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Receptor-informed network control theory
links LSDandpsilocybin to aflatteningof the
brain’s control energy landscape

S. Parker Singleton 1 , Andrea I. Luppi 2,3, Robin L. Carhart-Harris4,5,
Josephine Cruzat 6,7, Leor Roseman4, David J. Nutt 4, Gustavo Deco 7,8,9,10,
Morten L. Kringelbach 11,12,13, Emmanuel A. Stamatakis 2 &
Amy Kuceyeski 1,14

Psychedelics including lysergic acid diethylamide (LSD) and psilocybin tem-
porarily alter subjective experience through their neurochemical effects. Ser-
otonin 2a (5-HT2a) receptor agonism by these compounds is associated with
more diverse (entropic) brain activity. We postulate that this increase in
entropy may arise in part from a flattening of the brain’s control energy
landscape, which can be observed using network control theory to quantify
the energy required to transition between recurrent brain states. Using brain
states derived from existing functional magnetic resonance imaging (fMRI)
datasets, we show that LSD and psilocybin reduce control energy required for
brain state transitions compared to placebo. Furthermore, across individuals,
reduction in control energy correlates with more frequent state transitions
and increased entropy of brain state dynamics. Through network control
analysis that incorporates the spatial distribution of 5-HT2a receptors
(obtained from publicly available positron emission tomography (PET) data
under non-drug conditions), we demonstrate an association between the 5-
HT2a receptor and reduced control energy.Ourfindings provide evidence that
5-HT2a receptor agonist compounds allow formore facile state transitions and
more temporally diverse brain activity. More broadly, we demonstrate that
receptor-informed network control theory can model the impact of neuro-
pharmacological manipulation on brain activity dynamics.

Serotonergic psychedelics like lysergic acid diethylamide (LSD) and
psilocybin induce a profound but temporary alteration of perception
and subjective experience1. Combined with non-invasive neuroima-
ging such as functional MRI, these drugs offer a unique window into
the function of the humanmind and brain, making it possible to relate
mental phenomena to their neural underpinnings.

A decade of neuroimaging studies has informed novel insights
regarding psychedelic action in the brain2. One model, known as
RElaxed Beliefs Under Psychedelics (REBUS)3, integrates previous
accounts of psychedelic action (the Entropic Brain Hypothesis)4,5 with

the view of the brain as a prediction engine, whereby perception and
belief are shaped by both prior knowledge and incoming information.
The REBUS model postulates that psychedelics alter conscious
experience via their agonist action at serotonin 2a (5-HT2a) receptors,
which have especially high expression in higher-order cortical regions.
Agonist-induced dysregulation of spontaneous activity in these
regions is postulated to translate into decreased precision-weighting
on prior beliefs—which has reciprocal (enabling) implications for
bottom-up information flow. It is theorized that the observed increase
in entropy of brain activity under psychedelics is reflective of reduced
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energetic demands or barriers for the brain to navigate its dynamic
landscape. However, this hypothesis remains thus far untested.

Understanding and being able to objectively measure the
mechanism(s) of psychedelics is paramount if we aim for their ther-
apeutic use in psychiatric or neurologic disorders. Imaging the brains
of healthy individuals under the effects of psychedelics offers data
from which we can begin to build and test computational, neurobio-
logically informed models of psychedelic action. Recent work using
such approaches has shown that the effects of serotonergic psyche-
delics on the dynamics of humanbrain activity are critically dependent
on their action at 5-HT2a receptors. Whole-brain neural-mass models
have implicated the 5-HT2a receptor distribution across the cortex in
shaping brain dynamics under the effects of LSD and psilocybin6,7.

An alternative computational approach to modeling brain
dynamics is network control theory, which focuses on quantifying and
controlling how adynamical systemmoves through its state space. It is
well-known that even at rest the brain is not static, but rather it
dynamically alternates between a number of recurrent states8–15. Such
recurrent brain states may be relevant for cognition16–19 and even
consciousness20–26, and have been shown to undergo prominent
reorganization during the psychedelic state induced by LSD6,27 and
psilocybin7,28. Crucially, network control theory approaches enable
mapping of the brain’s energy landscape by quantifying the energy
required to transition between these recurrent states (Fig. 1a, b). This
type of energy can be referred to as ‘control’ or ‘transition’ energy.
Recent work utilized these tools to demonstrate that although the
resting human brain has a spontaneous tendency to prefer certain
brain state transitions over others, cognitive demands can overcome
this tendency in a way that is associated with age and cognitive per-
formance. This work demonstrates that network control theory
approaches can reveal neurobiologically and cognitively relevant brain
activity dynamics29–31.

Here, we leverage recent advances in network control theory to
probe the relationship between energetic demands and entropy in the
psychedelic state: we combine functional MRI data from two pre-
viously published experiments comparing drug (LSD32 or psilocybin33)
to placebo, with separately obtained (under non-drug conditions)
structural (whitematter) connectivity fromdiffusionMRI (dMRI)34 and
receptor density maps from positron emission tomography (PET)35.
We hypothesized that the energy required to transition between brain
states would decrease under LSD and psilocybin compared to placebo
and, furthermore, that the amount of control energy reduction would
correlate with increases in entropy on an individual level. Finally, we
tested the mechanistic hypothesis that serotonergic action at 5-HT2a
receptors is responsible for this reduction in transition energy by
demonstrating that the specific spatial pattern of 5-HT2a receptor
expressionflattens the energy landscapemore than any other receptor
distribution tested (Fig. 1c).

Results
We analyzed 30min of resting-state data acquired from 15 subjects
over two sessions, either under the influence of LSD or a placebo32. To
test the generalizability of our findings across datasets and with a dif-
ferent psychedelic compound, we replicated the analysis using 10min
of resting-state data acquired from 9 volunteers over two sessions,
either under the influence of psilocybin or a placebo33. Importantly, the
LSD scans were acquired approximately 2 h following drug/placebo
infusion in order tomeasure the “peakeffects”of the drug,whereas the
psilocybin participants were scanned immediately after infusion.

