreased the

umber of observations 𝑂 (right panel). The area where the model be-

omes static (i.e. where mean maxFO is high, here shown in yellow)

ncreases for both steps. In the full model, the standardised coefficients
8 
or the inverse of the number of free parameters per state 𝐷𝐹 is − 0.16

 p = 0.0001) and for the number of observations 𝑂 is − 0.21 ( p < 0.0001).

In the real data, the number of free parameters per state 𝐷𝐹 was

anipulated by changing the number of parcels 𝑁 as described under

ection 2.1.2 . As illustrated in Fig. 3 B, both decreasing the number of

ree parameters per state 𝐷𝐹 (left panel) and increasing the number of

bservations 𝑂 (middle panel) decreased model stasis in the HCP data.

 low ratio of number of observations 𝑂 to free parameters per state 𝐷𝐹 

right panel) is a strong indicator of model stasis. Based on the finding

hat model stasis strongly depends on the parcellation, we here also plot

hese effects for each parcellation separately. Please note that we plot

he inverse of the number of free parameters per state in the left panel,

o that the values in the right panel are the product of the two previous

lots. In the full SEM, the coefficient of the inverse of the number of

ree parameters per state 𝐷𝐹 is − 0.50 ( p < 0.0001), the coefficient of

he number of observations 𝑂 is − 0.30 ( p < 0.0001) and the coefficient

f their interaction is − 0.06 ( p = 0.02). As shown in the Supplementary

igs. 1 and 2, reducing the number of free parameters per state 𝐷𝐹 
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Fig. 4. The number of states 𝐾 in the model affects model stasis. (A) The number of HMM states 𝐾 ∈ ℝ { 4 , ... 60 } (increasing in steps of 4) are shown on the x-axis. 

The individual model stasis outcomes of each individual model (as measured by mean maxFO) are shown on the y-axis. For each variable set 𝑉 𝑆, we also show the 

regression lines, as defined by the regression 𝑀𝑒𝑎𝑛 𝑚𝑎𝑥𝐹 𝑂 𝑉 𝑆 = 𝛽𝑉 𝑆 0 + 𝛽𝑉 𝑆 1 𝐾 + 𝜀 . Each color in the plots represents a different variable set 𝑉 𝑆. The shaded area 

around each regression line represents the 95% confidence interval. In the GroupICA50 parcellation (left panel), increasing the number of states 𝐾 decreases model 

stasis in almost all variable sets 𝑉 𝑆, while in the GroupICA100 parcellation (right panel), increasing the number of states 𝐾 decreases model stasis only in some 

variable sets 𝑉 𝑆, but does not affect it in others. (B) The histograms of slopes ( 𝛽1 ) of the regression lines in (A) shows a peak between − 0.01 and − 0.005 for the 

GroupICA50 parcellation (left panel) and shows several peaks, one below − 0.01, one between − 0.01 and − 0.005, and a large portion around 0 for the GroupICA100 

parcellation (right panel). 
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sing the PCA- and HMM-PCA approaches similarly decreased model

tasis. This effect was parcellation-dependent. 

In a dataset with few observations, reducing the number of free pa-

ameters per state may therefore be vital for a time-varying FC model

o detect dynamic changes in FC. If more data is available, it is possible

o increase the number of free parameters per state and thus add detail

o the model, e.g. by using a more fine-grained parcellation. 

.2.2. Varying the number of states affects model stasis 

Focusing on the real data and the data-driven parcellations, we addi-

ionally tested how changing the number of states 𝐾 in the model affects

odel stasis. Fig. 4 . shows how, for a given variable set 𝑉 𝑆, increasing

he number of states 𝐾 either decreases model stasis or does not af-

ect it. In Fig. 4 A, the individual model stasis outcomes, as measured by

ean maxFO, and regression slopes for 𝐾 ∈ ℝ { 4 , ... 60 } are shown for all

ariable sets 𝑉 𝑆 that were used to vary the number of observations 𝑂

ig. 4 .B shows the histogram of the individual slopes of these regression

ines, i.e., 𝛽1 for all 𝑉 𝑆. In the GroupICA50 parcellation (left panel), in-

reasing the number of states 𝐾 decreases model stasis in almost all vari-
9 
ble sets. The histogram of slopes 𝛽1 in this parcellation peaks between

 0.005 and − 0.01. In the GroupICA100 parcellation (right panel), in-

reasing the number of states 𝐾 decreases model stasis in some variable

ets and does not affect it in other variable sets. Again, the histogram of

lopes 𝛽1 has a large portion below 0. In summary, having more states

as a tendency to reduce model stasis, as the estimation becomes more

ractionated. 

