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Brain songs framework used for discovering the
relevant timescale of the human brain
Gustavo Deco1,2,3,4, Josephine Cruzat 1,5 & Morten L. Kringelbach5,6

A key unresolved problem in neuroscience is to determine the relevant timescale for

understanding spatiotemporal dynamics across the whole brain. While resting state fMRI

reveals networks at an ultraslow timescale (below 0.1 Hz), other neuroimaging modalities

such as MEG and EEG suggest that much faster timescales may be equally or more relevant

for discovering spatiotemporal structure. Here, we introduce a novel way to generate whole-

brain neural dynamical activity at the millisecond scale from fMRI signals. This method allows

us to study the different timescales through binning the output of the model. These time-

scales can then be investigated using a method (poetically named brain songs) to extract the

spacetime motifs at a given timescale. Using independent measures of entropy and hierarchy

to characterize the richness of the dynamical repertoire, we show that both methods find a

similar optimum at a timescale of around 200ms in resting state and in task data.
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It is well-known from physics that the relevant timescale of a
complex system depends in a non-linear way on the timescale
of the individual components1. In brain science, a prototypical

example is the demonstration that the timescale of a randomly
connected population of neurons is not the same as that of the
individual neurons2. At the whole-brain level, the problem of the
relevant time-scale is significantly non-trivial given the hetero-
geneous timescales of the many types of neural elements and
synapses. Furthermore, the neural elements are not randomly
connected across the whole-brain but are shaped by a very par-
ticular underlying anatomical connectivity3. Overall, this creates a
difficult and yet unsolved question of finding the relevant time-
scale for discovering the spatiotemporal structures underlying
whole-brain processing. A further complication is the current lack
of appropriate measurement equipment for obtaining different
spatial and temporal information across the whole human brain.
For example, traditional neurophysiology only allows access to
multiple neurons at the milliseconds level but not at the whole-
brain level. In contrast, neuroimaging can provide whole-brain
information but is restricted in the temporal domain to mea-
suring haemodynamic activity on the scale of seconds (functional
magnetic resonance imaging, fMRI) or somewhat limited in the
spatial domain (encephalography, EEG or magnetoencephalo-
graphy, MEG)4.

The question of relevancy of a given timescale is dependent on
the experimental measurements and the question of interest. As
an example, think of the difference between weather and climate,
where some experimental data such as rain is measured on the
timescale of minutes and hours, while wet seasons are measured
on the timescale of months, and climate change on the timescale
of decades5. Thus, if we are interested in the prediction of rainfall,
the relevant timescale of experimental data is over minutes and
hours, while measurements taken over, say, seconds, months or
years are not particularly helpful.

The key question investigated here is finding the relevant
timescale for obtaining the spatiotemporal structures underlying
whole-brain dynamics to reflect the temporal evolution of spatial
brain networks. More specifically we use independent component
analysis (ICA) to estimate the spatial co-activation patterns and
track the activity of these patterns over time. This description of
the temporal evolution of underlying spatial networks we here
call spacetime motifs. In particular, we study the relevant time-
scale for maximising the richness of repertoire of spacetime
motifs, i.e. by studying the entropy of the switching activity
between all possible motifs in a brain state (see Methods). In
order to be able to answer this question, we require quantitative
measurements of whole-brain activity across timescales from
milliseconds to seconds and minutes.

Over the last decade, much progress has been made in iden-
tifying brain processing of information by assuming that a good
quantitative account of brain processing of information can be
found in spatial brain maps obtained from fMRI data6,7. In
particular, resting state networks (RSN) on the ultraslow (below
0.1 Hz) timescale have been identified using a variety of techni-
ques under the resting state condition, i.e. without stimulation or
task8. Nevertheless, it is not clear that this spatial information of
RSNs provides the full description of the rich repertoire of
spacetime motifs across the human brain. Other researchers have
started to use MEG, which provides much faster information on
the milliseconds timescale and have found similar spatial RSNs to
those found at the ultraslow timescale9–11. Yet, the similarity in
terms of the static spatial information may not be the most
relevant. Interestingly, a Hidden Markov Model (HMM) has been
used to identify faster states in MEG with some spatial similarities
to RSNs but importantly found states with a lifetime of around
200 ms12. Still, the authors did not investigate to what extent

these fast brain states are involved in creating a more or less rich
repertoire of spacetime motifs.

Furthermore, the question of timescale has been explored using
neuronal avalanches13,14. The results suggest that the repre-
sentation of specific objects is not likely to be found at the tem-
poral scale of avalanches, but rather at the scale of their
sequences14, perhaps similar to those found for spacetime motifs.

In order to continue the advance in resolving the question of
timescale in humans and at the whole-brain level, we developed a
method, tentatively named ‘brain songs’ with poetic license as an
extension of the previous historically named ‘cortical songs’ and
‘cell assemblies’15–17 but perhaps better called ‘extraction of
whole-brain spacetime motifs’. This methodology combines two
concepts: (1) using whole-brain computational modelling of
neuroimaging timeseries to recover the underlying neurodyna-
mical timeseries of the data (in milliseconds) and (2) estimating
the significant spacetime motifs emerging at a given timescale and
to use the whole-brain measures of entropy and hierarchy to
estimate the relevance and richness of the underlying dynamical
repertoire. Here, we use an extension of our previous ignition-
based hierarchical measures18,19 (see Methods). The spacetime
motifs are the whole-brain spatiotemporal patterns resulting from
this process. Using this novel application for extracting spacetime
motifs at the whole-brain level, we can study broadcasting of
information across the whole brain over all timescales using
measures of entropy, hierarchy and dynamic functional con-
nectivity (FC), going beyond existing methods merely estimating
static spatial maps. As such it is using state-of-the-art statistical
methods to allow a systematic investigation of many timescales
from milliseconds to seconds20. This method can provide evi-
dence for the optimal timescale underlying the human brain’s
rich spatiotemporal dynamical repertoire. More generally, our
novel approach allows empirical investigations to recover the
many timescales of neural signals at the whole-brain level, thus
significantly improving on the natural constraints of the tools
being used currently.

