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Discovery of key whole-brain transitions and
dynamics during human wakefulness and non-REM
sleep
A.B.A. Stevner 1,2,3, D. Vidaurre 4, J. Cabral 1,5, K. Rapuano6, S.F.V. Nielsen7, E. Tagliazucchi8,9,10,

H. Laufs 9,10, P. Vuust3, G. Deco11,12,13,14, M.W. Woolrich4, E. Van Someren8,15 & M.L. Kringelbach1,2,3,5

The modern understanding of sleep is based on the classification of sleep into stages defined

by their electroencephalography (EEG) signatures, but the underlying brain dynamics remain

unclear. Here we aimed to move significantly beyond the current state-of-the-art description

of sleep, and in particular to characterise the spatiotemporal complexity of whole-brain

networks and state transitions during sleep. In order to obtain the most unbiased estimate of

how whole-brain network states evolve through the human sleep cycle, we used a Markovian

data-driven analysis of continuous neuroimaging data from 57 healthy participants falling

asleep during simultaneous functional magnetic resonance imaging (fMRI) and EEG. This

Hidden Markov Model (HMM) facilitated discovery of the dynamic choreography between

different whole-brain networks across the wake-non-REM sleep cycle. Notably, our results

reveal key trajectories to switch within and between EEG-based sleep stages, while high-

lighting the heterogeneities of stage N1 sleep and wakefulness before and after sleep.
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The primary behavioural observation of sleep is a lack of
interaction with, and responsiveness to, the external world,
i.e., a decreased level of arousal1. The lack of commu-

nication with sleeping subjects implies that we rely on physiolo-
gical recordings to scientifically describe and categorise sleep. The
advent of modern neuroimaging techniques and network analyses
has been explored to map and characterise spontaneous large-
scale brain activity during wakefulness with high-spatiotemporal
precision. Yet, our understanding of brain activity during sleep
remains dictated by observations in a few channels of electro-
encephalographic (EEG) recordings.

Today, the dominant description of normal human sleep is
represented by polysomnography (PSG), which relies mainly on
EEG but also electromyography (EMG), electrooculography
(EOG) and electrocardiography (ECG), as well as measures of
respiration2. On-going brain activity is recorded from a low
number of EEG electrodes and typically categorised into wake-
fulness, rapid-eye movement (REM) sleep and—according to the
most recent set of guidelines—three stages of non-REM (NREM)
sleep (N1–N3)2. Staging is based on the visual detection of
spectral EEG qualities (e.g., alpha- and delta-frequency power)
and sleep graphoelements (sleep spindles and K-complexes),
many of which have been known since the 1930s3.

PSG has been essential in the development of modern sleep
research, and remains undoubtedly the quickest and easiest way
to establish arousal levels in individuals. Indeed, PSG-defined
sleep stages were originally devised from EEG as surrogate
markers of arousal thresholds, yet over time many have come to
see them as a more or less exhaustive set of intrinsic canonical
states that cover the full repertoire of brain activity during sleep.
However, the use of (1) fixed scoring windows of 30 s and (2)
only a few EEG electrodes means that PSG involves considerable
averaging of brain activity in both time and space4—arguably
leading to an incomplete representation of brain activity.

Furthermore, PSG corresponds relatively poorly to the sub-
jective perception of sleep. Participants may experience being
awake during periods with EEG signals otherwise fulfilling PSG
criteria of NREM sleep5,6. The relative lack of correspondence
between PSG and subjective experience becomes important in
populations with sleep complaints, where PSG is not indicated in
the clinical evaluation of insomnia, the most common of all sleep
disorders7,8.

Recent developments in whole-brain neuroimaging and ana-
lyses support the examination of more sophisticated features of
brain networks through functional connectivity (FC) and struc-
tural connectivity analyses, the detection of task-related and
resting-state functional networks9,10, and the development of
mechanistic computational models11,12. Yet, studies that have
applied these promising tools to investigate large-scale brain
activity of sleep have commonly relied upon PSG in a strict sense,
thus regressing PSG stages onto functional brain data. This
approach has yielded whole-brain correlates of PSG stages and
sleep graphoelements, in terms of activation maps13,14, FC pat-
terns15–19, graph-theoretical measures20,21 and EEG-
microstates22. However, this top-down constraint by the low-
resolution PSG scoring comes at the cost of exploring only a small
fraction of the information available in the high-resolution neu-
roimaging data.

Rather than constraining analyses by traditional definitions of
sleep stages, we propose to use novel data-driven analysis
methods to elucidate whole-brain networks that can complement
and potentially expand the classical understanding of sleep. This
requires a sufficiently sensitive decomposition of whole-brain
network activity in time. Building on a recent study showing that
individual PSG stages can be extracted from functional magnetic
resonance imaging (fMRI) recordings in a data-driven way23, we

here leveraged the full spatiotemporal resolution of blood-
oxygen-level dependent (BOLD) signals to find large-scale net-
works in sleep, applying a Hidden Markov Model (HMM)24 on
fMRI recordings of 57 healthy participants, who—according to
simultaneously acquired EEG—cycled through PSG-defined
stages of wakefulness and NREM sleep. Crucially, the HMM
decomposition was not constrained by PSG stages, but rather
allowed us to discover directly from the data, at a time-scale of
seconds, the relevant brain network transitions explored by the
human brain during the wake-NREM sleep cycle. Compared to
other methods for extracting dynamic FC25, the HMM frame-
work explicitly models the transition probabilities between its
inferred states. We show that this information can be used to
discover new whole-brain aspects of sleep, complementing the
traditional segmentation of brain activity offered by PSG.

Results
Whole-brain network states identified by HMM. In order to
extract the large-scale networks inherent to whole-brain record-
ings of the wakefulness-NREM sleep cycle, we estimated an
HMM on fMRI data from 57 healthy participants (age 23.5 ±
3.3 years, 39 females). Participants were instructed to lie still in
the scanner with their eyes closed. Each recording had a duration
of 52 min, and was accompanied by acquisitions of EEG, EMG,
ECG and EOG, based on which PSG staging was performed by an
expert, according to the AASM criteria2 (see Supplementary
Table 1). Following preprocessing, the voxel-wise BOLD time-
courses were temporally averaged over 90 region-of-interest
(ROI) timecourses, using the cortical and subcortical regions of
the automated anatomical labelling (AAL) atlas26. ROI time-
courses were demeaned and variance-normalised for each parti-
cipant, and subsequently concatenated across participants along
the temporal dimension.

The estimated HMM contained a set of whole-brain network
states, each defined as a multivariate Gaussian distribution,
including: (i) a mean activation distribution, representing the
mean level of activity in each ROI when a state is active; and (ii)
an FC matrix, summarising the pairwise temporal co-variations
occurring between the ROIs during that state. The HMM also
contained a transition probability matrix with the probabilities of
transitioning between each pair of states. Each state also had an
associated state timecourse describing the points in time (defined
by the fMRI sampling, TR= 2.08 s) where the state was
active24,27. The HMM was endowed with 19 states, and, crucially,
was given no information about the PSG staging for its
estimation. An illustration of the analysis workflow is given in
Fig. 1 (see Methods for details).

To allow for unbiased within-participant testing, when
comparing the HMM output to the PSG scoring we considered
the subset of the HMM output that corresponded to the data
from the 18 participants that reached all four PSG stages
(wakefulness, N1, N2 and N3, see Supplementary Table 1).

Whole-brain network states underlie PSG sleep stages. The 19
whole-brain network states, inferred solely from the fMRI by the
HMM, contained most of the temporal information given by
the PSG stages that were scored from the EEG independently of
the fMRI. The HMM state timecourses and the PSG scoring are
plotted together in Fig. 2a for the 18 participants that included all
four PSG stages, illustrating how the activity of the different
HMM states co-varied with specific PSG stages. We have high-
lighted the HMM state timecourses of two participants to ease
visual inspection, however, the temporal relationships between
HMM states and PSG stages were consistent across the group. It
can be observed, for example, that HMM state 8 occurred most
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often during wakefulness, HMM state 3 occurred during N2 sleep
and HMM state 16 occurred during N3 sleep.

We quantified the temporal association between the PSG stages
and the HMM state timecourses using multivariate analysis of
variance (MANOVA). This allowed us to ask if the 19 HMM

states were significantly grouped in time by the four PSG stages
(for the 18 participants that included all four PSG stages).
Through non-parametric testing (see Methods) we confirmed this
temporal relationship (p < 0.05, permutation testing, see Supple-
mentary Figure 1b). The MANOVA placed the PSG stages in the
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space of the HMM state timecourses, resulting in the clustering
dendrogram of Fig. 2b, with wakefulness and N1 sleep sig-
nificantly separated from N2 sleep, which in turn was further
separated from N3 sleep.

Whole-brain network states track different PSG stages. Next,
we examined the contribution of the individual whole-brain
network states to the multivariate relationship, established above,
between the HMM and the PSG scoring. We quantified the
temporal sensitivity and specificity of the HMM states for each of
the PSG stages. For each of the 18 participants that included all
four PSG stages, we defined the sensitivity of each HMM state as
the proportion of total time spent in a PSG stage, in which this

HMM state was active. Specificity was defined as the likelihood of
finding each HMM state active during a given PSG stage. We
compared the sensitivity and specificity for each PSG stage within
each of the HMM states, using paired t tests and a randomisation
scheme of the PSG scoring (see Methods). The results are pre-
sented in Fig. 3a, b. HMM state 8 occupied a large proportion of
PSG-scored wakefulness, i.e., it exhibited high sensitivity for
wakefulness (see Fig. 3a). Since this whole-brain network state
was significantly more sensitive to wakefulness than to any of the
other PSG stages, i.e., it rarely occurred outside of wakefulness, its
specificity for wakefulness was also high (see Fig. 3b). This
combined sensitivity and specificity for wakefulness was also
found for HMM states 10 and 18.
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Select whole-brain network states displayed similarly exclusive
sensitivity and specificity profiles for N2 (HMM states 3 and 6)
and N3 sleep (HMM states 16). Notably, this was not the case for
N1 sleep. The whole-brain network states occupying most of
N1 sleep, such as HMM states 1, 4 and 15, were not found specific
for this PSG stage. Instead these states would also occur with
considerable likelihood outside of N1 sleep, although rarely
during N3 sleep.

In summary, wakefulness was found to correspond to a
collection of whole-brain networks states, while N2 and N3 were
characterised by less state-diversity, and dominated by two and
one whole-brain states, respectively. In contrast, no single whole-
brain states were found specific for N1 sleep, which instead was
modelled by a collection of HMM states with mixed PSG profiles.

Changes in whole-brain network dynamics between PSG
stages. Having the whole-brain network states temporally defined
allowed us to investigate the large-scale brain dynamics of the
traditionally defined PSG stages in the 18 participants that
reached all PSG stages during their recordings.

In Fig. 3c, the HMM states are represented by a bar plot
showing their mean lifetimes, i.e., the average duration of the
state visits. The bars have been overlaid with colours depicting the
PSG specificity averaged across the corresponding HMM states.
HMM states with high specificity for N2 and N3 (HMM states 3,
6 and 16) generally expressed longer mean lifetimes than those
related to wakefulness and N1. The mean lifetimes of the HMM
states ranged from seconds to tens of seconds.

Figure 3d, e shows two summary measures for the dynamics of
the whole-brain network states during the individual PSG stages:
(i) the amount of switching defined as the average number of
transitions between HMM states during a given PSG stage
divided by the total time a participant spent in this PSG stage and
(ii) the range of HMM states defined as the number of unique
states visited during the given PSG stage divided by the total time
a participant spent in this PSG stage. Both measures were
estimated for each PSG stage, within each of the 18 participants
that included all four PSG stages, and normalised by time.
Wakefulness and N1 sleep expressed significantly higher values
than N2 and N3. Interestingly, the amount of switching was
particularly low for N3 sleep.

In summary, unique state visits per time were few and of long
durations during N2 and N3 relative to wakefulness and N1 sleep.
Consequently, the switching between and range of HMM states
were significantly higher in wakefulness and N1.