Data-driven clustering of brain activity patterns reveals recur-
rent states of opposing network activation
Our first step was to identify recurrent states of brain activity. One
commonly used approach to identifying recurrent brain states is

Fig. 1 |Mapping the energy landscape of the humanbrainwithnetwork control
theory. a We concatenated all fMRI time series together (all subjects, all condi-
tions) and employed the k-means clustering algorithm to identify common acti-
vation patterns, or states. b Using network control theory and a representative
structural connectome34, we calculated theminimum energy required to transition
between states (or maintain the same state) using each individual’s brain states

derived from the psychedelic and placebo conditions separately. Our calculations
reveal an energy landscape that is flattened by LSD and psilocybin. cWeighting the
energy calculations of the placebo brain states with inputs from PET-derived
receptor density maps of the serotonin 2a receptor35 also resulted in a flattened
energy landscape, providing a mechanistic explanation for these drug’s flattening
effects.
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through the k-means clustering algorithm6,7,29,36, whereby brain acti-
vation patterns from each individuals’ scans are grouped into a pre-
specified number of clusters k. Here, data-driven clustering of regional
activity patterns identified k = 4 stable clusters that achieved optimal
division of the data (see Materials and Methods: Extraction of brain
states for choice of k). The four clusters can be divided into twometa-
states (Meta-State 1 and Meta-State 2, Fig. 2), each composed of two
sub-states that represent opposing activation patterns (MS-1a/b and
MS-2a/b, Fig. 2). Dichotomy of the brain’s dynamic states has pre-
viously been observed29,37 and is consistent with hierarchical
organization38,39.

Psychedelicsmodulate brain dynamics by increasing occupancy
in MS-1 and decreasing occupancy in MS-2
To identify the effects of LSD and psilocybin on brain state dynamics,
each subject’s fMRI data were characterized in terms of the four
identified brain states. Fromeach subject’s temporal sequenceof brain
states (Fig. 3a) we obtained a systematic characterization of the tem-
poral dynamics of the 4 states, namely, their fractional occupancies, or
the probability of occurrence of each state (Fig. 3b, c, left), dwell times,
or the mean duration that a given state was maintained, in seconds
(Fig. 3b, c, center), appearance rates, or howoften each state appeared
per minute (Fig. 3b, c, right), and transition probabilities, or the
probability of switching from each state to every other state (Fig. 4a,
b, left).

We found that for both psychedelic and placebo conditions, the
brain most frequently occupies MS-1 (higher fractional occupancy)
whose constituent sub-states are also visited for the longest periods of
time (highest dwell times) (Fig. 3b). LSD modifies the fractional occu-
pancy of these states by decreasing the dwell times ofMS-2 and further
increasing dwell times of the already dominant MS-1 (Fig. 3b). No dif-
ferences in appearance rate for the 4 sub-states were found when
comparing the LSD and placebo conditions. In psilocybin, we found
that fractional occupancy shifted in the same direction as LSD, how-
ever these changes were not significant. Interestingly, there were no

significant changes in the dwell times under psilocybin, but there were
significant increases in the appearance rates of two of the states
(Fig. 3c). Possibly, this highlights a subtle difference in the two com-
pounds’ impact on brain dynamics or a difference in dynamics under
drug onset versus peak effects.

Empirical transition probabilities were calculated independently
for each individual and each condition (Fig. 4a, b, left). We note
changes during LSD and psilocybin that are consistent with the results
observed in Fig. 3. In the LSD data we observe significant increases in
the probability of persistence forMS-1 and corresponding decreases in
MS-2 (Fig. 4a, left, diagonal). Under psilocybin we observe decreased
persistence of MS-2 but not a corresponding increased persistence of
MS-1 (Fig. 4b, left, diagonal). Possibly this indicates a difference in the
compounds or timeline of administration. In both cases, we see an
increased probability of transitioning from states in MS-2 to MS-1
states (Fig. 4a, b, left, off-diagonal).

Network control theory reveals psychedelic-induced flattening
of the brain’s control energy landscape
We next sought to provide a direct test of our hypothesis about
decreased control energy requirements to transition between dif-
ferent states under psychedelics. To this end, we turned to network
control theory29,30,40–42, which offers a framework to quantify the
ease of state transitions in a dynamical system. Specifically, we
calculated the transition energy (TE), which is the minimum
amount of energy that would need to be injected into a network
(here, the structural connectome34) to induce transitions between
the possible states of its functional dynamics. Note that the tran-
sition energy from a given state to itself is the energy required to
remain in that state, sometimes referred to as “persistence energy”.
For each subject and condition, we calculated the energy needed to
transition between each pair of brain states. On an individual level,
brain states were defined as the centroid of all TRs assigned to each
state during that individual’s psychedelic or placebo scans. Com-
paring the two conditions, we found that both LSD and psilocybin

Fig. 2 | Recurrent states of brain activity. Group average recurrent brain states
are represented by the mean activation pattern across all subjects and conditions
for each of the 4 clusters (brain representations at the bottom of the figure). For
each brain state, we separately calculated the cosine similarity (radial plots) of its
high-amplitude (supra-mean) activity and low-amplitude (sub-mean) activity to a
priori resting-state networks91 (RSNs); resulting similarity measures are repre-
sented via radial plots29. Meta-State 1 (MS-1) is composed of two sub-states (MS-1a
andMS-1b) which are characterizedby the contraposition of the somatomotor and
ventral attention/salience networks with the default-mode network, whereas the

Meta-State 2 (MS-2;MS-2a andMS-2b) is characterized by the contrapositionof the
default-mode, somatomotor and visual networks with the frontoparietal network.
The dichotomy of these states can be observed visually in the radial plots and on
the rendered brain volumes, and is confirmed via their negative, significant Pear-
son correlation (SI Fig. 3b). States shown here are from the LSD dataset. States
derived from the psilocybin dataset are highly similar (SI Fig. 4). DAT dorsal
attention network, DMN default mode network, FPN frontoparietal network, LIM
limbic network, SOM somatomotor network, VAT ventral attention network, and
VIS visual network.
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lowered the TE (Fig. 4a/b, center left) between all possible combi-
nations of initial and final brain states.