We describe the discovery of a fundamental finding for theo-
retical and experimental neuroscience, namely an optimum
timescale of around 200 ms using whole-brain modelling of
resting state and task data and characterizing the richness of the
dynamical repertoire using independent measures of entropy and
hierarchy. The causal mechanistic results reveal that the relevant
timescale of the human brain emerges from network properties
and specifically the structural connectivity coupling. Furthermore,
the proposed novel brain songs framework could help resolve the
underlying spatiotemporal dynamics of brain processing for other
brain states.

Results
Discovering the timescale of human brain processing. We were
interested in determining the optimal timescale for discovering
relevant spatiotemporal structures maximising the richness of
repertoire of spacetime motifs underlying human brain proces-
sing. We used whole-brain modelling to generate whole-brain
neural activity at any timescale by fitting the model to existing
neuroimaging BOLD fMRI data and generating timescales from
milliseconds to seconds by binning the output of whole-brain
model’s underlying millisecond timescale.

We combined and extended existing methods for extraction of
spatiotemporal structures (spacetime motifs) from this whole-
brain neural activity, allowing us to quantify the richness of the
repertoire of the human brain.

The full pipeline is shown in Fig. 1, demonstrating how whole-
brain computational modelling constrained by the underlying
anatomical connectivity (diffusion MRI, dMRI) can fit the BOLD
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fMRI timeseries (Fig. 1a). Since the underlying model is a realistic
neuronal model including AMPA, GABA and NMDA receptors
(see Methods and Fig. 1c, d), we are able to generate the neuronal
timeseries at the milliseconds level for the optimal working point
of the model (Fig. 1b) fitted to the empirical BOLD fMRI data
(Fig. 1d) using the FC and, most importantly, the global
synchronisation level (see Methods); precisely constraining the
working point of the model. We wanted to show the robustness of
this methodology and therefore on purpose chose to use a dataset
with relatively few participants (16), long TR of 3.03 s and
relatively short resting state duration (~7 min).

Figure 2 shows the precise algorithm used for the extraction of
whole-brain spacetime motifs obtained from the binned data at
different timescales. The first step is summarised in Fig. 2a which
is to binarise the averaged time bin neuronal data by extracting
events following the established procedures of Tagliazucchi21 and
for the ignition method18,19. In short, an event for a given brain

region is defined by binarising the transformed averaged time bin
neuronal time series into z-scores zi(t) and imposing a threshold θ
such that the binary sequence σi(t)= 1 if zi(t) > θ, and is crossing
the threshold from below, and σi(t)= 0 otherwise. Please note
that this method is threshold-independent as shown by
Tagliazucchi21 given that it uses the so-called Poincaré section
(see Methods).

In Fig. 2b, c we show how spacetime motifs are extracted using
the established method for detecting neuronal assemblies from
spike data20. Briefly summarising this method, which uses three
main steps: (1) Construction of the event matrix, where events are
binned; (2) Determination of the number of spacetime motifs, as
the eigenvalues above the maximum of the eigenvalues of the null
hypothesis distribution based on random matrix theory, following
the Marčenko–Pastur distribution22; and (3) Extraction of
spacetime motifs using ICA and estimation of corresponding
activity, where co-activation patterns are found and used to track
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Fig. 1 General whole-brain modelling scheme for generating milliseconds time series from BOLD data. a Extracting the BOLD time series from fMRI with a
typical time scale of 2 s. b These BOLD time series are generated by neural activity on the scale of milliseconds. This scale is fundamental to be able to
investigate the relevant time scale of brain activity. c The transformation from slow to fast time scale is accomplished by whole-brain modelling, where we
use the slow data to fit a balanced dynamic mean field model with realistic synaptic dynamics and shaped by the underlying anatomical skeleton. d The
optimal working point of the model is found using the optimal global synchronisation level (red line shows the quadratic error of the difference between the
empirical and simulated Kuramoto order parameters, see Methods) and fitting to the static functional connectivity (FC, black line shows the correlation
between the empirical and simulated static FC matrices). At the optimal working point (corresponding to the minimum of the synchronisation fit, shown in
orange box), the model generates the milliseconds time series which is used to find the relevant time scale
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the activity over time of the spacetime motifs. In other words, the
spacetime motifs are the non-thresholded components extracted
by ICA.

The spacetime motifs and corresponding probabilities allow us
to compute the richness of the dynamical repertoire at different
timescales as measured with entropy and hierarchy of functional
brain organisation (see Methods). There are essentially four
different possible scenarios of how this may vary with timescale,
whether flat, monotonic decrease or increase or having an
optimum (Fig. 2d).

The entropy characterises explicitly the richness of the
repertoire from a probabilistic perspective. Complementarily,
the measure of hierarchy is a variation on the ignition-based
hierarchical measures18,19. The main idea is to define the
relevancy of each brain region for the broadcasting of information
across the whole brain. For this, we define the ‘cohesiveness’ of
each brain region as the summation of the product of three things
for a given spacetime motif: the degree of participation, the
probability and the ‘broadness’ defined as its size (see Methods).
The hierarchy is the degree of diversity of brain regions according
to the level of cohesiveness, or more formally the standard
deviation of the cohesiveness across all brain areas.