Sleep stages as modules of whole-brain network transitions. So
far, we have used the traditional PSG stages to organise and
evaluate the temporally resolved whole-brain network states. Yet,
the data-driven nature of the HMM also allowed us to perform
reverse inference, and consider the temporal progression of
HMM states, taking this—rather than the PSG staging—as a
starting point. This way, we were able to ask if the high-resolu-
tion, fMRI-based, HMM suggests new aspects of the wake-NREM
sleep cycle, hidden from the EEG-based PSG. For this purpose,
we examined the transition probabilities of the HMM states,
extracting modules of HMM states that transitioned more often
between each other than to other states—as recently identified for
the waking resting state in ref. 24.

The whole-brain network states organised into a transition map
as presented in Fig. 4, where the 19 × 19 transition probability
matrix (Fig. 4a) was submitted to a modularity analysis (see
Methods). By considering the most frequent transitions between
the HMM states that were consistent across participants (see
Fig. 4b), the thresholded transition matrix organised into four

partitions or transition modules (see Fig. 4c, and Methods),
suggestive of a lower time scale (see ref. 24 and Supplementary
Discussion 1). When these most consistent transitions are
presented as a transition map, and each whole-brain network
state is represented by a circle plot indicating its specificity for
each of the four PSG stages, it can be seen that the HMM states
exhibit a strong temporal structure (Fig. 4d). In line with the
MANOVA results above, this transition map describes an overall
progression from states with high specificity for PSG-defined
wakefulness (red module) through states with more activity
during, albeit not significant specificity for, N1. From here
transitions lead towards states specific to N2 sleep and finally to a
single whole-brain network state modelling N3 sleep. The N2- and
N3-related HMM states thus grouped together in the blue module.

Interestingly a collection of HMM states with mixed PSG-
specificity formed a transition module of their own. This white
module was intercalated between the red module of wakefulness
in the top and the blue module of N2/N3 sleep. Even if the
included HMM states were not specific for PSG-defined N1 sleep,
the white module appears in the location of the transition map,
where one would expect to find N1 or rather sleep onset.

The transition map suggested two sub-divisions of HMM states
with high specificity for wakefulness. The red module in close
proximity to the white module of N1-related states, and the black
module sending transitions to the blue module of consolidated
NREM sleep. This apparent separation of wakefulness and the
asymmetric relationship to the sleep-related HMM states led us to
the hypothesis that one of these could represent wakefulness after
sleep onset (WASO). Given the poor correspondence between the
HMM states and the general uncertainty associated with the
staging of PSG-defined N1 sleep (see Discussion), we chose to
define WASO as PSG-staged wakefulness, which followed after
visits to N2 sleep28. By computing the sensitivity and specificity of
the whole-brain network states in the subset of the data
corresponding to the 31 participants who woke up after having
reached N2 sleep (see Supplementary Table 2), we were able to
confirm this hypothesis. As shown in Supplementary Figure 2,
HMM states 5, 17 and 18 were all more sensitive and specific to
WASO compared to wakefulness prior to N2 sleep. Whereas
periods of wakefulness prior to and after sleep are scored equally
in PSG, the whole-brain network states separated these into two
different transition modules.

Although this transition map suggests multiple pathways from
wakefulness (red module) to the white module of NREM sleep, it
is interesting to note that HMM state 8 has direct access to HMM
state 15, which in turn guards the transition to the blue module of
N2/N3 sleep. Similarly, waking-up relates to a transition from
HMM state 4 to HMM state 10, which in turn connects with
HMM state 18 of the black WASO module. Further it is worth
noticing the strong triangular transition structure within the blue
module between the N2-specific whole-brain network states
(HMM states 3 and 6) and the N3-modelling HMM state 16.

In summary, while agreeing with the overall sequence of PSG
stages, the organisation of the transition modules also points to
aspects of sleep-related brain activity that the PSG scoring cannot
access, including the data-driven suggestions of N1 sleep, WASO-
related whole-brain network states, and multiple transition
pathways between wakefulness and sleep.

Spatial activation and FC maps of whole-brain network states.
We present the spatial maps of the whole-brain network states in
the order suggested by the transition modules of Fig. 4d. Figure 5
and Fig. 6 show the mean activation maps, while the corre-
sponding FC information is presented in Supplementary Fig-
ures 3–5 and 17–18 (see also Supplementary Note 5).
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In Fig. 5a, which shows the red module of wakefulness, the
mean activation maps of HMM states 2 and 8 resemble resting-
state network (RSN) configurations9,10. The main increases of
HMM state 8 were thus seen in key areas of the default-mode
network (DMN)29, including the bilateral posterior cingulate
cortex, bilateral angular cortex, bilateral middle temporal cortex,
and bilateral medial prefrontal cortex. These DMN-like increases
in HMM state 8 were accompanied by decreases in the so-called
anti-correlated network (ACN), involving the supramarginal
gyrus and the dorsolateral part of the frontal cortex30. In contrast,
HMM state 2 was characterised by increases in many of these
ACN-areas, including the bilateral supramarginal gyrus, middle

cingulate cortex and dorsolateral part of the frontal cortex. These
results suggest an inverse relationship between the activity of the
DMN and the ACN, which is an established trait of these RSNs30.
Since the discovery of these RSN patterns they have been
hypothesised to reflect complex cognitive processes. The DMN
has been linked to inwardly directed mentation, such as
autobiographical memory and mind wandering31,32. The ACN
overlaps with areas also referred to as the dorsal attention
network33 or the central executive network (CEN)34, and has
been proposed to be involved in more externally directed
processes, including attention35. In agreement with this, we
found these high-order RSNs to be relatively exclusive for
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Fig. 4 Investigating modules of transitions between whole-brain network states. a The figure shows the 19 × 19 transition probability matrix of the HMM
states calculated for the 18 participants that included all four PSG stages in their respective scanning session. This quantifies the likelihood of transitioning
from any given state to any other state, yielding each matrix entry: transition probability from departure state to destination state. b A few HMM states
were ‘sporadic’ and did not occur consistently across participants. HMM states not occurring in more than 25% of the participants were excluded. c The
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resulting modules. d The transitions shown in c are presented as a transition map with each state depicted as a pie plot expressing its specificity for each of
the four PSG stages. Arrows show the direction of the transitions with thickness proportional to the transition probability. The transitions describe a
passage from HMM states with high activity during wakefulness in the top, further down through HMM states including more N1, and down to HMM
states specific to N2 and finally N3. Interestingly, wakefulness appears to be represented by two modules (red and black). Even though no individual HMM
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wakefulness. However, previous investigations have suggested a
rather ubiquitous presence of both the DMN and the ACN, not
just in wakefulness but, in all stages of NREM sleep15,17,36 (see
Supplementary Discussion 1).

Figure 5b shows the mean activation maps of whole-brain
network states with higher sensitivity and specificity for WASO
(black module). The mean activation map of HMM state 18
expressed a distribution similar to that of HMM state 8 (see
Fig. 5a), but with opposite signs. Hence, HMM state 18 showed
decreases in DMN-related areas, and increases in regions over-
lapping the ACN. HMM states 5 and 17 were both characterised
by mean activation increases in the frontal cortices. Interestingly,
findings from high-density EEG studies of participants waking up

from sleep show that the posterior parts of the cortex are
particularly ‘slowʼ at returning to levels of activity seen prior to
sleep37. Consistent with this, converging evidence from PET and
fMRI have indicated frontal cortical activity to be increased
relative to that of posterior areas upon awakening28,38,39.

The whole-brain network states of the white N1-related
module are represented in Fig. 6a. A general observation for
these spatial maps is the inverse relationship between mean
activation in subcortical areas (thalamus and parts of the basal
ganglia) and primary sensory cortical areas. Increases in
subcortical activity were accompanied by decreases in primary
sensory areas of the cortex and vice versa. This was true for HMM
states 4 and 15 (and HMM state 1 although its decreases were not
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confined to subcortical areas, but supplemented by decreases in
the anterior and middle cingulate cortex). This is consistent with
intracortical studies of the sleep onset process in rats40 and in
humans41 showing that thalamic changes in dynamics precede
those of cortical areas near the onset of NREM sleep. Previous
fMRI studies of NREM sleep have suggested decreased con-
nectivity between the thalamus and cortical regions as perhaps
the most consistent trait of FC during N1 sleep16,18,19,23.

N2 sleep was dominated by HMM states 3 and 6, and the mean
activation maps of these whole-brain network states are shown in
Fig. 6b. The supplementary motor area was involved in both of
these states; in HMM state 3 as increases in concert with the
bilateral precuneus and primary motor cortices; and in HMM
state 6 as decreases together with the bilateral thalamus, middle
cingulate, supramarginal cortex, and the rolandic operculum.
Interestingly, these configurations overlap considerably with
those previously reported in studies mapping fMRI-correlates of
sleep spindles42,43, which represent a defining EEG-feature of
N2 sleep. However, no HMM state appeared to be driven solely
by either sleep spindles or K-complexes. By identifying sleep
spindles and K-complexes from the EEG data, we assessed the
temporal relationships between these graphoelements and the
HMM states. In summary the HMM states that were dominant
during N2 sleep showed comparable sensitivity and specificity to
both types of graphoelements, and hence the HMM did not
appear to have assigned individual states for either spindles or K-
complexes (for further information please see the Supplementary
Discussion 1, Supplementary Note 4, Supplementary Table 3, and
Supplementary Figures 19–21).

HMM state 16 accounted for the majority of time spent in
N3 sleep. The corresponding mean activation map is shown in
Fig. 6c. Apart from some very localised increases in the
paracentral lobule and adjacent supplementary motor area the
mean activation was characterised mainly by decreases, particu-
larly in the bilateral middle and superior temporal pole, the orbital
part and the operculum of the inferior frontal cortex, bilateral
insula as well as medial temporal areas. These frontal decreases are
consistent with previous PET findings of decreased metabolism in
these areas during N3 sleep, which in turn are believed to reflect
the high, localised concentration of slow-wave activity44.

Discussion
Using a data-driven exploration of large-scale brain networks and
associated dynamics from continuous fMRI recordings, we have
explored the rich dynamical complexity in spatiotemporal pat-
terns of brain activity during the healthy wake-NREM sleep cycle.
Moving beyond the traditional PSG stages of sleep, we used a
HMM to extract 19 recurring whole-brain network states, defined
in space by patterns of mean BOLD activation and FC, and
defined in time as the probability of being active at each time
point of the fMRI sampling. Comparing the temporal evolution of
the HMM-derived whole-brain network states with the inde-
pendently obtained EEG-based PSG scoring, we have discovered a
rich repertoire of brain dynamics underpinning the traditional
PSG stages. The temporal resolution of the HMM identified state
lifetimes on the order of seconds, providing a temporally fine-
grained description of the traditional PSG stages. Crucially, a
close examination of the HMM transition map furthermore
revealed a heterogeneity of large-scale network activity that PSG
cannot fully capture.

The description of brain activity offered by PSG has for long
been acknowledged as incomplete, and attempts have been made
to harvest more information from scalp EEG in a search for
features relevant for sleep, overlooked by PSG45–47. Our work
adheres to this aim, while, through fMRI, incorporating evidence

of whole-brain spatial detail. Previous studies have indicated that
fMRI can be used to identify dynamic re-configurations of large-
scale brain activity during the conventional EEG-based sleep
stages, either in form of voxel-wise changes in activity48, changes
in connection strengths in resting-state networks49 or through
long-range temporal dependencies in the BOLD signal36. Rather
than direct reflections of the conventional sleep stages, what has
emerged from our HMM analysis is a probabilistic representation
of the PSG scoring in the space of whole-brain network states and
transitions. Agreements as well as disagreements between the
PSG scoring and the independent HMM decomposition became
clear in the transition map (Fig. 7). Wakefulness, N2 sleep and
N3 sleep were each represented by one or more whole-brain
network states, forming a good correspondence with PSG. In
contrast, no states were found specific for N1 sleep. Furthermore,
while treated equivalently in PSG staging, wakefulness prior to
sleep and WASO were represented in the transition map as two
different modules with different repertoires of large-scale brain
networks. Consequently, the transition map also identified spe-
cific whole-brain network transitions underlying the descent to,
and ascent from, NREM sleep.