Importantly, network control theory requires a specification of a
set of “control points” where energy is injected into the system to
induce the desired transition. For the previous analysis, we chose
uniform inputs over all brain regions. However, one can also ask
whether this effect may be driven by a specific set of regions29. This is
relevant because the changes in brain function under investigation in
the present study arise from either the administration of LSD or psi-
locybin. The serotonin 2a (5-HT2a) receptor is well established as the
site responsible for the key characteristic subjective43–46 and neural6,7,47

effects of LSD, psilocybin, and other classic serotonergic psychedelics,
and this receptor is not uniformly distributed across the brain35.
Therefore, we sought to determine if the specific regional distribution
of 5HT2a receptors in the brain could correspond to especially suitable
control points for inducing a reduction in transition energy.

To test this hypothesis, we utilized a high resolution in vivo atlas
of the serotonin receptor 5HT2a derived from PET imaging to extract
biologically relevant weights for ourmodel35. First, we recalculated the
energy matrices for each placebo condition, this time weighting the

energy injected into every region in proportion to its amount of
5-HT2a expression. In every possible transition, weobserved that the 5-
HT2a-weighted inputs provided lower TE than the uniform inputs
(Fig. 4a, b, center right).

However, it could be argued that giving additional control to
some regions will result in a lower control energy, regardless of their
particular spatial arrangement. To demonstrate that our results are
specific to 5-HT2a receptors’ spatial distribution across brain regions,
we compared the TEs obtained from the true 5-HT2a distribution,
versus 10,000 spin permutations that preserve the set of weights and
their spatial autocorrelations but not the regions they correspond
to48,49. The true distribution of 5-HT2a still resulted in significantly
lower energies (Fig. 4a, b, right), demonstrating the critical role of the
specific regional distribution of 5HT2a receptors for inducing low-
energy state transitions such as those empirically observed under the
effects of LSD and psilocybin.

In a final demonstration of the specific importance of the 5-HT2a
receptor, we investigated the shift in TEs provided by three additional
serotonin receptors (5-HT1a, 5-HT1b, 5-HT4) and the serotonin trans-
porter, 5-HTT, all obtained from the same high-resolution PET atlas35.

Fig. 3 | Temporal brain dynamics shift under psychedelics. a k-means clustering
of the BOLD time series resulted in a brain state time series for each of the indivi-
duals’ two scans29.We then calculated each brain states’ (left) fractional occupancy,
(center) average dwell time, and (right) average number of appearances perminute

for each individual and condition in the b LSD and c psilocybin datasets. Com-
parisons were made using two-sided t-tests and p-values were corrected for mul-
tiple comparisons (Benjamini-Hochberg) where indicated. *uncorrected p <0.05,
**corrected p <0.05. Source data are provided as a Source Data file.
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We compared the overall mean of the energy matrix for each indivi-
dual’s 2a-weighted calculations versus all others and found that 5-HT2a
was the most effective at lowering the overall energy to transition
between empirically defined brain states (Fig. 5). This is especially
noteworthy because serotonin 2a receptor agonismplays a prominent
role in how LSD, psilocybin, and other classic psychedelics influence
neural activity and subjective experience6,7,43–47. Together, these results
demonstrate that the 5-HT2a receptor is neurobiologically and spa-
tially well-suited for control energy landscape flattening.

Notably, the 5-HT1b receptor resulted in the second largest
energy reduction in our model. This is of particular interest as recent
animalmodels have implicated this receptor as the the potential site of
antidepressant action of selective serotonin reuptake inhibitors
(SSRIs)50 andmay be a route through which serotonergic psychedelics
like psilocybin enact their synaptogenesis and potential anti-
depressant effects51,52.

Increased flattening of the control energy landscape is asso-
ciated with more entropic brain dynamics
Crucially, the results demonstrating the specific role of 5HT2a recep-
tors in flattening the control energy landscape were based exclusively
on calculations using placebo data. Therefore, we next sought to test
how the average TE reduction (Fig. 4a, b, center left) may affect
empirical transition energies and corresponding brain dynamics.
Specifically, we show that, across the 15 individuals, the relative change
in control energy induced by LSD was significantly correlated with the
empirically observed changes in state dwell times (Fig. 6, left) and
appearance rates (Fig. 6, center), p <0.05, uncorrected.

Our results show that the more LSD lowered the average tran-
sition energy of a given subject, the more the empirically observed
dwell times decreased and the more the empirically observed

appearance rates increased. This is particularly interesting, as there
were no group-level differences in appearance rates between the
two conditions, and a mix of increased and decreased dwell times
depending on the state. While the correlations identified are con-
sistent with our hypothesis of a flattened control energy landscape
wherein lower barriers between brain states result in increased
frequency of state transitions and shorter state dwell times, it seems
this individual-level effect does not translate to a group difference
in dwell time or appearance rate (SI Fig. 5a). Interestingly, the psi-
locybin data had the same directionality of correlation between
control energy reductions and decreased dwell time (r = 0.444,
p = 0.271; n = 9) and increased appearance rate (r = −0.453,
p = 0.259, n = 9) (SI Fig. 4c). However, these data had the additional
characteristic of group-level reductions in dwell time and increases
in appearance rate under psilocybin compared to placebo that are
more straightforward to interpret under the REBUS hypothesis (SI
Fig. 5b). Future work with a larger number of subjects may allow
further interrogation of this phenomena.