Figure 3a shows the entropy and hierarchy measured as a
function of the timescale (binning size). We show the spacetime
motifs for four timescales [very fast (10 ms), optimal (200 ms),
slow (1000 ms) and very slow (2000 ms)] in terms of the
Transition Probability Matrix (TPM, Fig. 3b), probability state
space (Fig. 3c) and the patterns of the extracted spacetime motifs
(Fig. 3d).

As can be seen from Fig. 3a, we found that both the entropy
(red line) and hierarchy (blue line) measures consistently achieve
a maximum at around 200 ms, while the static grand average FC
(orange line) monotonically increases. This confirms our
assumption that grand average FC measures are not well suited
for characterising the relevant timescale for brain processing,
whereas entropy and hierarchy are clearly highly appropriate

measures for discovering the relevancy of having a rich dynamical
repertoire at a given timescale.

For the relevant spacetime motifs emerging at 200 ms, it is
remarkable how uniformly distributed the individual states are in
terms of their probability of occurrence (see Fig. 3c). In contrast,
in the other timescales of 10, 1000 and 2000 ms, the distribution
of individual states is much less evenly distributed, suggesting
that certain states are dominating and thus leading to
impoverished dynamical repertoires. Furthermore, at these
suboptimal timescales there are fewer spacetime motifs (11, 10
and 9 states) than at optimal timescale of 200 ms (15 states). This
suggests that we could be missing crucial information if we try to
characterise the spatiotemporal networks at the wrong timescale.

The individual spacetime motifs at 200 ms are shown rendered
on the standard brain in Fig. 4. As can be seen, these brain states
resemble known RSNs, e.g. networks 6 and 15, which correspond
to the frontal part of the default mode network and the visual
network, respectively. The other networks resemble sub-
components and lateralised versions of the classical RSNs. We
stress here the resemblance rather than any formal equivalence to
RSNs.

Given that the timescale of 2000ms must be closely related to
the timescale used for classical resting state analyses of BOLD
data, we show in Fig. 5 a comparison of the visual network and
frontal part of the default mode network between the brain states
found in the spacetime motifs at 2000 ms and at 200 ms. As can
be seen, the networks are very similar but of course the
underlying state probability is different. Thus the previous
methodology used for extracting RSNs are valid for finding the
spatial components but of course less suitable for extracting the
underlying temporal dynamics given the inherent temporal
constraints of BOLD signals. The results presented here offer a
potential solution to extracting both time and space structure
from the richness of the repertoire involved in brain processing.

After having shown that methodology clearly works with a
relatively challenging dataset, we then set about to confirm the
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Fig. 2 Extraction of spacetime motifs. a In order to study the relevant time scale, we create different bin sizes of the milliseconds neural time series. The
middle panel shows the data with 10, 200, 1000ms bin sizes. These time binned time series are binarised using a point-process algorithm (shown on the
right). b In order to extract the number of significant spacetime motifs, we compute the eigenvalues above the maximum of the eigenvalues of the null
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independent component analysis (ICA) and estimate the corresponding activity, where co-activation patterns are found and used to track the activity over
time. d The richness of the dynamical repertoire at different timescales can be computed from the spacetime motifs and corresponding probabilities allow
using measures of entropy and hierarchy of functional brain organisation (see Methods). We show the four possible different scenarios of how this may
vary with timescale whether flat, monotonic decrease or increase or having an optimum
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reliability by using state-of-the-art datasets. Supplementary
Figure 1 shows the reliability of the results by analysing the
data from the freely available high-reliability, high-quality
Human Connectome Project (HCP) data of 100 unrelated
subjects with 15 min resting state and a much faster TR of 0.72 s
(see Methods). In addition to confirming the timescale for
resting state data, we were also interested in discovering whether
timescale is modified under task conditions. We therefore
analysed the social cognition task data from the same 100
unrelated HCP subjects. In the social cognition task, participants
were presented with short video clips (20 s) of objects (squares,
circles, triangles) that either interacted in some way, or moved
randomly on the screen. Figure 6 shows the entropy and
hierarchy measured as a function of the timescale (binning size).
The results show a similar peak around 200 ms to that found in
resting state data (compare with Fig. 3a and Supplementary
Figure 1). This confirms that timescale found in resting state is
also found in task condition, suggesting that the timescale is an
intrinsic property of whole-brain dynamics.

Bolstering the findings of the 200 ms timescale found in resting
state and task, we analysed resting state neuroimaging MEG data
which has the right timescale and thus does not require whole-
brain modelling step. Figure 7 shows spacetime motifs in MEG
data and in particular the entropy and hierarchy as a function of
the timescale (binning size). We split the MEG data into different
delta, theta, alpha and beta bands. As can be seen, both measures
peak at 200 ms for all bands, strongly confirming our finding with
whole-brain modelling of fMRI BOLD signals.

In order to ascertain the robustness of the results, we have
carried out many additional analyses. First, in Supplementary
Figure 2, we found the same consistent maximum at around 200
ms when running the full analysis using three different threshold
for the binarisation process. This clearly demonstrates the
robustness of the results and the independence of the threshold
binarisation method as expected given the use of the threshold-
independent Poincaré section.