Consistent with previous neuroimaging studies that have used
regression analyses to identify consistent differences between
traditionally defined sleep stages in terms of large-scale brain
activity13,14,50, PSG-defined wakefulness, N2 and N3 sleep each
corresponded well to specific collections of whole-brain network
states (see Supplementary Discussion 1). However, the HMM
additionally provided access to the large-scale brain dynamics of
the PSG stages, showing that the state repertoire, when estimated
as amount of switching and range of states visited, is higher in
wakefulness than in both N2 and N3 sleep. That a higher and
more complex state repertoire is important for the brain to
support wakeful consciousness follows from theoretical frame-
works51–53 and has received empirical support from a series of
combined TMS and EEG studies54. From a large-scale network
perspective fMRI has been used to show how an enhanced state
repertoire is associated with an ‘expandedʼ consciousness during
the psychedelic experience55,56. In the context of sleep, however,
the large-scale network evidence is mainly represented by static
FC studies suggesting decreased information integration during
N2 and N3 sleep using graph theory20,21, as well as a higher
exploration of the structural connectome during wakefulness57.
Here, we have provided more direct evidence of a higher state
repertoire in whole-brain dynamics during wakefulness.

The transition map identified a key trajectory from wakefulness
in the red transition module to NREM sleep in the white tran-
sition module (see Fig. 7d), represented by the transition
departing from the whole-brain network state with increased
mean activation in the DMN. The proposed association between
the DMN and inwardly directed mentation31,32 makes this
finding intriguing, in the sense that it may suggest a role for the
DMN as a ‘gate’ in the process of initiating sleep. Whole-brain
network evidence of sleep initiation may improve our under-
standing of sleep disorders like insomnia where PSG criteria are
difficult to apply7,58, and hypersomnia disorders59. Related
hereto, a recent study identified switching instability to and from
N2 sleep, together with difficulties reaching N3 sleep as important
traits of insomnia60. In the transition map we saw N2- and N3-
related whole-brain network states forming a strong triangular
loop of transitions (see Fig. 7e). This stable configuration of
transitions may not be present in people suffering from insomnia.

The two main incongruities between the temporal segmentation
suggested by the HMM and the PSG scoring concerned N1 sleep
and WASO. N1 sleep did not correspond to any single state or any
group of states identified by the HMM. This is likely related to
the current consensus that PSG-defined N1 does not represent a
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clear-cut sleep stage61, but rather an ill-understood mix of wake-
fulness and sleep. Compared to N2 and N3 sleep with their well-
defined EEG spectral properties, such as K-complexes, spindles,
and slow waves, N1 remains the most vaguely defined sleep stage
within PSG. A recent report by the American Academy of Sleep
Medicine (AASM) shows that staging of N1 is associated with the
highest inter-rater scoring uncertainty of all PSG stages62. Fur-
thermore, N1 sleep has proven the most difficult PSG stage to
classify from fMRI FC information in machine-learning stu-
dies18,19. Addressing the microstructure of N1, a line of evoked
response potential-studies have demonstrated a high degree of
variability in the cortical processing of external stimuli during early
NREM sleep (for reviews, see ref. 63,64). Phenomenologically, the
sleep onset period is known to be rather complex, with varying
mental content and responsiveness to sensory stimuli64,65, and
authors have long argued against the assumed homogeneity found
in PSG definitions of N1 sleep, an opposition exemplified by Hori’s
proposal of nine stages of early sleep45. If PSG-defined N1 does in
fact represent a mix of wakefulness and sleep, this would explain
why we found the highest range of whole-brain states during this
PSG stage. While this primarily serves to underline the common

notion that N1 is unlikely to be a reliable demarcation between
wakefulness and sleep, the fact that the data-driven HMM was able
to identify a transition module occurring between wakefulness and
consolidated sleep (N2 and N3)—represented by whole-brain
states characterised by subcortico-cortical decoupling consistent
with intracortical evidence of brain activity during sleep onset41—
suggests that an improved and principled categorisation of early
sleep could be within reach.

PSG does not differentiate between brain activity prior to and
after sleep onset. However, in line with the common subjective
experience of grogginess when waking from sleep, behavioural
experiments have shown cognitive deficits in the period following
awakening. The term sleep inertia is often used to describe this
phenomenon66. Our results confirm that falling asleep and
waking up are two asymmetric processes, leading to two sepa-
rated transition modules of whole-brain network states during
wakefulness, with one more likely to occur after consolidated
sleep. Like the N1-related findings discussed above, this too serves
as a prime example of how information-rich neuroimaging data,
when treated in a data-driven way, can be carefully evaluated in
light of established knowledge (PSG in this case) to make new
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discoveries from, and categorisations of, brain activity. The pre-
sented findings point ahead to a research agenda making
hypothesis-driven assessments of how the alternative, data-dri-
ven, temporal segmentations and dynamics of whole-brain net-
works across the NREM sleep cycle relate to sleep-behaviour and
cognition, when the latter is measured independently of PSG (see
Supplementary Discussion 3). Furthermore, there is scope for
HMM explorations with higher temporal detail using electro-
physiological modalities, such as magnetoencephalography
(MEG) and high-density EEG (see Supplementary Discussion 3).

For further discussion about the reproducibility of our results
across different numbers of states, different initialisations of the
HMM, and different parcellation schemes, as well as discussion
about our choice of data inclusion, pre-processing steps, such as
spatial smoothing, and the use of the RETROICOR method to
remove physiological signals from the fMRI data, we refer to the
Supplementary Discussion 2, Supplementary Notes 1–3, and
Supplementary Figures 1, 6–16, and 22–25.

In summary, the work presented here demonstrates how data-
driven, temporally sensitive analyses of large-scale fMRI brain
activity can be used to explore fundamental changes in behaviour
and cognition, in the form of the wake-NREM sleep cycle. The
results reveal a higher complexity of brain activity than what
traditional sleep scoring—and neuroimaging relying strictly on
PSG—can reveal. We projected the traditional stages of wake-
fulness and NREM sleep onto a probabilistic map of transitions
between whole-brain network states. By studying these transitions
we have shown a significant decrease in whole-brain dynamics
during consolidated stages of NREM sleep; that brain activity
prior to sleep is significantly different from just after sleep; that
whole-brain network activity do not support traditional criteria to
define N1 sleep; and that increased activity in the DMN might
serve a gate-function for the entry into NREM sleep. By using
fMRI data we have increased the spatiotemporal resolution of
traditional NREM sleep stages, using a framework that should be
sought expanded to include other fundamental changes in brain
activity, such as REM sleep, sleep disorders, anaesthesia and
psychedelic experiences. Finally, future work should aim to
leverage even finer temporal details through modalities such as
MEG and high-density EEG.

Methods
Acquisition and processing of fMRI and PSG data. fMRI was acquired on a 3 T
system (Siemens Trio, Erlangen, Germany) with the following settings: 1505
volumes of T2*-weighted echo planar images with a repetition time (TR) of 2.08 s,
and an echo time of 30 ms; matrix 64 × 64, voxel size 3 × 3 × 2mm3, distance factor
50%, FOV 192 mm2.

The EPI data were realigned, normalised to MNI space, and spatially smoothed
using a Gaussian kernel of 8mm3 FWHM in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
). Spatial downsampling was then performed to a 4 × 4 × 4mm resolution. From the
simultaneously recorded ECG and respiration, cardiac- and respiratory-induced noise
components were estimated using the RETROICOR method67, and together with
motion parameters these were regressed out of the signals. The data were temporally
band-pass filtered in the range 0.01–0.1 Hz using a sixth-order Butterworth filter.
Please note that the fMRI data were temporally filtered with no consideration of the
later established PSG structure of the data. Hence, our findings of relative differences
between the various PSG stages should not be affected by these pre-processing steps.
We show that this is the case for the temporal filter in Supplementary Figure 16,
where the plots of Fig. 3 from the main text have been re-computed for an HMMwith
19 states on BOLD data, which had not been temporally filtered.

Simultaneous PSG was performed through the recording of EEG, EMG, ECG,
EOG, pulse oximetry and respiration. EEG was recorded using a cap (modified
BrainCapMR, Easycap, Herrsching, Germany) with 30 channels, of which the FCz
electrode was used as reference. The sampling rate of the EEG was 5 kHz, and a
low-pass filter was applied at 250 Hz. MRI and pulse artefact correction were
applied based on the average artefact subtraction method68 in Vision Analyzer2
(Brain Products, Germany). EMG was collected with chin and tibial derivations,
and as the ECG and EOG recorded bipolarly at a sampling rate of 5 kHz with a
low-pass filter at 1 kHz. Pulse oximetry was collected using the Trio scanner, and
respiration with MR-compatible devices (BrainAmp MR+, BrainAmp ExG; Brain
Products, Gilching, Germany).

Participants were instructed to lie still in the scanner with their eyes closed and
relax. Sleep classification was performed by a sleep expert based on the EEG
recordings in accordance with the AASM criteria (2007).

Results using the same data and the same preprocessing have previously been
reported in ref. 18.

Participants. We used fMRI and PSG data from 57 participants taken from a
larger data-base18. Exclusion criteria focussed on the quality of the concomitant
acquisition of EEG, EMG, fMRI and physiological recordings. Written informed
consent was obtained, and the study was approved by the ethics committee of the
Faculty of Medicine at the Goethe University of Frankfurt, Germany.

Following the HMM decomposition, two different subsets of the solution were
used for post hoc evaluation of the HMM. The first corresponded to the 18
participants that reached all four stages of PSG, and the second corresponded to the 31
participants that woke up after having reached consolidated sleep (the WASO group).

HMM general overview. In order to resolve dynamic whole-brain networks in the
fMRI signals in a data-driven way, we applied a HMM24,27 to timecourses extracted
from 90 ROIs defined by the cortical and subcortical areas of the AAL26, however,
please see Supplementary Note 1 for a demonstration of the robustness of our
results using an alternative parcellation.

We used the FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) function fslmeants to
average over voxels within each ROI to get the representative timecourses. The
participant-specific sets of 90 ROI-timecourses were demeaned, divided by their
standard deviation, and concatenated across participants, yielding a data matrix of
dimensions 90 × (57 × 1500), with 1500 samples corresponding to 52 min given a
TR of 2.08 s. The HMM inference estimated a number of recurring discrete states,
each of which was characterised by a unique configuration of data statistics. We
employed a Gaussian HMM, implemented using the Matlab toolbox HMM-MAR
(https://github.com/OHBA-analysis/HMM-MAR), such that each state was
modelled as a multivariate normal distribution with first (mean activity) and
second order statistics (covariance matrix). The parameters of the states were
defined at the group level, whereas the state timecourses are defined for each
subject separately. Therefore, the HMM inference identified periods of time of
quasi-stationary activity, where the 90 ROI timecourses could be described by
certain configurations of mean activity and FC. The HMM represents a tool for
decomposing multivariate data into fewer dimensions. Given the high spatial
dimensionality of fMRI, it is common to use principal component analysis (PCA)
to reduce the number of parameters to be estimated in the decomposition,
increasing the signal-to-noise ratio of the data and improving the robustness of the
results24,27. Accordingly, we submitted the demeaned, standardised and
concatenated BOLD timecourses to PCA prior to the HMM inference. Keeping
approximately 90% of the signal variance, we used the top 25 principal components
(see Fig. 1), yielding a data matrix of dimensions 25 × (57 × 1500), which were then
fed to the HMM. An overview of the analysis workflow is given in Fig. 1 of the
main text. For certain analyses, such as the MANOVA and the test for WASO-
specific HMM states, we used subsets of the full set of HMM states.

Choice of number of HMM states. The HMM was implemented with variational
Bayes inference, which was used to probabilistically estimate the state statistics and
transition probabilities24,27. The number of states of the HMM was a free para-
meter, which had to be chosen before further evaluation. Determining the number
of states present in recordings of spontaneous brain activity is a non-trivial task,
which may be approached in a number of ways. We ran the HMM for model
orders spanning 4–45, and evaluated each solution by a number of summary
statistics, the most important of which are plotted in Supplementary Figure 1.

Supplementary Figure 1a shows the minimum free energy as a function of the
HMM model order. The free energy is the statistical measure that is minimised
during the (variational inference) Bayesian optimisation process. Technically
speaking, it is an approximation of the model evidence, and includes two terms: how
well the model fits the data, and the complexity of the model (measured as how
much it departs from the prior distribution). Whereas the free energy is a reasonable
criterion for choosing the ideal number of states for the HMM, its biological validity
remains unclear in so far as the HMM does not represent a biophysical model. As
apparent from the plot in Supplementary Figure 1a, the minimum free energy was
monotonically decreasing over the large range of tested numbers of states, showing
no negative peaks. Hence, like in previous applications of the HMM24,27, the free
energy was not informative for choosing the number of states in our case.