Ratings of the drug’s subjective effects were also obtained from
each individual (see SI for details) and we hypothesized that transition
energy reduction by LSD or psilocybin would also predict a more
intense subjective experience. We did not find any significant corre-
lations between energyflattening and subjective ratings; extending the
present modeling framework to subjective measures may be a fruitful
avenue for future research.

Lastly, we asked whether control energy reduction induced by
LSD or psilocybin would correlate withmore complex (entropic) brain
state time series. This analysis aimed to test the theoretical link
between a flatter control energy landscape and more entropic brain
activity. One could imagine a scenario where shorter dwell times and
larger appearance rates result in a sequence that is highly predictable

Fig. 4 | The control energyneeded to transitionbetweenbrain states is reduced
by LSD, psilocybin and the spatial distribution of 5-HT2a receptormaps. a LSD
comparisons (n = 15) (b) Psilocybin comparisons (n = 9). (a, b, left) Comparison of
the empirically observed transition probabilities between states, derived from the
brain state time series, e.g. Figure 3a. (a,b, center left) Comparisonof the transition
energies calculated from placebo brain states versus those calculated from LSD or
psilocybin brain states using uniformly-weighted whole-brain inputs. LSD and psi-
locybin brain states both had significantly lower energy required for every transi-
tion. (a, b, center right) Weighting the control vector by the 5-HT2a receptor
densitymap35 results in significantly lower energies for the placebo centroids (brain
states) compared to uniformly-weighted control vector inputs. (a, b, right) To

probe the spatial specificity of the previous result, we repeated the calculations
using 10,000 spin-permuted receptor maps48. We found that the control vector
constructed using the true 5-HT2a receptor map resulted in significantly lower
energy required for nearly every transition compared to the control vector con-
structed using the shuffled receptor maps. (See SI for choice of the time-span T
over which the transition energy was computed). Comparisons for i-iii were made
with two-sided t-tests. P-values for iv were calculated as the fraction of times that
true distribution resulted in higher energies than the spun distribution. P-values
were corrected for multiple comparisons (Benjamini-Hochberg) where indicated.
*uncorrected p <0.05, **corrected p <0.05.
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(e.g. [1 2 1 2 1 2]). We wanted to test the hypothesis that the true
scenario would be the opposite—namely, that a flatter control energy
landscape would in fact correspond to an increase in the diversity of
brain dynamics. Numerous studies have linked changes in the entropy
of neuroimaging signals to thepsychedelic state5,53–57 and the ability for
these compounds to increase neural entropy via 5-HT2a agonism is
thought to be a key process in the breakdown of the functional hier-
archy of the brain and a central component of REBUS3,4,58. To test this
hypothesis, we used Lempel-Ziv compressibility to compute the

entropy rate of the temporal sequence of brain meta-states (MS-1 and
MS-2). Supporting our hypothesis, we found that the more a subject’s
energy landscape was flattened by LSD, the more entropic their brain
state time series became (Fig. 6, right).Once again, this correlationwas
not significant in the psilocybin data (SI Fig. 4c); however, we note that
the complexity measure deployed here needs particularly large effect
sizes to detect differences in such short scans, with fewTRs. This result
directly and quantitatively links a flatter control energy landscapewith
more entropic brain activity.

Fig. 5 | The serotonin 2a receptor flattens the control energy landscape more
than any other receptor tested.Weweighted our model with expressionmaps of
other serotonin receptors (5-HT1a, 5-HT1b, and 5-HT4), and the serotonin trans-
porter (5-HTT), and found that 5-HT2a resulted in significantly lower transition
energy (averaged across all pairs of states) than all others. (left) Energies calculated
from each subject’s placebo centroids in the LSD dataset (n = 15). (right) Energies
calculated from each subject’s placebo centroids in the psilocybin dataset (n = 9).

Oneachbox, the central line indicates themedian, the top andbottom lines refer to
the 75th and 25th percentiles, respectively, and the whiskers extend to the most
extreme values not considered outliers. Comparisons between 2a energies and all
other profiles within each dataset weremade using two-sided t-tests. P-values were
corrected for multiple comparisons (Benjamini-Hochberg). **corrected p <0.05.
Source data are provided as a Source Data file.

Fig. 6 | Larger reduction of average transition energy by LSD correlates with
more dynamic brain activity across individuals. Significant Pearson correlations
exist between an individual’s amount of energy reduction by LSD and the relative
change in state (left) dwell times, (center) appearance rates, and (right) entropy of
the brain state time series. Relative difference was calculated as (LSD− PL)/(LSD+

PL). Partial correlations were calculated while controlling for an individual’s head
motion (mean framewise displacement). (two-sided, n = 15, uncorrected p-values).
Psilocybin exhibited the same directionality of correlation in each case, however
none were significant (SI Fig. 4c). Source data are provided as a Source Data file.
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We provide replication of the main findings using data from the
LSD study in several ways: (a) analyzing another fMRI scan in which
subjects were listening to music (SI Fig. 7), (b) using a different brain
atlas (SI Figs. 8 and 9), (c) preprocessing the fMRI data with global
signal regression (GSR) (SI Figs. 10 and 11), (d) using a different clus-
tering algorithm (SI Fig. 12), (e) using a wide range of number of
clusters k (SI Fig. 14), (f) when clustering each condition (LSD and
placebo) separately (SI Fig. 15a, b), (g) and when clustering individuals
separately (SI Fig. 15c, d). All results support the main findings.