Second, we further investigated the dependence of the results
on the parameters of the whole-brain model. Generally, the
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results must depend on two main factors: local node dynamics
and whole-brain coupling. In terms of the local node dynamics,
we use biophysically realistic parameters (see Methods). We
changed two main parameters: (A) the ratio of excitation to
inhibition at the local regional level and (B) the biophysical
latencies of the NMDA of the local dynamics to a non-biological
value. As can be seen in left and right panels of Supplementary
Figure 3, this breaks the timescale by removing the peak. More
importantly, we carried out extensive simulations of the whole-
brain coupling in terms of shifting the working point of the
whole-brain model (shown in Supplementary Figure 4) and
damaging highest edge couplings in the whole-brain network
(shown in Supplementary Figure 5). As can be seen from the plot
of hierarchy in Supplementary Figure 4 and Supplementary
Figure 5, the timescale optimum is not found, when these brain
network parameters are different from the empirical data. In
summary, only the realistic whole-brain model consistent with

the empirical data is showing the relevant timescale discovered in
this paper. This suggests that the relevant timescale emerges from
the structural connectivity coupling of the human brain.

Discussion
In this paper, we have investigated a central question in neu-
roscience, namely which is the most relevant timescale for brain
processing, i.e. broadcasting and making information available
across the whole-brain, i.e. information as the intrinsic trans-
mission of activity—and not the neural encoding of information
about sensory inputs, behaviour or cognition. We first fit a whole-
brain dynamic mean field (DMF) model with realistic pools of
excitatory and inhibitory neurons as well as synaptic dynamics to
BOLD fMRI data and generate the underlying timeseries on the
timescale of milliseconds. Secondly, we bin this data on different
timescales and for each of these measures, we compute the
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independent measures of entropy and hierarchy to characterise
the dynamical repertoire. In order to demonstrate the usefulness
of the methodology for the general neuroimaging community, we
deliberately chose a dataset with relatively few participants, long
TR and relatively short resting state duration.

The results were very clear with a convergence for both mea-
sures on an optimum at the timescale of around 200 ms (Fig. 3),
and we also replicated these findings in the much larger, state-of-
the-art HCP dataset with 100 unrelated participants, very short
TR and long resting state duration (Supplementary Figure 1).
Importantly, when testing other timescales, the measures show
that these are non-optimal. In particular we extracted spacetime
motifs for three examples of non-optimal timescales [very fast
(10 ms), slow (1000 ms) and very slow (2000 ms)] which—unlike
the spacetime motifs found at the optimal 200 ms timescale—are
all unbalanced in probability space of occurrence, suggesting an
impoverishment of the dynamical repertoire.

Instead, the spacetime motifs at the optimal 200 ms timescale
bear close resemblance to classical RSNs (Fig. 4) but, similarly
to networks with fast time dynamics extracted from MEG12,
they are split into subcomponents. Other MEG studies have
tried to find the relevant timescale9–11 but assumed that only
grand average spatial correlations were important and thus
were able to replicate the fMRI RSNs. We speculate that the
spacetime motifs found at 200 ms may be the building blocks of
brain function.

While not the main aim here, we also analysed resting state
neuroimaging MEG data and confirmed an optimal 200 ms
timescale for delta, theta, alpha and beta bands (Fig. 7). Crucially,
this analysis used only the second step of our new methodology,
namely extracting whole-brain spacetime motifs, given that the
excellent time resolution of MEG means that we do not have to
use the first step involving constructing a whole-brain model but
crucially validates the novel first step of our procedure using
whole-brain modelling for accessing much faster timescales using
slow fMRI BOLD data.

So, as we show here, the relevant timescale is not in the order
of tens of seconds but rather faster at 200 ms which is consistent
with previous findings of microstates in EEG23,24 and when using
HMM on MEG data12. Importantly, building on microstate and

HMM findings from EEG and MEG, here we are able to deter-
mine that these fast spatiotemporal dynamics are in fact optimal
in creating the richest spatiotemporal dynamics. Further inves-
tigations combining and comparing our procedure in fMRI and
MEG could shed new light on the role of timescale in different
brain states.

Furthermore, the results also provide further mechanistic
insights into the question of timescale given that our findings are
based on a causal mechanistic whole-brain model. When the
results change after directly manipulating elements of the
mechanistic model, this directly establishes a causal relationship.
We manipulate every part of the model to establish a causal
relationship between a given element and the findings. In parti-
cular, we manipulated the three main elements to the whole-brain
model: (1) the local regional dynamics (Supplementary Figure 3),
(2) the global working point of the dynamics (the only free
parameter, G, see Methods and Supplementary Figure 4) and (3)
the underlying anatomical skeleton (Supplementary Figure 5). All
of these manipulations yielded a change in radical breakdown of
the timescale optimum, thus establishing a causal relationship
between the underlying mechanisms and the intrinsic whole-
brain timescale of 200 ms.