.3. Synthesis of results 

In order to compare the directed effect of all variables on model

tasis, we finally modeled the influence of all factors described under

ections 3.1 and 3.2 using SEMs. We estimated separate models with

 similar structure for the simulated and the real data, as described in

ection 2.4 . The structure and results of the SEM are summarised in

ig. 5 . The first part of each model uses FC similarity as the outcome

easure, while the second part uses model stasis as the outcome. This

tructure allows differentiating for instance between a direct effect of
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Fig. 5. Full structural equation models (SEM). 

(A) On simulated data, FC similarity (which 

is almost perfectly explained by between- 

subject variability) and within-session variabil- 

ity strongly affect model stasis, providing com- 

pelling evidence for the data hypothesis. Coeffi- 

cients corresponding to the estimation hypothe- 

sis are smaller, but still both the number of free 

parameters per state and the number of obser- 

vations significantly affect model stasis. (B) On 

real data, the effect of the data hypothesis is less 

strong, as indicated by the smaller coefficients 

between FC similarity and model stasis. As ex- 

plained in Section 3.1.2 , variance in model sta- 

sis from the data hypothesis can be explained 

better by distinguishing between different par- 

cellations. The number of free parameters per 

state and the number of observations, as well 

as their interaction strongly affect model sta- 

sis. Here, grey boxes indicate variables that are 

not explicitly modeled in the SEM, but which 

are constituting parts of another variable. White 

boxes represent predictor variables. Green boxes 

are synthetically manipulated variables in the 

simulated data. Blue boxes specify random ef- 

fects that affect the underlying link. The black 

box indicates the main outcome variable. Arrow 

thickness is scaled to the corresponding coeffi- 

cient strength. Significance levels are indicated 

by asterisks: ∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05 

(For interpretation of the references to color in 

this figure legend, the reader is referred to the 

web version of this article.). 
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he number of observations on model stasis and an indirect effect of the

umber of observations on model stasis via FC similarity. 

The full models explain 95% and 86% variance in FC similarity, and

8% and 72% in model stasis, respectively, for simulated and real data.

omparing the two hypotheses, in the simulated data we found more ev-

dence for the data hypothesis than for the estimation hypothesis. In the

eal data, however, the evidence supporting the estimation hypothesis

ominates the data hypothesis, particularly the number of free param-

ters per state. An apparent difference between the simulated data and

he real data is the effect of FC similarity (standardised coefficients of

 0.53 ∗ ∗ ∗ in simulated data and of − 0.06 N.S. in real data). It is also

mportant to note that we use only one parcellation in the simulations,

ut five different parcellations in the real data. We show above that,

n the real data, 32% of variance in model stasis is explained by the

andom effects of parcellations. This indicates that, rather than using

verall FC similarity as a single indicator of model stasis, it is important

o distinguish between different parcellations. Another important dif-

erence between simulated and real data is that the amount of between-

ubject and within-session variability can only be directly manipulated

n the synthetic data. However, between-subject and within-session

ariability often differ to a large extent between real datasets and are
10 
herefore an important consideration when applying time-varying FC

odels. 

Overall, we found evidence for all hypothesised effects. At the level

f the data hypothesis, we showed in the simulations that low between-

ubject and high within-session variability reduce model stasis. Addi-

ionally, on real data, we showed that the choice of parcellation strongly

ffects time-averaged FC, model stasis, and the relationship between

hem. At the level of the estimation hypothesis, we presented evidence

hat a larger number of observations and fewer free parameters per state

educe model stasis, both on simulated and on real data. 