Discussion
Here, we combined fMRI data with separately obtained PET and diffu-
sion MRI data under the framework of network control theory to test
our hypothesis that serotonergic psychedelics like LSD and psilocybin
inducemore entropic brain activity in amanner related to a “flattening”
of the control energy landscape in the human brain. A flatter energy
landscape corresponds to lowerbarriers to transitionbetweendifferent
states of brain activity. This is theorized to correspond to a flattening of
the functional hierarchy as well58, i.e. a relaxation of the weighting of
high-level priors—thought to be a pivotal component of psychedelics’
therapeutic mechanism3. Our results demonstrate: (a) a flattening of
the brain’s energy landscape, indicated by lower control energy being
required to transition between brain states under both LSD and psilo-
cybin, and (b) a correlation between flattening of the energy landscape
(reduced energy required for state transitions) and more diverse
(entropic) sequences of brain activity under LSD. Combining fMRI with
publicly available diffusion MRI and PET information, we were further
able to provide computational evidence that (c) the serotonin 2a
receptor is especially well-positioned to bring about this flattening of
the energy landscape, over and above other 5-HT receptors.

Compared with placebo, subjects in the psychedelic condition
spent a larger fraction of time occupying states characterized by the
contraposition of the DMNwith bottom-up sensorimotor and salience
networks (MS-1), and less time in states dominated by the contra-
position between DMN and top-down fronto-parietal control network
(MS-2) (Fig. 3b). Since our analysis was carried out on resting-state
data, it is not surprising that the DMN was prominent across all four
brain states59–62. It should be noted that this regional-level, activation-
based study is not expected to capture the previously reported DMN
disintegration32 (a functional connectivity measure), nor the reduced
voxel-level blood flow or BOLD signal indexed ‘activity’ level of some
DMN nodes33 under psychedelics. Additionally, our quantification of
the brain’s energy landscape through network control theory revealed
that LSD and psilocybin lower the transition energy between all states
(Fig. 4a, b, center left). These results are supported by replications
using several variations of data, processing and analysis choices.

Given the well-known involvement of 5-HT2a receptors with the
neurobiological and subjective effects of classic psychedelics, we next
sought to determine if the spatial distribution of 5-HT2a receptors
across the human cortex could provide a mechanistic explanation for
our results. Weighting the model in proportion to the empirical
regional density of 5-HT2a receptors obtained from in vivo PET
imaging35, we found that the resulting transition energies were greatly
reduced, mirroring those of the psychedelic condition (Fig. 4a, b,
center right). Further, to demonstrate the importance of this recep-
tor’s spatial distribution, we tested the true 5-HT2a receptor distribu-
tion against a spatial autocorrelation preserving null model (i.e. spin
test)48 and found that the original map consistently resulted in lower
energies than the shuffled maps (Fig. 4a, b, right). The calculations
were also repeated with other subsets of the 5-HT receptor class, and
5-HT2a receptor was the most effective at reducing energy (Fig. 5),
consistent with the known specificity of LSD and psilocybin for this
receptor.

The Entropic Brain Hypothesis (EBH)4,5 proposes that increased
neural entropy brought forth by psychedelics is reflected in subjective

experience as an increase in the richness or depth of conscious
content63. We found that at an individual subject level, increased LSD-
induced transition energy reductions correlated with more dynamic
brain activity (Fig. 6, left, center), thereby relating the theoretical
interpretation of transition energy with its role in the empirical de-
stabilization of brain state dynamics. We also found that the entropy
rate of an individual’s sequence ofmeta-states increased in proportion
to the LSD-induced energy reduction (Fig. 6, right), thereby relating
the energy landscape of the brain to its entropy.

More broadly, these results demonstrate that the combination of
network control theory and specific information about neurobiology
(here exemplified by receptor distributions from PET) can offer pow-
erful insights about brain function and how pharmacology may mod-
ulate it—opening the avenue for analogous studies on the effects of
pharmacological interventions in clinical populations (e.g. depression,
schizophrenia)30,31. While other recent computational approaches have
successfully modeled the effects of serotonergic compounds on
dynamic brain states6,7, the present approach is the first to do so while
also quantitatively evaluating the energy landscape of the psychedelic
state and its relationship to the entropy of spontaneous neural activity.

Although small sample size is common inneuroimaging studies of
psychedelics and other states of altered consciousness due to the
inherent difficulties of collecting such data, future replications with
larger samples would be appropriate. We also acknowledge that these
datasets have been studied extensively before6,7,27,32,33,57,58,64–68 and
replications in different datasets will be warranted to ensure the gen-
eralizability of these results. Although the LSD dataset ismore suitable
for obtaining robust measurements of brain dynamics using the
methods presented here, primarily because of the longer scans, and, in
addition, the larger sample size, we still found that psilocybinmodified
the brain’s energy landscape and dynamics in a similar fashion to LSD.
Future experiments will be necessary to determine if the subtle dif-
ferences in results found between LSD and psilocybin are a result of
sample size, scan length, or pharmacodynamics (different receptor
profiles, metabolism, or “peak” versus onset effects).

One other consideration is the objective quality of the clustering—
because fMRI measures the smoothly varying hemodynamic response
to neuronal activation (BOLD)69,70, theremay be suboptimal separation
of clusters. For example, even if neuronal activity does switch between
states near-instantaneously, there will still be a smoothing of the
measured activity in the fMRI which would result in some TRs occur-
ring at the boundaries of the states. Despite this potential limitation,
our current work and previous studies on dynamic states from fMRI
have revealed physiologically and behaviorally meaningful cluster-
based metrics7,16,27–29,71–73.

As used here, the term “energy” denotes the magnitude of the
input that needs to be injected into the system (the brain’s structural
connectome) in order to obtain the desired state transition. It should
not be confused withmetabolic energy of ATPmolecules, nor with the
energy quantified through connectome harmonic decomposition,
which has also been investigated in the context of the LSD dataset64,67

and other states of altered consciousness65. It is also not a direct
measure of the brain’s variational free energy landscape74, an infor-
mation theoretic topic foundational to REBUS. We hypothesize that
the empirical changes in control energy demonstrated here indicate a
flattening of the posterior, which may or may not arise from a relaxa-
tion of prior beliefs and a flattening of the free energy landscape as
posited by REBUS. Future work will be required to determine if any
direct relationship exists between free energy and control energy.