In the context of thinking about the relevance for conscious
brain state, the main finding of a relevant timescale of 200 ms for
brain processing in both resting state and task data is very
interesting. The research of Dehaene, Changeux and colleagues
have consistently shown that there is a critical bottleneck for
conscious processing with information typically being processed
and broadcast for conscious processing at this 200–250 ms
timescale25–27. For example, Dehaene and colleagues have shown
using a simple backward masking task with a flashed stimulus
that broadcasting related to conscious reportability is related to
ignition of activity at around 270 ms in a highly distributed
fronto-parieto-temporal networks, while the subliminal trials did
not elicit such ignition25. Even stronger data from neural multi-
recordings in non-human primates show that ignition of visual
stimuli were associated with strong sustained activity in dorso-
lateral prefrontal cortex around 200–250 ms when reported, while
this frontal activity was weaker and quickly decayed for unre-
ported stimuli27. These findings are typically interpreted in terms
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Fig. 5 Comparison of resting state networks at optimal (left, 200ms) and slow BOLD (right, 2000ms) timescales. The figure shows the similarity of the
spatial characteristics of the spacetime motifs networks found at both timescales. As an example, the visual network (bottom) and frontal part of the
default mode network (top) are shown. Thus, classical methodologies used for extracting resting state networks are valid for finding the spatial
components but of course less suitable for extracting the underlying temporal dynamics given the inherent temporal constraints of BOLD signals
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of the global workspace theory28,29, and this experimental sup-
port, together with our present findings, suggest that the timescale
for this global workspace must be around 200 ms. Importantly,
this has to be sustained by a set of regions binding and broad-
casting information, as has been shown in work investigating the
functional relevance of individual brain regions within whole-
brain networks30.

Similarly, the results are also consistent with other theories of
consciousness such as the Integrated Information Theory (IIT)31

and the Temporo-spatial Theory of Consciousness (TTC)32. The
200 ms timescale could be fundamental for enhancing the effects

of integration of information necessary for consciousness. Spec-
ulatively, the timescale of 200 ms may provide the fundamental
harmonic frequency for the temporo-spatial nestedness serving as
the neural predisposition of consciousness mentioned in the TTC
theory32.

The fact that the timescale finding is conserved across
experimental conditions suggests that it might be a general
principle of brain function. Yet, the exact relationship between
timescale and brain function remains to be clarified, and future
research could investigate in timescale in altered brain states such
as sleep or anaesthesia.
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suggesting that the 200ms timescale is an intrinsic property of brain dynamics
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The optimal timescale of 200 ms raises the interesting question
of the underlying neural oscillations with theta (1-Hz) might play
a significant role. Unfortunately, the whole-brain DMF model
used here is based on the fMRI BOLD signal which does not
contain fast oscillations in ranges above 0.05 Hz, which is
obviously much slower than theta and related rhythms. In
addition, the DMF model is asynchronous, yet still the 200 ms
timescale emerges which would argue against theta and related
faster rhythms playing a significant role.

The present timescale findings are complementary to the
important body of work on neuronal avalanches13,33,34. Perhaps, as
has been suggested, the timescale of avalanches is not to be found at
the temporal scale of the avalanches, but rather at the scale of their
sequences14. As such the relevant timescale described here and the
spacetime motifs could be related to this scale of sequences of
neuronal avalanches. Even more, these two phenomena—criticality
of neuronal avalanches and optimal timescale—coexist at the sub-
critical working point of the whole-brain model35,36. Interestingly,
the ITT and TTC theories mentioned above are also supported by
evidence of scale-freeness and neuronal variability in different
conscious states such as awake37,38 and anaesthesia39,40.

Furthermore, it has been shown that the properties of the
duration and size of avalanches change at different levels of brain
state41. Since brain activity can have different levels of synchro-
nisation over time42, perhaps the optimal temporal scale also
depends on the underlying brain state with low synchronisation
(REM sleep, moments of high attention), whereas in periods of
high synchronisation (slow wave sleep, drowsiness) the optimal
temporal scale is slightly different, perhaps due to the higher
incidence of silences in unit activity43.

Our new paradigm opens new lines of exciting research. Focusing
just on the measures of entropy and hierarchy, it would be of
considerable interest to use these on data with milliseconds reso-
lution, i.e. EEG, MEG and iEEG data, to use these measures and the
whole-brain model to establish causal links to microstates and
HMM and to replicate the main finding here of a relevant timescale
of 200ms. As shown in Fig. 7, our preliminary analyses of MEG
data found a similar timescale of 200ms for this faster neuroima-
ging methodology but much in depth research remains to be done.

Regarding the novel whole-brain modelling method for gen-
erating the underlying millisecond timeseries from BOLD data, it
would also be of tremendous interest to investigate potential
changes in timescale (position of optimum) and richness of
repertoire (entropy and hierarchy at optimal timescale) in task
and in different brain states (e.g. sleep, anaesthesia, coma and
minimal consciousness) and neuropsychiatric diseases. Our pre-
liminary results, shown in Fig. 6, show that task data has a similar
optimal timescale but much remains to be explored. In general,
we hypothesise that the timescale and richness of repertoire are
unbalanced in brain disorders, albeit in different ways for dif-
ferent disorders. Importantly, given that such investigations
would be using a whole-brain model, this could subsequently be
used to perturb and rebalance the model to find an optimal,
causal path to health44,45.

Overall, the results suggest that the relevant timescale of the
human brain emerges from the network properties and specifi-
cally the structural connectivity coupling. Long-term, the pro-
posed new method could help resolve the underlying
spatiotemporal dynamics of brain processing for other pertinent
questions regarding the timescales of fast and slow cognition46,47.

Methods
Overview of methodology. The extraction of whole-brain spacetime motifs
methodology described here combines two important advances: (A) extraction of
whole-brain timeseries on multiple timescales (from milliseconds to seconds) from
a whole-brain optimised mean-field model of empirical BOLD data (on the

timescale of seconds) and (B) extraction of meaningful spatiotemporal dynamics
structure (spacetime motifs) by a method generalising previous cell-assembly
methods used in neurophysiology. In the following, we describe the specific
technical details of this process.