. Discussion 

The ability of a time-varying FC model to identify temporally chang-

ng states on fMRI data depends on numerous factors, and can be at-

ributed both to aspects of the data and to aspects of the model. Our

ndings indicate that model stasis is affected by the actual variability

n the data, the parcellation used to extract time courses, and the ratio

f the number of available observations to the number of free param-

ters per state in the model. To summarise when these models can be
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atisfactorily applied, we have compiled a short list of practical recom-

endations in Conclusions. 

We first showed that large differences between subjects and/or small

ithin-session FC modulations can cause a time-varying FC model to

ecome static. This can be explained by the data-driven, unsupervised

ature of the model, which aims at describing the most salient features

f a dataset without imposing specific constraints about the recurrence

f states across subjects. We also showed that FC similarity, model sta-

is, and the relationship between them are affected by the parcellation.

n the example parcellations we used here, the three data-driven parcel-

ations on average resulted in lower model stasis (i.e. they were found

o be better models from the specific point of view considered in this pa-

er) than the examples of a priori functional or anatomical parcellations.

lthough these conclusions might not necessarily generalise to all func-

ional or anatomical parcellations, the effect was clear in this case. Un-

erstanding the reason behind these differences between parcellations is

ot straightforward, as there are several factors involved —such as dif-

erences in spatial distribution, cluster size, weighted vs. binary parcels,

ime course extraction, etc. — that may contribute to these differences,

nd have not been explicitly tested here. For instance, assuming the

resence of “true ” functional clusters in the data, data-driven functional

arcellations are more likely to detect these clusters as parcels, resulting

n a more efficient estimation of the temporal variance of these clusters.

n theory, anatomical and a priori functional parcellations may, for ex-

mple, split “true ” functional clusters into several parcels, which could

ffect the balance between-subject and within-session variability in an

rtefactual manner. This might also explain our finding that, although

he a priori functional and the anatomical parcellation create more sim-

lar time-averaged FC matrices between subjects, model stasis is higher

n these parcellations on average. 

Second, we showed that a high number of free parameters per state

n the model can cause the model to become static, especially if too

ew observations are available to estimate these parameters. Here we

howed that the model may become static when too many free parame-

ers per state need to be estimated. This is because, if the data available

or the estimation of time-varying FC is insufficient, avoiding all state

witches might be the most parsimonious solution in terms of the model

nference. This implies that the estimation of time-varying FC is a trade-

ff between the level of detail in the spatial domain and the accuracy of

he temporal estimation. 

We also showed that increasing the number of states in a model can

ecrease model stasis outcomes in some models. This result should be

nterpreted with caution, since, for example, a higher number of states

lso increases the chances of “random ” switches at any timepoint, sim-

ly because more states are available; or could make the estimation of

he state parameters less precise (because less data is available per state)

herefore making it harder for a single state to successfully explain an

ntire subject’s data. While high values in our model stasis outcome

easure mean that the model failed in finding dynamics, low values

o not necessarily imply that the model accurately detected meaningful

ynamics, since this could just be due to having a noisier estimation. 

Importantly, the factors we considered here are not exhaustive and

herefore other variables related to overall data quality and model char-

cteristics might also be relevant. In particular, a large dissonance be-

ween the model specification and the realities of the data could also be

 reason why we could not detect time-varying FC. For instance, if tem-

oral modulations in first-order statistics (the average pattern of activity

ithin a state —i.e. the mean of the Gaussian distribution) were tem-

orally independent from modulations in time-varying FC, this would

iolate the assumptions of the HMM and could potentially affect model

tasis; in this case, modeling the mean as a separate temporal process

ould likely improve the estimation of time-varying FC ( Pervaiz et al.,

022 ). Furthermore, we have shown in the supplementary results that

ur measure of model stasis must be regarded as a summary measure

nd that the distribution of FC can vary above and beyond that measure

ithin the dataset. For example, model stasis does not necessarily af-
11 
ect all subjects or sessions in a dataset equally, so that the model might

etect temporal changes in FC in certain subjects but not in others. In

ractice, it would be advisable to further inspect the actual state time

ourses of a model of interest across subjects and sessions. 