Additionally, we had hypothesized that the transition energy
modifications by LSDwould correlate with our participants’ subjective
experience as captured by intra-scanner visual analog scale ratings,
and the 11-factor states of consciousness (ASC) questionnaire75,76 taken
at the end of the day. There may be numerous factors that limit our
ability to model these effects. Psychedelics have been found to impair
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some aspects of memory recollection in humans77 (though not auto-
biographical memory recollection78), which may arguably impact on
the fidelity of post-hoc subjective ratings and how they correlate with
acute, objective brain measures. In addition, both subjective experi-
ence ratings and the relative energy landscape (baseline or drug) may
be impacted by each individual’s prior psychedelic use, individual
differences in pharmacological dose response, as well as their own
unique structural connectome and 5-HT2a receptor distribution.
Indeed, the structural connectome and the PET data used in our ana-
lysis were representative examples obtained frompopulation averages
(not under drug conditions), rather than unique data derived from
each individual in our study. Although these measures are thought to
be less variable across individuals than brain activity dynamics, future
work could explore how individual differences in the structural con-
nectome or receptor maps influence the energy landscape—and pos-
sibly subjective experiences.

Finally, our approach is based on network control theory, which
differs from other recent computational investigations using e.g.
whole-brain simulation through dynamicmean-fieldmodeling of brain
activity6,7,22. These latter approaches employ a neurobiologically rea-
listic model of brain activity based on mean-field reduction of spiking
neurons into excitatory and inhibitory populations, and have been
used to account for non-linear effects of 5HT2a receptor neuromo-
dulation induced by psychedelics. In contrast, network control theory
relies on a simpler linear model, which we employed due to its ability
to address our prediction that transition (control) energies would be
reduced under psychedelics. Additionally, recent evidence suggests
that most of the fMRI signal may be treated as linear79,80. By using the
same linear equation for modeling both the psychedelic and placebo
states, we quantify relative changes in the energy landscape while
keeping the dynamics of the model the same for each case; implicitly,
this also means that we assume that the underlying structural con-
nectivity is providing the same contribution in both conditions.
However, using different models for the two cases may represent an
avenue for future research. Combining both approaches to capitalize
on the strengths of each will be a fruitful avenue for future work.

For the first time, we apply a framework for receptor-informed
network control theory to understand how the serotonergic psyche-
delics LSD and psilocybin influence human brain function. Combining
fMRI, diffusion MRI, PET and network control theory, we present evi-
dence supporting the hypothesis that psychedelics flatten the brain’s
energy landscape and, furthermore, provide amechanistic explanation
for this observed energy reduction by demonstrating that the
empirical spatial distribution of 5-HT2a receptor expression is parti-
cularly well-suited to flatten the brain activity landscape. This work
highlights the potential of receptor-informed network control theory
to allow insights into pharmacological modulation of brain function.

Methods
Ethics and approval
The original studies were approved by the National Research Ethics
Service committee London-West London and conducted in accor-
dancewith the reviseddeclarationofHelsinki (2000), the International
Committee on Harmonization Good Clinical Practice guidelines, and
National Health Service Research Governance Framework. Imperial
College London sponsored the research,whichwas conducted under a
Home Office license for research with schedule 1 drugs. For both stu-
dies, healthy participants were recruited via word of mouth and pro-
vided written informed consent to participate after study briefing and
screening for physical and mental health.

Data collection: LSD
Data acquisition is described in detail previously32. In brief, twenty
healthy volunteers underwent two MRI scanning sessions at least

14 days apart. A fully randomized, double-blind design is often
considered the gold standard; however, experimental blinding is
known to be ineffective in studies with conspicuous interventions.
Thus, a single-blind, balanced-order design with an inert placebo
(offering the simplest and “cleanest” possible control condition)
was considered an effective compromise. On one day, participants
were given placebo (10mL saline), and on the other day they
received LSD (75 μg in 10mL saline), infused over two minutes,
approximately 2 h before resting-state scanning. Post-infusion,
subjects had a brief acclamation period in a mock fMRI scanner. On
each scanning day, three 7:20min eyes-closed resting-state scans
were acquired. The first and third scan had no stimulation, while the
second scan involved listening to music; this scan was not used in
this analysis as we were interested in dynamics in the absence of
external stimulation. BOLD fMRI was acquired at 3 T with TR/TE =
2000/35ms, FoV = 220mm, 64 × 64 acquisition matrix, parallel
acceleration factor = 2, 90 flip angle. Thirty- five oblique axial slices
were acquired in an interleaved fashion, each 3.4mm thick with
zero slice gap (3.4mm isotropic voxels). One subject was excluded
due to anxiety, and 4 due to excessive head motion, leaving
15 subjects (four women; mean age, 30.5 ± 8.0) for analysis. Prin-
cipally, motion was measured using framewise displacement (FD).
The criterion for exclusion was subjects with >15% scrubbed
volumes when the scrubbing threshold is FD = 0.5. After discarding
these subjects we reduced the threshold to FD = 0.4. The between-
condition difference in mean FD for the 4 subjects that were dis-
carded was 0.323 ± 0.254 and for the 15 subjects (four women;
mean age, 30.5 ± 8.0) that were used in the analysis the difference in
mean FD was 0.046 ± 0.032 (p = 0.0002).