We defined fractional occupancy as the temporal proportion of a recording, in
which an HMM state was active27. In Supplementary Figure 1c is plotted the
development of the median fractional occupancy across HMM states as a function
of model order. While the curve decreases rapidly for low values of K, meaning
that, as expected, each HMM state on average accounted for less of the total
recording time as the number of states was increased, this trend ceased from
around K= 19. This stagnation for higher model orders was caused by the
occurrence of ‘sporadic’ states, which modelled very (participant-) specific subparts
of the data (see Supplementary Figure 6). This phenomenon was also reflected in
the development of the average HMM state lifetime, which too stabilised around
the same value of K, as shown in Supplementary Figure 1d.
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To test whether the fMRI-based HMM states showed a significant relationship with
the EEG-based sleep scoring, we used a multivariate analysis of variance (MANOVA).
The built-in MATLAB function manova1 provided the summary statistic Wilk’s Λ,
which described how well the K number of HMM state timecourses could be grouped
according to the sleep scoring. In order to test if the relationship was significant, we
performed MANOVA’s on 1000 permuted cases of the sleep scoring, collecting the
Wilk’s Λ for each run. Each permutation was constructed, such that the original stage
transition points, stage counts, and periods were preserved, while the sleep-stage
labelling of each of these periods was shuffled randomly within participants. For each
permutation, each participant thus retained the same sleep stages, but the temporal
orderings of these were random. Supplementary Figure 1b plots Wilk’s Λ as a function
of the HMM model order for both the original sleep scoring and the permuted cases.
For number of states above K= 7, the HMM state timecourses were grouped
significantly better by the original compared to the permuted sleep scoring. This result
suggests that only when using more than seven states, the HMM identified states with
a significant dependency on the PSG scoring.

The results in Supplementary Figure 1b–d are computed from a subset of the
HMM solutions corresponding to the participants including all four available PSG
stages (18 participants with: wakefulness, N1 sleep, N2 sleep, and N3, see right part of
Supplementary Table 1). This was done to minimise the unevenness in the
representation of PSG stages. Based on the evaluations above, we concluded that the
HMM was able to, in data-driven fashion, estimate the temporal structure given by the
EEG-based sleep scoring for model orders above 7. We chose K= 19 states, because
increasing the number of states above this point mainly resulted in the addition of
HMM states of low-fractional occupancy and participant-specific occurrences.

Significance testing. In order to evaluate the PSG-sensitivity and -specificity, we
used paired t tests to test for significant differences within the HMM states. As
such, with the original PSG stages, we compared the sensitivity and the specificity,
respectively, for W, N1, N2 and N3 within each HMM state for the 18 participants
that included all of these four stages. This yielded six comparisons within each
HMM state (W-vs.-N1, W-vs.-N2, W-vs.-N3, N1-vs.-N2, N1-vs.-N3, N2-vs.-N3),
for both the sensitivity and specificity measures, and each of these comparisons was
associated with a t-statistic. To test if these t-statistics were larger than random, we
used permutation testing as explained above (see section Choice of number of
HMM states), where the EEG-based sleep scoring vector was permuted 1000 times
with number of PSG stages and periods kept constant, but with their temporal
order randomly shuffled within each participant. We computed the PSG-sensitivity
and -specificity for each permutation and performed paired t tests for every case.
The resulting t-statistics were used to build null-distributions, and the original t-
statistics were compared against these to get p values for the original tests. The bar
plots of PSG-sensitivity and -specificity in Fig. 3a, b of the main text include line
crossbars indicating the cases with p values < 0.01 (paired t tests with permuta-
tions). Please note that the use of paired t tests ensured that the identified differ-
ences were consistent within participants, and not merely as a group effect.

We evaluated the hypothesis that certain HMM states had higher activity in
periods of wakefulness after sleep onset (WASO) by considering the subgroup of
participants that, according to PSG scoring, woke up after having reached N2 sleep.
This corresponded to 31 participants, and we defined WASO as
polysomnographically estimated periods of wakefulness that followed N2 sleep.
From here we followed the same steps outlines above for the original PSG stages,
and the results are shown in Supplementary Figure 2.

To test for differences in the measures of dynamics, amount of switching and
range of HMM states, we also employed paired t tests and the permutation scheme
explained above to establish chance levels.

Analysis and visualisation of HMM transitions. The matrix of transition
probabilities, which were explicitly modelled by the HMM, contained a clear
organisation, in which subnetworks of HMM states expressed more frequent
transitions within each other than to states outside. In other words, the transition
matrix represented a directed graph with modular organisation. We demonstrated
this by submitting the transition matrix (shown in Fig. 4a) to a modularity analysis,
using Matlab functions from the Brain Connectivity Toolbox (https://sites.google.
com/site/bctnet/Home)69, based on Newman’s spectral community detection70.
Prior to running the modularity algorithm, we excluded the transitions of the
HMM states that did not occur consistently across participants, i.e., sporadic states
(see Methods, Choice of number of states, and Fig. 4b), and thresholded the
remaining transition matrix to include the strongest elements. The choice of this
latter threshold was done for visualisation purposes (for the results shown in the
main text using 19 states we included the 21% strongest transitions), however,
different thresholds resulted in highly similar module partitions. The modular
organisation is presented in a reordered matrix (Fig. 4c) and as a map (Fig. 4d).

Visualising mean activation maps of HMM states. The mean activation maps
have been overlaid on brain surfaces in Figs. 5 and 6 of the main text, using the
Human Connectome Project software Connectome Workbench (https://www.
humanconnectome.org/software/connectome-workbench). The HMMwas inferred in
volumetric MNI152 space and mapped to the surface of the Conte-69 template using
the Workbench function wb_command –volume-to-surface-mapping. The presented

surface maps are shown with the 50% strongest increases and the 50% strongest
decreases in activation for each HMM state relative to baseline averaged over all
HMM states.

Data availability
The datasets generated during and/or analysed during as well as code used during the
current study are available from the corresponding author on reasonable request.
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Supplementary Discussion 1 
 

The HMM was sensitive to recurrent changes in both mean BOLD activity and FC, and the overall 

reflection of PSG stages in the whole-brain network states, seen also form the MANOVA results, 

suggests that these two features of brain activity changed reliably with PSG stages. This is in line 

with previous PET 1, 2, 3, 4 and fMRI 5, 6, 7 studies that have regressed PSG stages onto neuroimaging 

data to show differences between individual PSG stages in metabolic and BOLD activity, an EEG 

study showing PSG-dependent changes in EEG microstates 8, demonstrations that machine-learning 

can be used to classify fMRI recordings into PSG stages based only on FC patterns 9, 10, 11, and most 

recently the study by Haimovici and colleagues demonstrated that PSG stages could be identified as 

individual states of dynamic FC 12. 

 

We found high-order RSNs, i.e. the DMN and the ACN, to occur relatively exclusively during 

wakefulness. However, previous investigations have suggested a rather ubiquitous presence of both 

the DMN and the ACN, not just in wakefulness but, in all stages of NREM sleep 6, 13, 14, 15. These 

studies were based on static FC analyses of PSG-defined sleep stages, using both seed-based 

correlations 6, 13, 14, 15 and spatial ICA 16, and the seeming lack of sensitivity to changes in vigilance 

has raised questions about the relevance of these RSNs for on-going cognition 17. Our results 

contribute to this debate, by suggesting a clear wakefulness-specificity of the DMN and the ACN in 

terms of mean activation, but not in FC (see also Supplementary Note 5). 

 

Two HMM states were clearly specific to periods of N2 sleep. The corresponding mean activation 

maps showed either increases or decreases in areas consistently identified in a number of studies as 

fMRI-correlates of sleep spindles 18, 19, 20. We tested the temporal relationships between the data-

driven HMM states and the occurrence of sleep spindles, as identified in the EEG (see 

Supplementary Figures 19–20 and Supplementary Note 4), and indeed we found HMM states 3 and 

6 to account for the majority of time where sleep spindles were present. However, the same was 

true for K-complexes. When identifying K-complexes from the EEG and comparing their 

occurrences with the HMM states, we once again found HMM states 3 and 6 accounting for the 

majority (see Supplementary Figures 19 and 21). In line with previous studies investigating the 

effects of spindles and K-complexes on the BOLD signal 18, 20, 21 we also looked at the temporal 

relationships to the HMM states after convolving the sleep graphoelements with the canonical 

hemodynamic response function (HRF, see Methods and Supplementary Figure 19 for illustration). 



 3 

This led to an increase in the correlation and specificity values of the HMM states compared to 

when the raw non-convolved occurrences of spindles and K-complexes were used, but overall did 

not change the differences on these scores between the states. HMM states 3 and 6 still accounted 

for the majority of the HRF-convolved sleep spindles and K-complexes. Within HMM states 3 and 

6 we did not find marked differences in their relationship to the graphoelements. Both with and 

without the HRF convolution HMM state 3 tended to show higher correlation and specificity values 

than HMM state 6 for both spindles and K-complexes, although these differences did not survive 

correction for multiple comparisons, as shown in Supplementary Figures 20 and 21. The theoretical 

scenario that the two HMM states (3 and 6), accounting for the majority of N2 sleep, might 

represent direct reflections of different sleep graphoelements does thus not seem to be supported. 

Rather, both of these HMM states included each of their share of both spindles and K-complexes. In 

light of previous event-related demonstrations of robust effects of sleep graphoelements on the 

BOLD signal 18, 19, 20, 21, 22, as well as the similarity between these event-related patterns and the 

mean activation maps of HMM states 3 and 6, it seems unlikely that spindles and K-complexes did 

not influence the HMM state description, however this did not result in any HMM state coding 

exclusively for one or the other graphoelement. There is of course the possibility that HMM states 3 

and 6 are suggesting a categorisation of spindles and K-complexes beyond what the scalp EEG is 

able to resolve, or at least beyond the classical interpretation of these graphoelements. Future 

mapping of the spectral and spatial properties of these graphoelements at higher resolutions than the 

AASM criteria, that were used here, could bring more insights in this regard, as could a 

combination or comparison with intracortical evidence 23, 24, 25. 

 

There is growing evidence that neuroimaging timecourses contain long-range temporal 

dependencies 26, 27, 28, i.e. they are non-Markovian 29. The HMM used here follows the Markovian 

assumption in the sense that the probability of a state transition at a given time point depends only 

on the state that is active at the preceding time point, and hence it does not parametrically model 

long-range temporal dependencies. Importantly, however, it does not preclude them either. This 

means that the HMM state timecourses can in fact exhibit non-Markovian dynamics and long-term 

dependencies; see e.g. 30. Notably, our finding of HMM states grouping into modules of transitions 

represents an analysis that goes beyond Markovianity, and demonstrates non-Markovian dynamics 

(i.e. long-term dependencies) at the system level of the HMM states. In light of this, our finding that 

N3 sleep was modelled almost exclusively by a single HMM state, while several states grouped into 

modules during wakefulness, is in line with the study by Tagliazucchi and colleagues, showing that 

long-range temporal dependencies in fMRI signals decreases from wakefulness to N3 sleep 16. 
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Supplementary Discussion 2 

Methodological considerations 

For the HMM analysis we chose to make use of the full dataset of 57 participants, when inferring 

the states. Subsequently we analysed the part of the HMM solution that corresponded to the 18 

participants that included all PSG stages. We chose to include as much data as possible for the 

initial inference in order to maximise the signal-to-noise ratio and amount of evidence for the HMM 

parameter estimation. Yet, as it is clear from Supplementary Table 1, the full dataset included rather 

uneven distributions of PSG stages. While PSG stages are more evenly distributed in the subset of 

18 participants, and we diligently made sure to normalise the relevant summary measures by 

number of samples of PSG stages within participants, there still exists a possibility that the HMM 

could be biased by having more data available from certain PSG stages than others, even if the 

HMM remained uninformed of the PSG staging. For instance, one could imagine that more data 

from a certain PSG stage would lead to more HMM states per time being assigned to data from that 

PSG stage. Such an effect is not immediately present in our results, however, since for instance we 

found both switching and range of HMM states to be higher in N1 sleep, even though the original 

full dataset included more than twice as much data from wakefulness (see Supplementary Table 1 

and Figure 3d–e). 