It also remains to be seen how exactly model stasis may occur in

ther kinds of data or models. For instance, we have here only consid-

red single-session fMRI data, which allowed investigating the effects

f within-session and between-subject variability. Using multi-session

MRI recordings could address the interesting question of how within-

ubject (between-session) variability affects model stasis. Future work

hould also investigate these questions in EEG and MEG recordings,

here FC is typically defined as a function of frequency. Another rel-

vant next step would be considering different kinds of models (such as

 mixture of Gaussian distributions, Bishop, 2006 ), although the logic

f our conclusions is likely to remain valid —insofar as these models are

ased on covariance to assess FC (other definitions of FC exist that could

ring in other factors to consider). One relevant difference between the

MM and other models is that the HMM assumes a Markovian transition

robability matrix, which in practice regularises the state transitions and

o some extent prevents noisy switching. Other models might have lower

tasis as a consequence of having a higher estimation noise in that sense,

ut we do not expect this effect to be large. Other state-based models

re also possible, like the Hidden semi-Markov model (HSMM) which is

etter able to characterise the duration of the state visits ( Shappell et al.,

019 ). While these types of models may reduce potential spurious state

ransitions, they do not substantially differ in terms of their estimation of

he measure we consider here, i.e. the proportion of the timecourse that

 given state occupies. Regarding the simulation paradigm, our simula-

ion model only generates data from Gaussian distributions, as assumed

y the HMM; other biophysically more realistic simulations could also

e informative ( Erhardt et al., 2012 ). It should also be noted that we

ere only focussed on model stasis, because it is among the most fun-

amental measures of performance of a time-varying FC model. How-

ver, other evaluative measures, such as the ability to predict individual

raits and behavior may be of interest when evaluating time-varying FC

odel performance, as shown in Pervaiz et al. (2020), (2022); Vidaurre,

2021) and many other works. It is likely that some of the variables we

ere showed to reduce model stasis, such as higher similarity between

ubjects and fewer free parameters per state (as obtained, e.g., through

 coarser parcellation), would indeed be disadvantageous when consid-

ring other evaluative measures or when conducting a time-averaged

C study. Finally, we were agnostic to the biological causes underlying

etween-subject and within-session differences, and chose to use only

esting-state data. The potentially idiosyncratic way in which subjects

erform a task, for instance, could be an important causal mechanism

or these factors in task data, which might be explored in future work. 

. Conclusion 

As we outlined in this article, the ability to estimate time-varying

C in fMRI data depends on several factors, which should be consid-

red when planning and conducting a time-varying FC study. To avoid

 time-varying FC model becoming static, we provide the following rec-

mmendations: 

• Special care should be taken in reducing artefactual between-subject

differences, e.g. by optimising registration and removing subject-

specific artefacts, and in preserving meaningful temporal variance

(i.e., non-artefactual) by refraining from preprocessing steps that

average over time points like motion scrubbing or other more “ag-

gressive ” clean-up strategies. Less aggressive temporal preprocess-

ing strategies, such as the ones recommended as part of the HCP

resting state preprocessing guidelines ( Smith et al., 2013b ), that re-

move artefactual (e.g., motion-related or other physiological) tem-

poral changes while preserving the signal’s temporal variance are

likely beneficial to avoid modeling dynamic changes due to motion
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rather than time-varying FC. Testing similarity in time-averaged FC

between subjects may in some cases be useful as an indicator of prob-

lematic between-subject variability, but it can also be misleading in

certain parcellations. 
• The choice of parcellation used to extract time courses should

be considered when planning a time-varying FC study. The data-

driven functional parcellations we used here, such as Group ICA ap-

proaches, perform better than the examples we used for a priori func-

tional or anatomical parcellations in detecting temporal changes in

FC. 
• The number of free parameters per state should ideally be not too

large in relation to the number of observations, e.g. by using a parcel-

lation with fewer parcels or components if necessary. Other options

to reduce the number of free parameters per state include dimen-

sionality reduction, e.g. using Principal Component Analysis (PCA),

which however may affect the model in other ways ( Vidaurre, 2021 ).

Based on the HCP-dataset, we estimate as a rule of thumb that the ra-

tio of observations to free parameters per state should not be inferior

to 200. 

In summary, meeting these requirements may help improving the

obustness and reliability of time-varying FC methods and eventually

ncrease replicability ( Choe et al., 2017 ). 
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