Data collection: psilocybin
Data acquisition is described in detail previously33. In brief, fifteen
health volunteers underwent two MRI scanning sessions at least
14 days apart. In each session, subjects were injected. with either psi-
locybin (2mg dissolved in 10mL of saline, 60-s i.v. injection) or a
placebo (10mL of saline, 60-s i.v. injection) in a counterbalanced
design. The infusions began exactly 6min after the start of the 12-min
fMRI scans and lasted 60 s. The subjective effects of psilocybin were
felt almost immediately after injection and sustained for the remainder
of the scanning session. The 5min of post-infusion data were used for
the present analysis. BOLD-weighted fMRI data were acquired at 3 T
using a gradient echo EPI sequence, TR/TE 3000/35ms, field-of-
view = 192mm, 64 × 64 acquisition matrix, parallel acceleration
factor = 2, 90° flip angle. Fifty-three oblique axial slices were acquired
in an interleaved fashion, each 3mm thickwith zero slice gap (3 × 3 × 3-
mm voxels). Following the same exclusion criteria for motion descri-
bed above, nine subjects (two women; mean age, 32 ± 8.9) were kept
for analysis.

Data preprocessing
Data pre-processing utilized AFNI, Freesurfer, FSL and in-house
code32,33. Steps included (1) removal of first three volumes; (2) de-
spiking; (3) slice time correction; (4) motion correction (Please see SI:
Motion for additional steps taken to account for motion); (5) brain
extraction; (6) rigid body registration to anatomical scans; (7) non-
linear registration to 2mm MNI space; (8) scrubbing - using a frame-
wise displacement threshold of 0.4. The maximum number of scrub-
bed volumes per scan was 7.1%; scrubbed volumes were replaced with
the mean of the preceding and following volumes; (9) spatial
smoothing; (10) band-pass filtering (0.01 to 0.08Hz); (11) de-trending;
(12) regression out of 6 motion-related and 3 anatomical-related nui-
sance regressors. Lastly, time series for 462 gray matter regions81 were
extracted (Lausanne scale 4, sans brain-stem). Regional time-series
were de-meaned prior to analysis.
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Structural connectivity network construction
Since diffusion MRI was not acquired as part of the LSD study, the
structural connectome used for network control theory analysis was
identical to the one used in priorwork27. Namely,we relied ondiffusion
data from the Human Connectome Project (HCP, http://www.
humanconnectome.org/), specifically from 1021 subjects in the 1200-
subject release82. A population-average structural connectome was
constructed and made publicly available by Yeh and colleagues in the
following way34. Multishell diffusion MRI was acquired using b-values
of 1000, 2000, 3000 s/mm2, each with 90 directions and 1.25mm iso-
voxel resolution Following previous work27,83, we used the QSDR
algorithm84 implemented in DSI Studio (http://dsi-studio.labsolver.
org) to coregister the diffusion data to MNI space, using previously
adopted parameters83. Deterministic tractography with DSI Studio’s
modified FACT algorithm85 then generated 1,000,000 streamlines,
using the same parameters as in prior work27,41,83, specifically, angular
cutoff of 55◦, step size of 1.0mm, minimum length of 10mm, max-
imum lengthof 400mm, spindensity function smoothingof0.0, and a
QA threshold determined by DWI signal in the CSF. Each of the
streamlines generated was screened for its termination location using
an automatically generated white matter mask, to eliminate stream-
lines with premature termination in the white matter. Entries in the
structural connectome Aij were constructed by counting the number
of streamlines connecting every pair of regions i and j in the Lausanne-
46381 (sans brain-stem) and augmented Schaefer-232 atlas86,87 as done
previously27,83. Lastly, streamline count was normalized by the number
of voxels contained in each pair of regions.

5-HT receptor mapping
Details for obtaining the serotonin receptor density distribution have
beenpreviously described35 howeverweprovide a brief summaryhere.
PET data for 210 participants (not under the influence of psychedelics)
were acquired on a Siemens HRRT scanner operating in 3D acquisition
mode with an approximate in-plane resolution of 2mm (1.4mm in the
center of the field of view and 2.4mm in cortex)88. Scan time and frame
length were designed according to the radiotracer characteristics. For
details on MRI acquisition parameters, which were used to coregister
thedata to a commonatlas, seeKnudsen et al.89. The voxelwise average
density (Bmax) maps for each receptor were parcellated into regions
of interest the Lausanne81 and augmented Schaefer86,87 atlases.

Extraction of brain states
Following Cornblath et al.29, all subjects’ fMRI time series for both
conditions were concatenated in time and k-means clustering was
applied to identify clusters of brain activation patterns, or states.
Pearson correlationwas used as the distancemetric and clusteringwas
repeated 50 times with different random initializations before choos-
ing the solution with the best separation of the data. To further assess
the stability of clustering and ensure our partitions were reliable, we
independently repeated this process 10 times and compared the
adjusted mutual information (AMI)90 between each of the 10 resulting
partitions. The partition which shared the greatest total AMI with all
other partitions was selected for further analysis. In general, we found
that themutual information shared between partitions was quite high,
suggesting consistent clustering across independent runs (see SI:
Assessing the stability of clustering). We chose the number of clusters
k via the elbow criterion, i.e. by plotting the variance explained by
clustering for k = 2 through 14 and identifying the “elbow” of the plot,
which was between 4–6 across the various partitions. In addition,
increasing k beyond k = 5 resulted in a gain of less than 1% of variance
explained by clustering, a threshold used previously for determining k
(see SI: Choosing k)29. We chose k = 4 for its straightforward and
symmetric interpretation, however the energy landscape findings are
replicated with k = 2–14 and all findings for k = 5 are provided in the
Supplementary Information.

Characterization of brain states and their hierarchy
Each cluster centroid was characterized by the cosine similarity
between it and binary representations of seven a priori defined
RSNs29,91 as shown in the radial plots of Fig. 2. Because the mean signal
from each scan’s regional time series was removed during bandpass
filtering, positive values in the centroid reflect activation above the
mean (high-amplitude) andnegative values reflect activationbelow the
mean (low-amplitude). To quantify the hierarchical relationship
between centroids observed in the radial plots, we calculated the
Pearson correlation values between all centroids (SI Fig. 3b) and
grouped the anti-correlatedpairs together, and refer to each individual
centroid as a sub-state and the pair collectively as a meta-state29,37. For
replications with other data or processing choices, the states were
ordered and labeled based on their maximum correlation with the
original 4 centroids in Fig. 2.