 

The number of HMM states was set to 19 in our analyses based on an evaluation of a range of 

HMM solutions with varying numbers of states (see Methods). It is important to note, however, that 

it is difficult to determine a ‘correct’ number of states, when decomposing continuous recordings of 

brain activity. The recent study by Haimovici and colleagues aimed to identify individual FC states 

for each PSG stage, and thus chose 4 states for their sliding-window analysis 12. Our aim was to 

extract as much temporal resolution as possible from the BOLD ROI timecourses. Ideally, a higher 

number of states should provide more temporal detail, however increasing the number of states 

above 19 was associated with a higher occurrence of ‘sporadic’ HMM states, modelling very 

specific subparts of the data and not generalising across participants (see Methods and 

Supplementary Note 3). Based on this it is important to emphasise that we do not suggest the 

number 19 as definitive, but simply a tool to resolve as much temporal information as possible from 

the current dataset.  

 

It should be noted that the HMM framework was chosen over other methods for extracting dynamic 

states from multivariate neuroimaging datasets, such as sliding-window clustering 12, 31, 32, point-
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process analysis 33, and co-activation pattern analysis 34, 35 (for reviews, see 36, 37). The employed 

HMM framework has been successfully applied to resting state data of wakefulness in both MEG 38, 

39, 40 and fMRI 30, 41, and was particularly suitable for our purpose by virtue of its explicit modelling 

of temporal dynamics, resulting in states that repeat in a predictable way. Although the HMM is not 

a mechanistic model of brain activity (a limitation shared with the alternative approaches mentioned 

above) we have shown how the explicitly modelled HMM transition matrix was fundamental to 

suggest new partitions of dynamic whole-brain states, which future mechanistic frameworks of 

NREM sleep and wakefulness should take into account 42, 43, 44, 45. 

 

Sleep is of course a process associated with profound physiological changes, not merely those 

reflected in brain activity 46. Despite our use of the RETROICOR method to reduce the effects on 

the fMRI data of cardiac and respiratory signals (see Methods), it is currently not possible to 

completely isolate the neural effects of sleep in fMRI. Our results hence share the limitation with 

other neuroimaging studies of sleep of potentially being influenced by physiological changes not 

directly linked to brain activity. On the other hand, certain sleep-dependent peripheral changes such 

as those of the autonomic nervous system will also induce genuine activities in the brain, which in 

future studies would be important to investigate and with the proper recordings could potentially be 

evaluated within an HMM framework. 

 In addition, it should be noted that there could be potentially confounding effects of spatially 

smoothing the fMRI data, which can create artificial dependencies between regions of interest. In 

the context of the HMM, which focuses on the aspects of the data that represent more variance, this 

confound is however likely to be minor. 

 Another potential caveat of our analyses pertains to the initialisation of the HMM, which is not 

deterministic. In Supplementary Note 2, we provide a summary analysis showing that the HMM 

infers consistent states across independent initialisations and splits of data (see Supplementary 

Figure 16) 

 

Supplementary Discussion 3 

Perspectives 

Features identified by the HMM could prove to be essential supplements to PSG and other 

conventional methods when trying to understand phenomena like the subjective perception of sleep 
47, 48, mental content during sleep 49, 50, such as the hypnagogic or even hallucinogenic character of 
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sleep onset 51, 52, sleep inertia of the awakening process 53, sleep-dependent processes related to 

memory and learning 54, and disordered sleep, like insomnia 55. Such studies should explore the 

theoretical potential of applying the current HMM, parameterised on the present sleep fMRI data, to 

identify the presence of the same dynamical whole-brain network states and transition modules in 

data from different cohorts, potentially even at the individual level. This new data could then be 

linked to behaviour and cognition through sophisticated measures of arousal, such as eyelid-closure 
56, sleep mentation 49, post-sleep memory- and learning performance 57, and careful clinical 

examination of sleep disorders 58, 59, 60.  

 The wake-NREM sleep cycle merely represents a sub-part of a continuum of activities that the 

brain supports. Other important brain processes should be sought integrated with the presented 

transition map (Figure 7), most obviously including REM sleep, but also other altered states of 

consciousness, such as anaesthesia 61, 62, 63, the psychedelic experience 64, and even different 

contents of consciousness during wakefulness 65. 

 Finally, there is scope for an even more detailed examination of sleep within the HMM 

framework, given that BOLD data is not the most temporally sensitive modality available. Recently 

developed methods combining the HMM framework with source-reconstructed MEG data could 

prove capable of providing an even more fine-grained picture of sleep’s evolution in whole-brain 

networks, and allow for an examination of microstructural EEG elements of sleep, such as spindles 

and K-complexes 38, 39, 40, 66, as well as EEG-markers of vigilance fluctuations during wakefulness 
67. 

 

Supplementary Note 1 

Robustness across different parcellations 

We chose the AAL over other possible parcellations because it is the most frequently used in 

previous fMRI studies of FC during NREM sleep 15, 16, 17, 18, 19, 20. Alternative parcellations, such as 

those derived from FC configurations in the data, could be problematic, since FC has been shown to 

robustly vary across the sleep cycle 9, 10, 11. Being anatomically defined, the AAL is essentially 

agnostic to potentially changing FC configurations within the data. In order to make sure that the 

use of the HMM generalises to different levels of spatial granularity and that the interpretation 

following from our results were not specific to the use of the AAL atlas, we re-ran the HMM with a 

different parcellation. While the field of proposed parcellations for large-scale neuroimaging is 

rapidly expanding 68, we opted for the Brainnetome atlas, originally published by Fan and 

colleagues 69. Unlike many of the most popular parcellation schemes, the Brainnetome is not solely 
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derived from fMRI FC, but also depends on structural connectivity information for its partitioning 

of the brain volume. As mentioned above, the use of an FC-derived atlas could bias results, since 

FC has a well-established dependence on vigilance. Another advantage of the Brainnetome is that 

it, like the AAL, includes sub-cortical regions, which, as shown in the Results and Discussion of the 

main text, undergo important changes in activity across NREM sleep. Finally, the 246 regions of 

the Brainnetome atlas compared to the 90 regions of the AAL provides a good test for the 

robustness of the HMM across different levels of spatial granularity.  

 We followed exactly the same steps as explained in the Methods section, but extracted ROI 

timecourses from the Brainnetome atlas instead of the AAL. It became clear that the increase in 

spatial detail, going from the AAL to the Brainnetome, had an impact on the ability of the HMM to 

track the sleep scoring. As such, when using 90% of the variance from the PCA on the Brainnetome 

ROI timecourses (Figure 1), the performance of the HMM, as quantified through MANOVA 

between the resulting HMM state timecourses and the sleep scoring, was inferior to the original 

results using the AAL (see Supplementary Figure 22). However, a slightly stronger regularisation of 

the ROI timecourses, using only 85% of the variance from the PCA, made the results from the 

Brainnetome highly comparable to the original results using the AAL. At 85% of the variance the 

HMM on the Brainnetome data performed in a very similar fashion to the HMM on the 90% of the 

AAL data, in terms of MANOVA and the development of median fractional occupancy across 

number of HMM states (see Supplementary Figure 22b and c). The difference between using 90% 

and 85% of the variance was importantly also evident in the number of HMM states that were 

consistent across participants for a given HMM solution (K = 19, see Supplementary Figure 22d). 

For 90% of the variance, only 6 HMM states occurred in more than 25% of the participants, 

whereas this number increased to 12, when 85% of the variance was used. In Supplementary Figure 

23 we have re-constructed Figure 3 of the main text, but with the results using 19 HMM states on 

85% of the variance of the Brainnetome data. The results are highly consistent, with individual 

HMM states showing sensitivity and specificity to different sleep stages, and in terms of the 

differences in dynamics found between sleep stages. Regarding the spatial configuration of the 

HMM states resulting from the Brainnetome data, these were also highly consistent with the 

original HMM states using the AAL. This is illustrated in Supplementary Figures 24 and 25, where 

we have matched HMM states from the Brainnetome to the original HMM states, based on their 

specificity profiles to sleep stages and spatial patterns. 

 Overall, the above analysis shows that increasing the spatial granularity by introducing a 

different parcellation comes at the cost at decreasing the signal-to-noise ratio on the HMM 

estimation. However when this is controlled through PCA, results can be brought to convergence. 
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Supplementary Note 2 

Robustness across different HMM initialisations 
The initialisation of the HMM includes a stochastic element. To make sure that the states inferred 

by the HMM were not contingent on the initialisation, we ran the HMM with 19 states an additional 

four times on the full dataset (N = 57), and five times on each of the two half-splits of the data (N = 

29 and N = 28). The 19 resulting states of each HMM repetition were matched to the states of the 

original HMM. Each state of a repetition was thus paired to an original HMM state, based on the 

similarity between their respective Gaussian distributions. The similarity was estimated using the 

Bhattacharyya distance 70, and the matching of states across repetitions were carried out using the 

Munkres algorithm 71.  

 Following the pairing of states, all resulting states were compared in an all-to-all manner, again 

using the Bhattacharyya distance as a measure of similarity. The resulting matrix [(ndataset + nstates + 

nrepetitions) × (ndataset + nstates + nrepetitions)] is shown in Supplementary Figure 15a. The common pattern 

in the data-set-specific sub-matrices indicates that consistent HMM-state distributions were inferred 

across initialisation repetitions and data-splits.  

 Following the matching of the HMM Gaussian distributions from independent initialisations, we 

tested the temporal correspondence between the original HMM states and their counterparts from 

the repetition runs. This was done by comparing the corresponding state timecourses. For a pair of 

HMM states (one original and one from a repetition run) the temporal correspondence was 

quantified as the ratio between time points of overlap (simultaneous activity or inactivity) and time 

points of misses (off-sets of activity or inactivity). In Supplementary Figure 15b are plotted the 

mean values and standard deviations within data-splits, and it is clear that temporal overlaps 

outweighed misses for all runs of the HMM. This is an important indication that the evaluations of 

the HMM dynamics presented in the main text would be highly similar for other initialisations.  

 

Supplementary Note 3 

Varying the number of HMM states 

In appreciation of the potential limitations related to choosing the number of HMM states with no 

strict, formal criterion, we include the results of using different numbers of HMM states. In 

Supplementary Figures 7 to 10 we have reproduced Figure 3 of the main text with HMM results 

using 15, 17, 21, and 23 states respectively. Demonstrating the robustness of our HMM findings, 
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the conclusions of the main text using 19 states are also found in Supplementary Figures 7 to 10. 

Specifically Supplementary Figures 7a-b to 10a-b show how select HMM states expressed high 

sensitivity and specificity for different PSG stages. In line with the results for K = 19 states, the 

HMM with lower and higher K identified states with high sensitivity and specificity for 

wakefulness, N2, and N3 sleep, but not for N1 sleep. Supplementary Figures 7d-e to 10d-e quantify 

the dynamics of HMM states within PSG stages. The relative differences between PSG stages are 

conserved and highly stable across numbers of HMM states. Interestingly, the absolute values of 

switching between and range of HMM states within PSG stages were in fact also quite preserved 

across numbers of HMM states. This is likely caused by the fact that the main effect of changing the 

number of HMM states is an addition of non-recurring, ‘sporadic’, states that modelled very 

(participant-) specific periods of the fMRI data (see Methods and Supplementary Discussion 2).      

 Another main result of this study is presented in the transition map of the HMM states (see 

Figure 4 of the main text). Again we have re-produced equivalent figures for K = 15, 17, 21, and 23 

HMM states (Supplementary Figures 11 to 14). Our modularity analysis (see below) of the resulting 

transition matrices illustrates how the four modules from the HMM with 19 states can be identified 

in the solutions with different numbers of states. This was true for K = 17, 21, and 23. For K = 15, 

the white and blue modules appear to have merged together. The overall structure of the transition 

map was therefore robust across the chosen numbers of HMM states. A separate transition module 

for wakefulness after sleep onset (WASO) was found consistently across all of these values of K, 

while the intercalated module between wakefulness and consolidated sleep (N2/N3) were found for 

all but one value of K (K = 15).  

 Whereas these overall configurations of the HMM transitions were found robust to the chosen 

number of states, the more fine-grained details of the transition map appeared more variable. The 

gateway-like quality of a DMN-like configuration of brain activity was thus particularly clear for 

the originally chosen 19 states.  