Neuroimaging data acquisition, preprocessing and timeseries extraction.
Ethics: The neuroimaging part of the study was approved by the internal research
board at CFIN, Aarhus University, Denmark and given ethics approval by the
Research Ethics Committee of the Central Denmark Region (De Videnskabsetiske
Komitéer for Region Midtjylland). All participants gave written informed consent
prior to participation.

The Washington University–University of Minnesota (WU-Minn HCP)
Consortium obtained full informed consent from all participants, and research
procedures and ethical guidelines were followed in accordance with Washington
University institutional review board approval.

Participants: We used data from two populations. One group of 16 participants
from Aarhus, Denmark and one group of 100 unrelated participants from the
publicly available database from the HCP from the WU-Minn HCP Consortium.

The online recruitment system at Aarhus University helped to recruit all 16
healthy right-handed participants (11 men and 5 women, mean age: 24.75 ± 2.54).
We screened participants and excluded those with psychiatric or neurological
disorders (or a history thereof) from participation in this study. All 16 participants
were scanned with MRI and MEG as specified below.

The data set used for this investigation was selected from the March 2017 public
data release from the HCP where we chose the sample of 100 unrelated participants
(54 females, 46 males, mean age= 29.1 ± 3.7 years). This subset of participants
provided by HCP ensures that they are not family relatives. This criterion was
important to exclude possible identifiability confounds and the need for family-
structure co-variables in the analyses.

Neuroimaging acquisition for MRI (Aarhus): The 3T Siemens Skyra scanner at
CFIN, Aarhus University, Denmark was used to collect MRI data (structural MRI,
rs-fMRI and diffusion MRI) in one session. The parameters for the structural MRI
T1 scan used a voxel size of 1 mm3; reconstructed matrix size 256 × 256; echo time
(TE) of 3.8 ms and repetition time (TR) of 2300 ms. The resting-state fMRI data
were collected using whole-brain echo planar images (EPI) with TR= 3030 ms, TE
= 27 ms, flip angle= 90°, reconstructed matrix size= 96 × 96, voxel size 2 × 2 mm
with slice thickness of 2.6 mm and a bandwidth of 1795 Hz/Px. We collected
approximately 7 min of resting state data per subject.

For the estimating the structural connectivity we collected dMRI data using TR
= 9000 ms, TE= 84 ms, flip angle= 90°, reconstructed matrix size of 106 × 106,
voxel size of 1.98 × 1.98 mm with slice thickness of 2 mm and a bandwidth of 1745
Hz/Px. Furthermore, the data were collected with 62 optimal nonlinear diffusion
gradient directions at b= 1500 s/mm2. Approximately one non-diffusion weighted
image (b= 0) per 10 diffusion weighted images was acquired. The dMRI images
were collected with two different phase encoding directions, the first acquisition
used anterior to posterior phase encoding direction, while the second acquisition
was performed in the opposite direction.

Neuroimaging acquisition for fMRI (HCP): The 100 HCP participants were
scanned on a 3-T connectome-Skyra scanner (Siemens). We used one resting state
fMRI acquisition of approximately 15 min acquired on the same day, with eyes
open with relaxed fixation on a projected bright cross-hair on a dark background.
The HCP website (http://www.humanconnectome.org/) provides the full details of
participants, the acquisition and preprocessing of the data.

Neuroimaging acquisition for MEG (Aarhus): In addition to the rsMRI and
dMRI, the same 16 participants from Aarhus also had resting state MEG (rs-MEG)
data acquired using a 306 channel Elekta Neuromag TRIUX system (Elekta
Neuromag, Helsinki, Finland) located in a magnetically shielded room at the CFIN
at Aarhus University Hospital, Denmark. All data were recorded at a sampling rate
of 1000 Hz with an analogue filtering of 0.1–330 Hz. Approximately 5 min of
resting state was collected for each participant.

Before data collection, a three-dimensional digitizer (Polhemus Fastrak,
Colchester, VT, USA) was used to record the participant’s head shape relative to
the position of four headcoils, with respect to three anatomical landmarks, which
could be registered on the MRI scan (the nasion, and the left and right preauricular
points). The structural MRI scan for each participant was acquired during a
separate session (see above). The position of the headcoils was tracked during the
entire recording using continuous head position identification (cHPI), providing
information on the exact head position within the MEG scanner. This allows for
accurate movement correction at a later stage during data analysis.

Neuroimaging structural connectivity and functional timeseries. Parcellation:
All neuroimaging data was processed using the Automated Anatomical Labeling
(AAL) parcellation48, which is perhaps the most widely used parcellation scheme.
The AAL90 subset of the 116 regions consists of 76 cortical regions and 14 sub-
cortical regions including the thalamus, basal ganglia, amygdala and hippocampus
but leaves out 26 cerebellar regions. A full description and labels of the regions can
be found at http://neuro.imm.dtu.dk/wiki/Automated_Anatomical_Labeling.

For the Aarhus dataset, we used the linear registration tool from the FSL
toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford)49 to coregister the EPI image to
the T1-weighted structural image. The T1-weighted image was co-registered to the
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T1 template of ICBM152 in MNI space50. The resulting transformations were
concatenated and inversed and further applied to warp the AAL template48 from
MNI space to the EPI native space, where interpolation using nearest-neighbor
method ensured that the discrete labelling values were preserved. Thus, the brain
parcellations were conducted in each individual’s native space. Similarly, we
mapped the AAL to the cortical surface using the Conte69 template using the
Connectome Workbench software51 and for the subcortical AAL regions we
determined the membership of each grayordinate to a given AAL region.