We can extract (1) group-average centroids by taking the mean of
all TR’s assigned to each cluster (all subjects, all conditions) (shown in
Figs. 2), (2) condition-average centroids by taking the mean of all TR’s
assigned to each cluster separately for each condition (shown in SI
Fig. 6; placebo condition-average centroids were used for Fig. 4a, b,
right and Fig. 5 calculations), and (3) individual condition-specific
centroids by taking the mean of all TRs assigned to each cluster for a
single subject and condition (used for Fig. 4a, center left & center right
calculations). When taking condition-average centroids (LSD and PL),
we find that these two sets of centroids are highly correlated with one
another (SI Fig. 6d), and thus are also very similar to the group-average
centroids shown here.

Temporal brain state dynamics
We then analyzed the temporal dynamics of these brain states to
observe how they change after administration of LSD and
psilocybin29. The fractional occupancy of each state was deter-
mined by the number of TRs assigned to each cluster divided by the
total number of TRs. Dwell time was calculated by averaging the
length of time spent in a cluster once transitioning to it. Appear-
ance rate was calculated as the total number of times a state was
transitioned into per minute. Transition probability values were
obtained by calculating the probability that any given state i was
followed by state j.

Energy calculations
Network control theory allows us to probe the constraints of white-
matter connectivity on dynamic brain activity, and to calculate the
minimum energy required for the brain to transition from one acti-
vation pattern to another29,40,92. Here, we utilized network control
theory to understand the structural and energetic relationships
between these states and the 5-HT2a receptor distribution. While this
procedure has been detailed elsewhere29, we summarize briefly here
and in the Supplemental Information. We obtained a representative
NxN structural connectome A obtained as described above using
deterministic tractography from HCP subjects (see Methods and
Materials; Structural Connectivity Network Construction), whereN is the
number of regions in our atlas. We then employ a linear time-invariant
model:

_xðtÞ=AxðtÞ + BuðtÞ ð1Þ

where x is a vector of lengthN containing the regional activity at time t.
B is an NxN matrix that contains the control input weights. B is the
identity matrix for uniform inputs and contains the regional receptor
density information in the diagonal when incorporating the 5-HT
receptor maps. For the latter case, the diagonal of B was set to 1 plus
the normalized regional receptor density value, resulting in a diagonal
matrix whose non-zero entries were between 1 and 2. This computa-
tional approach allows us to compute the transition energy as the
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minimum energy required to transition between all pairs of the
substates.

The energy calculations in Fig. 4a, b (center left) consisted of
separate calculations for each individual’s drug and placebo centroids
separately, (center right) utilized each individual’s placebo centroids
while varying the control input weights B, and (right) used the group
average placebo centroids, and B was varied for each random per-
mutation. Figure 5 again used each individual’s placebo centroids,
while varying control input weights B.

Lempel-Ziv complexity
In order to quantify the entropy of each subject’s brain state time
series, we chose the widely used Lempel-Ziv algorithm93,94; this algo-
rithm assesses the complexity of a binary sequence in terms of the
number of unique patterns it contains. A sequence that contains a
larger number of unique patterns is more diverse, making it less pre-
dictable and therefore more entropic. The normalized Lempel-Ziv
complexity (also known as Lempel-Ziv compressibility) is then the
number of patterns found in the sequence, divided by the total length
of the sequence. Inorder to apply this algorithm toour brain state time
series, we first had to convert them to binary sequences that returned
0 or 1 for each time point. To do so, we considered the natural
grouping of our 4 brain states into two meta-states (Meta-State 1 and
Meta-State 2). We consider this simplification to be justified by the fact
that direct transitions between sub-states (e.g. MS-1a to MS-1b) were
extremely rare (SI Fig. 16a), thereby allowing us to reduce the 4-state
time series to a 2-state time series while losing very little information
regarding transitions.

Statistical comparisons
The 5-HT2a - weighted inputs from the true receptor distribution were
compared to the randomly shuffled distributions via a permutation
test where the true receptor distribution was spin-permuted and the
energymatrix re-calculated 10,000 times48. P-valueswere calculated as
the fraction of times that the randomized distribution resulted in a
lower energy than the true distribution. All other metric comparisons
were achieved using a two-sided paired t-test of groupmeans andwere
corrected for multiple comparisons with Benjamini-Hochberg where
correction is indicated.

Citation and gender diversity statement
Recent work in neuroscience and other fields has identified a bias in
citation practices such that papers from women and other minorities
are under-cited relative to the number of such papers in the field95–99.
Here, we sought to proactively consider choosing references that
reflect the diversity of the field in thought, form of contribution,
gender, and other factors. We used classification of gender based on
the first names of the first and last authors96,100, with possible combi-
nations including male/male, male/female, female/male, and female/
female. Excluding self-citations to the first and last authors of our
current paper, the references contain 58.82% male/male, 15.29% male/
female, 18.82% female/male, and 7.06% female/female. We look for-
ward to future work that could help us to better understand how to
support equitable practices in science.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The fMRI LSD data are freely available at https://openneuro.org/
datasets/ds003059/versions/1.0.0. The voxelwise receptor density
maps are freely available at: https://xtra.nru.dk/FS5ht-atlas/. All other
functional and structural data, along with parcellated receptor maps

and data to reproduce the main figures are available on our Zenodo
repository101. Source data are provided with this paper.

Code availability
This project used open-source code cited in the main text, as well as
codepublishedbyCornblath et al.29 andwas carriedout usingMATLAB
R2017a and R 3.2.5. A code repository for reproducing the analysis is
available on Zenodo101.
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