 

Supplementary Note 4 

Relationship between HMM states and sleep graphoelements 

In order to determine the effect of micro-structural features in the sleep EEG, (sleep 

graphoelements) on the HMM states we used information on the occurrence of sleep spindles and 

K-complexes during the fMRI recordings. The procedure for obtaining this information from the 

EEG for the present data has previously been described in Jahnke et al. 21. Briefly, sleep 

graphoelements were manually identified according to the criteria set out in the AASM guidelines 
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72. This included the use of an EEG montage with frontal, central, and occipital electrodes re-

referenced to the contra-lateral mastoid electrodes (TP9, TP10). The resulting temporal markings of 

sleep spindles and K-complexes were re-sampled to the sampling frequency of the fMRI acquisition 

(TR = 2.08 seconds) and collected in the variables SS-timecourse and KC-timecourse (for 

illustration of the SS- and KC-timecourse in an example participant, see Supplementary Figure 19). 

To account for the delay in the BOLD response, we also created versions of the SS- and KC-

timecourses convoluted with the canonical hemodynamic response function (HRF). We used the 

HRF included in the SPM12 function spm_hrf.m (http://www.fil.ion.ucl.ac.uk/spm/). Specifically, 

SS-timecourse and KC-timecourse were binary and of the same length as the fMRI data, with ones 

representing the fMRI samples during which the respective graphoelement occurred, while the 

HRF-convolved versions were scaled between 0 and 1 with the canonical delays and undershoots 

(an example of the HRF-convolved timecourses is provided in Supplementary Figure 19c). We 

evaluated in turn the temporal association of each HMM activity timecourse to both sleep spindles 

and K-complexes. Three summary measures of association were used: i) Pearson’s correlation was 

computed between each of the HMM state timecourses and the SS- and KC-timecourses within the 

set of participants that included the given graphoelement (see Supplementary Table 3 for an 

overview of the occurrence of sleep spindles and K-complexes). ii) Sensitivity to sleep spindles/K-

complexes was quantified for each HMM state as the proportion of sleep spindles/K-complexes 

occurring during that given HMM state. iii) Specificity for sleep spindles/K-complexes was defined 

for each HMM state as the likelihood of finding that given HMM state active during an instance of 

the given graphoelement. The distributions across participants of these three summary measures are 

plotted in Supplementary Figures 20 (for sleep spindles) and 21 (for K-complexes).  

 To test if any HMM states expressed higher association with the sleep graphoelements than 

others, we used t-tests comparing each combination of the 19 HMM states (ncomparisons = [19×19 – 

19]  ⁄ 2 = 171). To establish a chance level we compared the original summary measures 

(correlation, sensitivity, and specificity) to surrogate data created by permuting the HMM state 

timecourses 1000 times, and re-calculating the summary measures for each permutation. Each 

permutation consisted in a random switching of the labels of each instance of an HMM state, 

keeping the number of occurrences of each HMM state and state transition times constant within 

participants (see Supplementary Figure 19 for an illustration of the permutation principle).  
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Supplementary Note 5 

FC maps of whole-brain network states 

The HMM characterised each state by a vector of mean activity and a covariance matrix. These two 

data statistics may be understood as a dyadic hierarchy of FC information. The mean distribution of 

a given state gets estimated from the demeaned and standardised timecourses, and hence describes a 

change away from the grand-average activity level. ROIs that change their activity in the same 

direction (positive or negative) are thus functionally connected. The covariance matrix of the state 

then describes the pairwise ROI-to-ROI co-fluctuations within the time periods where the state is 

active after subtracting the mean activity of the state (i.e. it is the covariance matrix of the residual). 

Therefore, the state-wise covariance matrices reflect FC within states, above and beyond the largest 

global FC trends as accounted for by the mean parameter of the Gaussian distributions. The mean 

activation maps have been overlaid on brain surfaces in Figure 5 and 6 of the main text. The 

corresponding FC information is represented in Supplementary Figure 5 and 6. The FC matrices 

were estimated by converting the state-specific covariance matrices to correlations using the Matlab 

function, corrcov.m.  In order to highlight the unique FC characteristics of each HMM state, 

Supplementary Figure 5 and 6 show differential FC maps. These were computed by taking an FC 

matrix of a given HMM state and subtracting the average of the FC matrices of the remaining 

states.  

 Below we describe the FC information of the whole-brain network states in the order suggested 

by the transition modules of Figure 4d with an emphasis on how they complement the 

interpretations of the mean activation maps of the HMM states given in the main text. 

Supplementary Figures 4 and 5 show the differential FC maps. 

 For the red module of wakefulness shown in Supplementary Figure 4a, the DMN-like increases 

in mean activation of HMM state 8 (see Figure 5a) were accompanied by relative increases in FC 

between occipital and temporal areas, and decreases in FC from the supramarginal gyrus to the 

posterior cingulate and medial prefrontal areas. Similar decreases in FC were evident for HMM 

state 2, while increases were particularly clear between the posterior cingulate and medial frontal 

areas.  

 For the WASO-related HMM states 5 and 17 the frontal increases in mean activation seen in 

Figure 5 were complemented by relative frontal increases in FC (see Supplementary Figure 4b). 

 The whole-brain network states of the white N1-related module are represented in 

Supplementary Figure 5a. These states generally exhibited opposite polarities in their mean 

activation between subcortical areas (thalamus and parts of the basal ganglia) and primary sensory 
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cortical areas (see Figure 6a). In terms of differential FC this subcortico-cortical decoupling was 

mainly evident for HMM state 1, while increases in connections towards the medial prefrontal 

cortex and the anterior cingulate was common for all three states. 

 N2 sleep was dominated by HMM states 3 and 6, and the differential FC maps of these whole-

brain network states are shown in Supplementary Figure 5b. Relative increases in FC between 

superior temporal/inferior parietal areas and medial frontal areas were common, and a few increases 

in thalamo-cortical connections could be related to association of these HMM states to sleep 

spindles and the thalamo-cortical mechanism behind the generation of these 73, 74 (although see 

Supplementary Note 4 for a closer examination of the relationship between the HMM states and 

sleep graphoelements).  

 HMM state 16 accounted for the majority of time spent in N3 sleep, and its differential FC is 

shown in Supplementary Figure 5c. Interestingly, the decreases in mean activation, exhibited 

broadly throughout the frontal cortices, were complemented by relative increases in frontal and 

temporo-frontal connectivity. In the same way that the frontal decreases in mean activation could be 

explained by slow-wave activity (see main text), the relative increases in frontal FC are also in line 

with the localisation found in EEG-based source modelling of slow waves 75. 

 To make sure that the differential FC maps were not biased by the effect of the HMM states 

having different baseline mean activation patterns (as modelled by the mean vector of the Gaussian 

distribution), we produced equivalent maps using the cosine similarity instead of the covariance 

matrices outputted by the HMM. Unlike Pearson’s correlation, the cosine similarity does not 

demean the time series, and, therefore, the differences in baselines are accounted for. These maps 

are shown in Supplementary Figures 17 and 18. This analysis yielded 19 matrices of 90 × 90 cosine 

similarity values. By taking each cosine similarity matrix and subtracting from it the average of the 

remaining 18 cosine similarity matrices, we obtained maps equivalent to the differential FC maps, 

which were based on the covariance information modelled directly by the HMM. As may be seen, 

when comparing Supplementary Figure 4 to Supplementary Figure 17, and Supplementary Figure 5 

to Supplementary Figure 18, the maps are highly similar. 
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Supplementary Tables 
 

PSG stage Mean duration 
N = 57 (minutes) 

Proportion 
N = 57 (%) 

Number of 
participants 
out of N = 57 

Mean duration 
N = 18 (min) 

Proportion 
N = 18 (%) 

Number of 
participants 
out of N = 18 

Wake 24.87 (S.D. 15.39) 47.82 57 12.34 (S.D. 6.61)  23.72 18 

N1 12.20 (S.D. 9.78) 23.47 57 8.48 (S.D. 2.83) 16.31 18 

N2 9.71 (S.D. 9.18) 18.68 40 14.66 (S.D. 5.72) 28.19 18 

N3 5.22 (S.D. 9.02) 10.04 18 16.53 (S.D. 8.39) 31.78 18 

Supplementary Table 1. Summary details of dataset. Left half: presence of each of the four 
polysomnography (PSG) stages in the full (N = 57) dataset. All participants included wakefulness and N1 
sleep. Right half: Similar overview for the 18 participants that visited all four PSG stages during their fMRI 
recordings. 

 

PSG 
stage 

Mean duration 
N = 31 (minutes) 

Proportion 
N = 31 (%) 

Number of 
participants 
out of N = 31 

Wake 8.39 (S.D. 7.94) 16.13 31 
N1 13.19 (S.D. 7.06) 25.37 31 
N2 13.54 (S.D. 8.05) 26.05 31 
N3 4.88 (S.D. 7.92) 9.38 11 
WASO 12.00 (S.D. 7.68) 23.08 31 

Supplementary Table 2. Summary details of WASO-subset of the dataset In order investigate whether 
certain HMM states were more likely to occur after consolidated, we extracted the part of the HMM solution 
that corresponded to the participants, who woke up after having reached N2 sleep. The table shows the 
distributions of PSG stages (including WASO) across the 31 participants that woke up.  

 

Sleep 
graphoelement 

Mean count 
(for participants with count > 0) 

Number of participants with 
count > 0 (% of 57) 

Sleep spindles 29.42 (S.D. 29.36) 33 (57.89 %) 
K-complexes 32.73 (S.D. 29.19) 37 (64.91 %) 

Supplementary Table 3. Summary statistics of sleep graphoelements in dataset The EEG acquired 
simultaneously with the fMRI was used to identify sleep graphoelements. This scoring information was re-
sampled to the fMRI, such that volumes during which either a sleep spindle or a K-complex occurred were 
marked. The first column of the table shows the mean number of occurrences of each sleep graphoelement 
after this re-sampling. The mean value is calculated within the participants that included at least one of the 
given graphoelement. The number of participants including at least on sleep spindle or K-complex is shown 
in the first and second row, respectively, of the second column of the table. 
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Supplementary Figures 
 