Structural connectivity from dMRI: For estimating the structural connectivity
we used FSL diffusion toolbox (Fdt) for the Aarhus diffusion MRI data. We used
the default parameters of this imaging pre-processing pipeline on all participants.
The local probability distribution of fibre direction was estimated at each voxel. We
used the probtrackx tool in Fdt to provide automatic estimation of crossing fibres
within each voxel. This has been shown to significantly improve the tracking
sensitivity of non-dominant fibre populations in the human brain52.

The connectivity probability from a seed voxel i to another voxel j was defined
by the proportion of fibres passing through voxel i that reach voxel j using a
sampling of 5000 streamlines per voxel52. This was extended from the voxel level to
the region level, i.e. in an AAL90 parcel consisting of n voxels, 5000 × n fibres were
sampled. The connectivity probability Pij from region i to region j is calculated as
the number of sampled fibres in region i that connect the two regions divided by
5000 × n, where n is the number of voxels in region i.

We computed the undirected connectivity probability between the 90 regions
within the AAL90 parcellation48 as the average of probabilities of connectivity Pij
and Pji. For both phase encoding directions, we computed the 90 × 90 symmetric
weighted network based on the AAL90 parcellation, and normalised by the number
of voxels in each AAL region; thus representing the structural connectivity network
organization of the brain.

Preprocessing and extraction of functional timeseries in fMRI resting state and task
data: For extracting the functional timeseries from Aarhus data, we first preprocessed
the resting state fMRI data using the MELODIC toolbox (Multivariate Exploratory
Linear Decomposition into Independent Components) Version 3.1453. We used the
default parameters for the imaging pre-processing pipeline on all participants: motion
correction using MCFLIRT49; non-brain removal using BET54; spatial smoothing using
a Gaussian kernel of FWHM 5mm; grand-mean intensity normalisation of the entire
4D dataset by a single multiplicative factor and high pass temporal filtering (100.0 s). To
extract and average the time courses from all voxels within each AAL cluster we used
standard FSL tools.

For the HCP resting state and task datasets, the data preprocessed by the HCP
using standardized methods using FSL (FMRIB Software Library), FreeSurfer, and
the Connectome Workbench software51,55. Briefly, it included correction for spatial
and gradient distortions and head motion, intensity normalization and bias field
removal, registration to the T1 weighted structural image, transformation to the 2
mm Montreal Neurological Institute (MNI) space, and using the FIX artefact
removal procedure55,56. The head motion parameters were regressed out and
structured artefacts were removed by ICA+ FIX processing (ICA followed by
FMRIB’s ICA-based X-noiseifier57,58). We then used a custom-made matlab script
with the ft_read_cifti function to extract the average timeseries of all the
grayordinates in each AAL90 region.

Extraction of MEG data timeseries from AAL regions: For extracting the MEG
data timeseries in the AAL90 regions, we downsampled the raw MEG sensor data
(204 planar gradiometers and 102 magnetometers) from 1000 to 250 Hz using
MaxFilter and converted this data to SPM8 format. For cleaning and removing
potential artefacts from the MEG data, we used the methods described in our
previous paper59. We then used the AAL90 template to parcellate the brain. A
scalar implementation of the LCMV beamformer was applied to estimate the
source level activity of the MEG sensor data at each brain area60–62. We co-
registered each participant’s structural T1-weighted MRI scan to the standard MNI
template brain using affine transformation, and further referenced to the space of
the MEG sensors by use of the Polhemus head shape data and the three fiducial
points. An overlapping-spheres forward model was computed, representing the
MNI-co-registered anatomy as a simplified geometric model using a basis set of
spherical harmonic volumes63. We directed the beamformer at locations
corresponding to center-of-gravity coordinates of the AAL90 regions64. The
beamformer was applied to the broadband sensor data band-pass filtered between 2
and 40 Hz, where the two sensor modalities (magnetometers and planar
gradiometers) were combined by normalising them by the mean of their respective
eigenvalues. The estimation of the data covariance matrix, necessary for the
beamformer reconstruction, was regularised using the top 62 (minus number of
rejected ICs) principal components. This yielded, for each data set, a [90 × number
of samples] source-space data matrix, representing the spontaneous activity at the
90 AAL areas in the 2–40 Hz frequency range. We extracted the timeseries in the
delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and beta (12–40 Hz) bands.

(A) Extraction of arbitrary timescale using whole-brain modelling. Below, we
describe the full details of the balanced whole-brain mean field model (Fig. 1) and
the methods for fitting the model to the empirical BOLD data comparing the fit
using standard average FC and the Kuramoto synchronisation index (Fig. 2).

Whole-brain mean field model: The brain dynamics sustained by the
underlying empirical dMRI-based anatomical connectivity was based on the whole-
brain model of Deco and colleagues65. This model describes the functional