 
Supplementary Figure 1. Summary measures of HMM solutions across a range of model orders. a The 
minimum free-energy on the VB inference decreased monotonically for increasing model orders. b Wilk’s 
lambda is an output of the MATLAB function manova1, and describes how well the HMM state timecourses 
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could be grouped according to the EEG-based sleep scoring. Lower values correspond to a better fit. Here 
Wilk’s lambda is shown for the part of HMM solutions corresponding to the 18 participants that included all 
four PSG stages and across a range of model orders. The solid blue line depicts the output of the MANOVA 
run with the original sleep scoring, while the dashed blue line corresponds to the average Wilk’s lambda 
from 1000 MANOVAs where the sleep scoring was randomly permuted. Error zones correspond to the 
standard deviations of the permuted cases. Note how the original sleep scoring expressed significantly better 
fitting with the HMM state timecourses for model orders above K = 7, and how Wilk’s lambda appeared to 
stagnate somewhere between 10 < K > 20. c The development of the median fractional occupancy as a 
function of HMM model order. Vertical error bars indicate the standard errors across participants (N =18). 
Note how the median fractional occupancy stagnates from around K ~ 19, indicating that the addition of 
more states did not split existing (at lower model orders) states, but resulted in the addition of ‘sporadic’ 
states. d HMM state life time averaged across states and participants (N = 18) as a function of model order. 
Error bars indicate the standard errors across participants. Note how the curve stagnates around K ~ 18. 
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Supplementary Figure 2. Sensitivity and specificity of HMM states when separating wakefulness before 
and after sleep (supplement to Figure 3).a and b corresponds to a and b of Figure 3 respectively, but for the 
31 participants that woke up after having reached N2 sleep. Wake after sleep onset (WASO) was defined as 
polysomnographically estimated wakefulness following N2 sleep, and is represented by the black bars, while 
wakefulness (W) was defined as periods of PSG-estimated wakefulness prior to N2 sleep. The coloured bars 
and error bars show the average and standard error, respectively, across participants. To highlight the 
differences between W and WASO, we have excluded the remaining sleep stages from this plot. Horizontal 
lines show significant differences with p-values < 0.01, as evaluated with paired t-tests and permutation 
testing. Note how HMM states forming the black module in the transition map of Figure 4, showed higher 
specificity for WASO compared to W.  
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Supplementary Figure 3. HMM state FC matrices. a The 90 × 90 FC matrices for the 19 HMM states were 
calculated as conversion from the state covariance matrices output directly by the HMM. Covariance values 
were converted to Pearson’s correlation values. Each entry of a matrix corresponds to the pairwise FC 
between two AAL ROIs. b The FC matrices of the HMM states were skewed towards positive correlations. 
To show that this was a feature of the ROI timecourses and not an effect of the HMM, we have included 
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histograms of the super-diagonal elements of the static FC matrices computed directly from the fMRI data 
within the PSG stages. c The ROIs of the FC matrices in a have been reordered such that the first and third 
quadrants include cross-hemispheric connections, while inter-hemispheric connections are shown in the 
second and fourth quadrants.
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Supplementary Figure 4. Differential FC maps of wakefulness-related HMM states (supplement to Figure 
5). Differential FC maps were computed by taking an FC matrix of a given HMM state and subtracting the 
average of the FC matrices of the remaining states. Maps show the 1% most negative and 1% most positive 
weights of each state a Differential FC maps of wakefulness prior to sleep. Note the relative increases in 
connections between occipital and temporal areas, as well as the decreases between supramarginal gyrus and 
the posterior cingulate cortex. b Differential FC maps of wakefulness after sleep onset (WASO). These states 
were in general characterised by relative increases in frontal connections. 
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Supplementary Figure 5. Differential FC maps of sleep-related HMM states (supplement to Figure 6). a 
Differential FC maps of HMM states related to N1 sleep.  Note the decreased FC between subcortical and 
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temporal/parietal areas of HMM state 1. b Differential FC maps of N2-related HMM states. A common trait 
of these three states was increased FC in temporal/inferior parietal areas and medial frontal. c N3-related 
differential FC maps. Note the relative increases in frontal FC. Maps show the 1% most negative and 1% 
most positive weights of each state 
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Supplementary Figure 6. Summary of inconsistent HMM states across participants. a The graph shows 
the proportion of HMM states that were present in all participants as a function of model order. Included 
here are the 18 participants that reached all four PSG stages during their recording session. As the model 
order increased the probability of finding all HMM states in all participants dropped. Error bars show the 
standard error across participants. b The solution presented in the main text (K = 19) is summarised in terms 
of the presence of the individual HMM states. The bars show the proportion of participant in which the 
HMM states were not present. As evident, six HMM states (7, 9, 11, 12, 14, and 19) were present in less than 
60 % of the participants. We call these ‘sporadic’ HMM states, as they did not model data traits consistent 
across participants.  
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Supplementary Figure 7. K = 15, Sensitivity and specificity of HMM states and dynamics within 
polysomnography stages (supplement to Figure 3). a Fractional occupancies of each of the 15 HMM states 
computed within the four PSG stages corresponded to the PSG-sensitivity of the whole-brain network states. 
The coloured bars and error bars show the average and standard error, respectively, across the 18 participants 
that included all four PSG stages. b PSG-specificity of the HMM states for each of the four PSG stages. 
Specificity corresponds to the probability of an HMM state occurring within a PSG stage. The bars represent 
the group average and the error bars the standard error (N = 18). In a and b horizontal lines show significant 
differences within HMM states, with p-values < 0.01 as evaluated through paired t-tests and permutation 
testing. c The mean life times of the 15 HMM states are shown by the bars, representing values averaged 
across the 18 participants. Error-bars represent the standard error across participants. Each HMM state is 
coloured according to the probability of finding it within each of the four PSG stages, i.e. their PSG 
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specificity. d The dynamics of the HMM transitions were calculated within each of the four PSG stages, in 
terms of switching frequency (‘Switching’), and e the number of different HMM states visited per time 
(‘Range of HMM states’). In d and e error bars represent standard error across participants and significant 
differences between PSG stages are denoted by stars: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Figure 8. K = 17, Sensitivity and specificity of HMM states and dynamics within 
polysomnography stages (supplement to Figure 3). a Fractional occupancies of each of the 17 HMM states 
computed within the four PSG stages corresponded to the PSG-sensitivity of the whole-brain network states. 
The coloured bars and error bars show the average and standard error, respectively, across the 18 participants 
that included all four PSG stages. b PSG-specificity of the HMM states for each of the four PSG stages. 
Specificity corresponds to the probability of an HMM state occurring within a PSG stage. The bars represent 
the group average and the error bars the standard error (N = 18). In a and b horizontal lines show significant 
differences within HMM states, with p-values < 0.01 as evaluated through paired t-tests and permutation 
testing. c The mean life times of the 17 HMM states are shown by the bars, representing values averaged 
across the 18 participants. Error-bars represent the standard error across participants. Each HMM state is 
coloured according to the probability of finding it within each of the four PSG stages, i.e. their PSG 
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specificity. d The dynamics of the HMM transitions were calculated within each of the four PSG stages, in 
terms of switching frequency (‘Switching’), and e the number of different HMM states visited per time 
(‘Range of HMM states’). In d and e error bars represent standard error across participants and significant 
differences between PSG stages are denoted by stars: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Figure 9. K = 21, Sensitivity and specificity of HMM states and dynamics within 
polysomnography stages (supplement to Figure 3). a Fractional occupancies of each of the 21 HMM states 
computed within the four PSG stages corresponded to the PSG-sensitivity of the whole-brain network states. 
The coloured bars and error bars show the average and standard error, respectively, across the 18 participants 
that included all four PSG stages. b PSG-specificity of the HMM states for each of the four PSG stages. 
Specificity corresponds to the probability of an HMM state occurring within a PSG stage. The bars represent 
the group average and the error bars the standard error (N = 18). In a and b horizontal lines show significant 
differences within HMM states, with p-values < 0.01 as evaluated through paired t-tests and permutation 
testing. c The mean life times of the 21 HMM states are shown by the bars, representing values averaged 
across the 18 participants. Error-bars represent the standard error across participants. Each HMM state is 
coloured according to the probability of finding it within each of the four PSG stages, i.e. their PSG 
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specificity. d The dynamics of the HMM transitions were calculated within each of the four PSG stages, in 
terms of switching frequency (‘Switching’), and e the number of different HMM states visited per time 
(‘Range of HMM states’). In d and e error bars represent standard error across participants and significant 
differences between PSG stages are denoted by stars: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Figure 10. K = 23, Sensitivity and specificity of HMM states and dynamics within 
polysomnography stages (supplement to Figure 3). a Fractional occupancies of each of the 23 HMM states 
computed within the four PSG stages corresponded to the PSG-sensitivity of the whole-brain network states. 
The coloured bars and error bars show the average and standard error, respectively, across the 18 participants 
that included all four PSG stages. b PSG-specificity of the HMM states for each of the four PSG stages. 
Specificity corresponds to the probability of an HMM state occurring within a PSG stage. The bars represent 
the group average and the error bars the standard error (N = 18). In a and b horizontal lines show significant 
differences within HMM states, with p-values < 0.01 as evaluated through paired t-tests and permutation 
testing. c The mean life times of the 23 HMM states are shown by the bars, representing values averaged 
across the 18 participants. Error-bars represent the standard error across participants. Each HMM state is 
coloured according to the probability of finding it within each of the four PSG stages, i.e. their PSG 
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specificity. d The dynamics of the HMM transitions were calculated within each of the four PSG stages, in 
terms of switching frequency (‘Switching’), and e the number of different HMM states visited per time 
(‘Range of HMM states’). In d and e error bars represent standard error across participants and significant 
differences between PSG stages are denoted by stars: * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

 



 31 

 
Supplementary Figure 11. K = 15 Investigating transitions between whole-brain network states. 
(supplement to Figure 4). a The figure shows the 15 × 15 transition probability matrix of the HMM states 
calculated for the 18 participants that included all four PSG stages in their respective scanning session. This 
quantifies the likelihood of transitioning from any given state to any other state, giving each matrix entry: 
probability of (departure state, destination state). b A few HMM states were ‘sporadic’ and did not occur 
consistently across participants. HMM states not occurring in more than 25% of the participants were 
excluded. c The strongest transitions of the consistent HMM states were partitioned through a modularity 
analysis, and reorganised in a matrix according to the four resulting modules. d The transitions shown in c 
are presented as a transition map with each state depicted as a pie plot expressing its specificity for each of 
the four PSG stages. Arrows show the direction of the transitions with thickness proportional to the transition 
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probability. Note the similar overall structure of the transition map to the one presented in Figure 4 of the 
main text. Unlike the other numbers of states tested, K = 15 only yielded 3 modules, suggesting that the 
white and the blue module of Figure 4 have merged together in one. e Pie chart showing the total proportion 
PSG stages within the 18 participants. 
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Supplementary Figure 12. K = 17 Investigating transitions between whole-brain network states. 
(supplement to Figure 4). a The figure shows the 17 × 17 transition probability matrix of the HMM states 
calculated for the 18 participants that included all four PSG stages in their respective scanning session. This 
quantifies the likelihood of transitioning from any given state to any other state, giving each matrix entry: 
probability of (departure state, destination state). b A few HMM states were ‘sporadic’ and did not occur 
consistently across participants. HMM states not occurring in more than 25% of the participants were 
excluded. c The strongest transitions of the consistent HMM states were partitioned through a modularity 
analysis, and reorganised in a matrix according to the four resulting modules. d The transitions shown in c 
are presented as a transition map with each state depicted as a pie plot expressing its specificity for each of 
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the four PSG stages. Arrows show the direction of the transitions with thickness proportional to the transition 
probability. Note the similar overall structure of the transition map to the one presented in Figure 4 of the 
main text, including 4 separated transition modules. e Pie chart showing the total proportion PSG stages 
within the 18 participants. 
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Supplementary Figure 13. K = 21 Investigating transitions between whole-brain network states. 
(supplement to Figure 4). a The figure shows the 21 × 21 transition probability matrix of the HMM states 
calculated for the 18 participants that included all four PSG stages in their respective scanning session. This 
quantifies the likelihood of transitioning from any given state to any other state, giving each matrix entry: 
probability of (departure state, destination state). b A few HMM states were ‘sporadic’ and did not occur 
consistently across participants. HMM states not occurring in more than 25% of the participants were 
excluded. c The strongest transitions of the consistent HMM states were partitioned through a modularity 
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analysis, and reorganised in a matrix according to the four resulting modules. d The transitions shown in c 
are presented as a transition map with each state depicted as a pie plot expressing its specificity for each of 
the four PSG stages. Arrows show the direction of the transitions with thickness proportional to the transition 
probability. Note the similar overall structure of the transition map to the one presented in Figure 4 of the 
main text, including 4 separated transition modules. e Pie chart showing the total proportion PSG stages 
within the 18 participants. 
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Supplementary Figure 14. K = 23 Investigating transitions between whole-brain network states. 
(supplement to Figure 4). a The figure shows the 23 × 23 transition probability matrix of the HMM states 
calculated for the 18 participants that included all four PSG stages in their respective scanning session. This 
quantifies the likelihood of transitioning from any given state to any other state, giving each matrix entry: 
probability of (departure state, destination state). b A few HMM states were ‘sporadic’ and did not occur 
consistently across participants. HMM states not occurring in more than 25% of the participants were 
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excluded. c The strongest transitions of the consistent HMM states were partitioned through a modularity 
analysis, and reorganised in a matrix according to the four resulting modules. d The transitions shown in c 
are presented as a transition map with each state depicted as a pie plot expressing its specificity for each of 
the four PSG stages. Arrows show the direction of the transitions with thickness proportional to the transition 
probability. Note the similar overall structure of the transition map to the one presented in Figure 4 of the 
main text, including 4 separated transition modules. e Pie chart showing the total proportion PSG stages 
within the 18 participants. 
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Supplementary Figure 15. Robustness across different random initialisation of the HMM. a To make sure 
that the states inferred by the HMM were not contingent on the initialisation, we ran the HMM with 19 states 
an additional four times on the full dataset (‘Full data set’, N = 57), and five times on each of the two half-
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splits of the data (‘Half-split 1’, N = 29, and ‘Half-split 2’ N = 28). The 19 HMM states from a given 
repetition were matched to the HMM states of the original solution, using the Munkres algorithm, based on 
the intra-solution state-distances (measured using the Bhattacharyya distance between the states’ Gaussian 
distributions). The matrix shows the pairwise Bhattacharyya distances between the Gaussian distributions 
following the matching of the HMM states from the different repetition runs. As indicated by the labelling 
above the matrix, the white borders demarcate states from the various data splits. The smaller black squares 
surround 5 repetitions of each of the 19 HMM states. The consistent appearance within each of the 9 white 
squares is a sign that the HMM inferred states with consistent Gaussian distributions.  b For a pair of HMM 
states (one original and one from a repetition run) the temporal correspondence was quantified as the ratio 
between time points of overlap (simultaneous activity or inactivity) and time points of misses. The bar plot 
shows mean values and error bars show the standard deviations within data-splits. Note how that temporal 
overlaps outweighed misses for all runs of the HMM. 
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Supplementary Figure 16. Robustness of HMM results without the use of temporal filter (supplement to 
Figure 3). All plots were computed in the same way as for Figure 3, using an HMM with 19 states. The only 
difference was that the BOLD data was not temporally filtered. Note in a and b how, similarly to the results 
of the main text, select HMM states were sensitive and specific for certain PSG stages (although not for N1 
sleep). In c the overall mean life time of the HMM states is decreased compared to the results using a low-
pass temporal filter (compare with Figure 3). As a consequence, d shows increased switching frequencies 
within all of the four PSG stages. Importantly, the relative differences between the PSG stages were 
effectively unchanged (even if the significant difference between ‘Wake’ and ‘N2’ was no longer evident). 
Interestingly, in e, the number of unique HMM states visited per unit time were numerically quite stable with 
or without the use of temporal filter.   



 42 

 
Supplementary Figure 17. Differential cosine similarity maps of wakefulness-related HMM states. 
(supplement to Supplementary Figure 4). Produced to show that the differential FC maps of Supplementary 
Figure 4 were not affected by the different mean activations of the HMM states. Please note the qualitative 
overlap with maps in Supplementary Figure 4. Like for Supplementary Figure 4, the maps show the 1% most 
negative and 1% most positive weights. 
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Supplementary Figure 18.  Differential cosine similarity maps of wakefulness-related HMM states. 
(supplement to Supplementary Figure 5). Produced to show that the differential FC maps of Supplementary 
Figure 5 were not affected by the different mean activations of the HMM states. Please note the qualitative 
overlap with maps in Supplementary Figure 5. Like for Supplementary Figure 5, the maps show the 1% most 
negative and 1% most positive weights. 
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Supplementary Figure 19. Presence of sleep graphoelements in example participant. a Plotted together 
are the 19 HMM state timecourses, the markers of sleep spindles and K-complexes (SS-timecourse and KC-
timecourse), and the PSG scoring for an example participant. The SS- and KC-timecourses were based on 
AASM scoring of sleep graphoelements in the EEG data. Specifically, SS-timecourse and KC-timecourse 
were binary and of the same length as the fMRI data, with ones representing the fMRI samples during which 
the respective graphoelement occurred. b The same information for the same participant is plotted again, 
however this time the HMM state timecourses have been randomly permuted. Each permutation consisted in 
a random switching of the labels of each instance of an HMM state, keeping the number of occurrences of 
each HMM state and state transition times constant within participants. This was done 1000 times for the 
purpose of comparing correlation, sensitivity, and specificity of the HMM states to the presence of sleep 
graphoelements (see Supplementary Figures 20 and 21). c The analyses were also performed after 
convolution of the SS- and KC-timecourses with the canonical hemodynamic response function (HRF). An 
illustration of the convolution is shown in an enlarged view of the SS- and KC-timecourses from ~500 to ~ 
2000 seconds. The red timecourses with characteristic delays and undershoots represent the HRF-convoluted 
SS- and KC-timecourses for this example participant.  
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Supplementary Figure 20. Relationship between the 19 HMM states and the presence of sleep spindles. a 
The grey violin plot shows the distribution of Pearson’s correlation values computed between the timecourse 
of each HMM state and the raw timecourse of sleep spindles for each of the 57 participants that included 
sleep spindles (see Supplementary Table 3 for summary statistics of sleep spindles). The black crosses 
denote the means across participants. In red are shown the outlines of an equivalent violin plot when 
considering HRF-convolved versions of the spindle timecourses. b The sub-diagonal part of the 19×19 
matrix includes the t-statistics resulting from paired t-tests on the correlation values between each pair of the 
19 HMM states. The super-diagonal part includes the t-stats considering the HRF-convolved versions of the 
spindle timecourses. A black star in the center of an entry (x, y) denotes a significant difference between the 
corresponding pair of HMM state X and Y as evaluated through 1000 random permutations of the HMM state 
timecourses, at a significance level that has been Bonferroni-corrected for the multiple comparisons between 
pairs of HMM states. c Distributions of sensitivity of each of the 19 HMM states to sleep spindles across 
participants for raw spindle timecourses (grey) and HRF convolved spindles (red). Sensitivity was defined as 
the proportion of sleep spindles that occurred within a given HMM state. d Equivalent to b but for sensitivity 
values. e Distributions of the 19 HMM states’ specificity for sleep spindles across participants for raw 
spindle timecourses (grey) and HRF convolved spindles (red). Specificity was defined as the likelihood of 
finding a given HMM state active during a spindle, i.e. the ratio of an HMM state’s occurrences taking place 
during spindles. f Equivalent to b and d but for specificity values. g For reference are included the circle 
plots, used throughout the manuscript, indicating the specificity of each HMM state to the sleep stages, 
calculated for the 18 participants that included all sleep stages. It is clear that sleep spindles correlated higher 
with the HMM states with high specificity for N2 sleep. HMM states 3 and 6 were thus found to correlate 
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significantly higher with spindles than most of the other HMM states, while no significant difference were 
found between the two. This was true regardless of HRF convolution of the spindles. HMM states 3 and 6 
also accounted for the majority of spindle occurrences, as quantified through their sensitivity. Given the 
generally low specificity values, it is also clear that no HMM state occurred exclusively during spindles. 
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Supplementary Figure 21. Relationship between the 19 HMM states and the presence of K-complexes. a 
The grey violin plot shows the distribution of Pearson’s correlation values computed between the timecourse 
of each HMM state and the raw timecourse of K-complexes for each of the 57 participants that included K-
complexes (see Supplementary Table 3 for summary statistics of K-complexes). The black crosses denote 
the means across participants. In red are shown the outlines of an equivalent violin plot when considering 
HRF-convolved versions of the KC-timecourses. b The sub-diagonal part of the 19×19 matrix includes the t-
statistics resulting from paired t-tests on the correlation values between each pair of the 19 HMM states. The 
super-diagonal part includes the t-stats considering the HRF-convolved versions of the KC-timecourses. A 
black star in the center of an entry (x, y) denotes a significant difference between the corresponding pair of 
HMM state X and Y as evaluated through 1000 random permutations of the HMM state timecourses, at a 
significance level that has been Bonferroni-corrected for the multiple comparisons between pairs of HMM 
states. c Distributions of sensitivity of each of the 19 HMM states to K-complexes across participants for raw 
KC-timecourses (grey) and HRF convolved K-complexes (red). Sensitivity was defined as the proportion of 
K-complexes that occurred within a given HMM state. d Equivalent to b but for sensitivity values. e 
Distributions of the 19 HMM states’ specificity for K-complexes across participants for raw KC-timecourses 
(grey) and HRF convolved K-complexes (red). Specificity was defined as the likelihood of finding a given 
HMM state active during a K-complex, i.e. the ratio of an HMM state’s occurrences taking place during K-
complexes. f Equivalent to b and d but for specificity values. g For reference are included the circle plots, 
used throughout the manuscript, indicating the specificity of each HMM state to the sleep stages, calculated 
for the 18 participants that included all sleep stages. It is clear that the HMM states relate to K-complexes in 
a fashion highly similar to that of spindles, presented in Supplementary Figure 20. K-complexes correlated 
higher with the HMM states with high specificity for N2 sleep. HMM states 3 and 6 were thus found to 
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correlate significantly higher with K-complexes than most of other HMM states, while no significant 
difference were found between the two. HMM states 3 and 6 also accounted for the majority of K-complex 
occurrences, as quantified through their sensitivity. Given the generally low specificity values, it is also clear 
that no HMM state occurred exclusively during K-complexes. 
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Supplementary Figure 22. Performance of HMM using the Brainnetome atlas. a Curve showing the 
cumulative percentage of variance represented by the components of the PCA performed on the ROI 
timecourses extracted from the Brainnetome atlas (see Figure 1b for an equivalent plot for the AAL data). 
The blue and the red dashed lines show the two cases analysed; 40 PC’s ~ 85% and 70 PC’s ~ 90%, 
respectively. b Plot showing the development across HMM model orders (from 5 to 45 states) of the 
MANOVA performance of the HMM when compared to the EEG-based sleep scoring for the 18 participants 
that included all PSG stages (see Supplementary Figure 1b for an equivalent plot for the AAL data). Going 
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from 90% of the variance (red) to 85% of the variance (blue) had a significant effect on how well the HMM 
states related to the PSG scoring. Notice how the red line rarely goes below the zone representing the 
permuted, random cases, whereas the blue line emulates the original analysis on the AAL data (see curve in 
Supplementary Figure 1b). c Tracking of the median fractional occupancy of the HMM states across model 
orders, within the 18 participants that included all four PSG stages. In blue is shown the curve for 40 PC’s ~ 
85%, while the result using 70 PC’s ~ 90% is shown in red (An equivalent plot for the AAL data may be 
found in Supplementary Figure 1c). The fact that the red line is consistently lower than the blue suggests that 
using the higher percentage of variance implied a high occurrence of ‘sporadic’ HMM states that accounted 
for only small portions of the data. This is also evident in d where the HMM solution using 19 states are 
shown in more detail, for 40 PC’s on the left and for 70 PC’s on the right. These plots are equivalent to that 
of Supplementary Figure 6b, which pertains to the original HMM on the AAL data, and show the percentage 
of participants that did not include each of the 19 HMM states. Using 40 PC’s ~ 85 % of variance produced a 
result more similar to the original HMM on the AAL, with 12 HMM states being included in more than 25% 
of the participants, whereas including 70 PC’s ~ 90% meant that only 6 HMM states were represented in 
more than 25% of the participants. Error bars in b and c represent standard error across HMM states within a 
model order. 
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Supplementary Figure 23. Robustness of HMM results when using an alternative parcellation 
(Brainnetome) (Equivalent to Figure 3 but for the HMM run on 40 PC’s ~ 85% of the variance of the 
Brainnetome ROI timecourses with 19 states). a Select HMM states account for the majority of different 
PSG stages as quantified through their fractional occupancies. b In the same way as for the original analysis 
on the AAL data there is an overlap between the HMM states with high sensitivity for a given PSG stage and 
the HMM states with high specificity for the same PSG stage. c HMM states with high specificity for N3 
sleep expressed higher mean life times, as was the case for the original analysis. d The relative as well as the 
absolute values of switching were very similar to those of the original analysis on the AAL data. e Similarly 
to the switching dynamics in E, the ranges of unique HMM states visited within each PSG stage were similar 
to the original analysis. Please note that all plots were calculated from the 18 participants that included all 
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PSG stages, and that significant differences between HMM states or PSG stages were calculated in the same 
way as for Figure 3. 
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Supplementary Figure 24. Spatial correspondence between HMM states from AAL and Brainnetome in 
wakefulness-related HMM states. (Brain plots from the Brainnetome data are extracted from the HMM 
solution with 19 states on the 40 PC’s ~ 85% of the variance). To demonstrate the correspondence between 
the original HMM solution on the AAL data and the HMM solution on the Brainnetome data, the original 
brain plots of mean activation distributions (from Figure 5) are shown together with brain plots from the 
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HMM on Brainnetome. These have been matched based on visual similarity between the spatial maps and 
their specificity profiles for PSG stages, represented in pie plots. a The original wake-related HMM states 
from the AAL together with HMM states from the Brainnetome. Notice the high correspondence not only in 
spatial distribution but also in the PSG-specificity. The original HMM state 8 appeared to show similarity to 
two HMM states from the Brainnetome analysis (HMM states 16 and 3). b The original three WASO-related 
HMM states appeared to have two equivalents in the Brainnetome solution. 
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Supplementary Figure 25. Spatial correspondence between HMM states from AAL and Brainnetome in 
N1-, N2-, and N3-related HMM states. (Equivalent to Supplementary Figure 24, but for N1-, N2-, and N3-
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sleep) A) The original N1-related HMM states found two equivalents from the Brainnetome HMM states. B) 
Each of the three original N2-related HMM states had equivalents from the Brainnetome HMM, which was 
also the case for the original N3-related HMM state shown in C. 
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