dynamics of local regions for a given brain parcellation. The dynamics of each local
brain regions is given by excitatory–inhibitory sub-networks (E–I networks), which
are mutually interconnected according to the underlying anatomical connections.
The anatomical structural connectivity matrix is obtained from diffusion-imaging
data from healthy human subjects as described above. Under resting state
conditions, each single brain node emulates spontaneous neuronal noise, i.e.
reproducing the typical asynchronous low firing rate spontaneous activity observed
empirically (around 3 Hz for the pyramidal neurons and 9 Hz for inhibitory
neurons,). We implement this neuronal noise by a modified DMF model based on
the original reduction of Wong and Wang66. In this DMF reduction, the excitatory
synaptic currents are mediated by NMDA receptors and the inhibitory currents are
mediated by GABA-A receptors. The inhibitory pools are connected reciprocally
with the excitatory pools but only locally, whereas the excitatory pools are coupled
by long-range connections based on the dMRI Structural Matrix (Cij). The
structural matrix Cij denotes the density of fibres between brain area i and j. More
specifically, the DMF model of the whole brain can be expressed by the following
system of coupled differential equations:
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Here, rðE;IÞi denotes the population firing rate of the excitatory (E) or inhibitory
(I) population in the brain area (i). SðE;IÞi denotes an excitatory (E) or inhibitory (I)
synaptic gating variable in the local area (i). The input currents to the excitatory (E)
or inhibitory (I) population (i) are given by IðE;IÞi . The population firing rates are (H
(I) and H(E)) of the input synaptic currents to the excitatory or inhibitory
population i, given by I(I) and I(E). Parameter values for the neuronal response
input–output functions H are: aE= 310 (VnC), bE= 125 (Hz) and dE= 0.16(s) for
the excitatory pool and aI= 615 (VnC), bI= 177 (Hz) and dI= 0.087(s) for the
inhibitory pool. The kinetic parameters are γ= 0.641/1000 (the factor 1000
expresses rate-constants in ms), and τE= τNMDA= 100 (ms) and τI= τGABA= 10
(ms). The overall effective external input is I0= 0.382 (nA) with WE= 1 and WI=
0.7. Furthermore, w= 1.4 is the local excitatory recurrence. These parameters are
from Wong and Wang66, which are in turn derived from the original spiking
neural network model of Brunel and Wang67, using values from neurophysiological
data in order to achieve biophysical realism.

In Eqs. (5) and (6), υi is uncorrelated standard Gaussian noise with an
amplitude of σ= 0.01 (nA). Indeed, the parameters of the DMF model were
adjusted such that when isolated (i.e. uncoupled), it describes spontaneous noisy
low firing rate activity (3 Hz for the excitatory neurons and 9 Hz for the inhibitory
neurons). In our case, the system comprises N= 90 cortical and subcortical areas,
as detailed above. The feedback inhibition weight, Ji, is adjusted for each node i so
that the firing rate of the local excitatory neural population is clamped around 3
Hz, whenever nodes are connected or not—this regulation is known as Feedback
Inhibition Control (FIC) and the algorithm to achieve this is described in Deco and
colleagues65. It has been demonstrated that the FIC constrain leads to a better
prediction of the resting FC and a more realistic network evoked activity65. The
excitatory pools are coupled by long-range connections based on the dMRI
Structural Matrix Cij. The structural matrix Cij denotes the density of fibres
between brain areas i and j and is scaled by a global scaling factor G (global
conductivity parameter scaling equally all excitatory synapses).

The global scaling factor is the only free parameter of the model. This is
adjusted to move the system to its optimal working point, defined by the point
where the simulated functional dynamics maximally fits the empirical functional
dynamics. More specifically, this global scaling factor is a control parameter that is
adjusted to the empirical resting state spatiotemporal dynamics, in order to fit: (1)
the grand averaged static FC; (2) the spatiotemporal fluctuations in terms of the
metastability (see below). In other words, when we use the standard DMF model,
we only perform a global optimization of G and assume consequently that all nodes
show the same homogeneous dynamics and that the conductivities of the coupling
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of each connecting fibre tract is also globally the same (namely defined by the
scaling G). Here, we model as the group level but we have shown that the
information carried by individual neuroimaging data is robust and reliable68.

BOLD-fMRI signal: The simulation of the fMRI BOLD-signal in the global brain
model is computed by means of the Balloon–Windkessel hemodynamic model69,70.
The Balloon–Windkessel model describes the coupling of perfusion to BOLD signal,
with a dynamical model of the transduction of neural activity into perfusion changes.
The model assumes that the BOLD signal is a static nonlinear function of the
normalized total deoxyhemoglobin voxel content, normalized venous volume, resting
net oxygen extraction fraction by the capillary bed, and resting blood volume fraction.
The BOLD-signal estimation for each brain area is computed by the level of neuronal
activity summed over all neurons in both populations (excitatory and inhibitory
populations) in that particular area. In all our simulation shown here this level of
neuronal activity is given by the rate of spiking activity in windows of 1ms. In brief, for
the i-th region, neuronal activity zi causes an increase in a vasodilatory signal si that is
subject to autoregulatory feedback. Inflow fi responds in proportion to this signal with
concomitant changes in blood volume vi and deoxyhemoglobin content qi. The
equations relating these biophysical variables are:

dsn=dt ¼ 0:5rðEÞn þ 3� ksn � γðfn � 1Þ ð7Þ

dfn=dt ¼ sn ð8Þ

τ dvn=dt ¼ fn � vα
�1

n ð9Þ

τ dqn=dt ¼ fnð1� ρÞf�1
n =ρ� qnv

α�1

n =vn ð10Þ

where ρ is the resting oxygen extraction fraction. We modified the dependence on
the firing rate zi in Eq. (7) linearly such that the modulation values under task
condition are in the experimental range. The BOLD signal in each area n, Bn, is a
static nonlinear function of volume, vn, and deoxyhemoglobin that comprises a
volume-weighted sum of extra- and intravascular signals:

Bn ¼ V0 k1ð 1� qnð Þ þ k2 1� qn=vnð Þ þ k3 1� vnð Þ½ � ð11Þ

The biophysical parameters were based on those found in the work of Stephan
and colleagues70. We chose to concentrate on the frequency range where resting-
state activity appears the most functionally relevant, both empirical and simulated
BOLD signals were band pass filtered between 0.1 and 0.01 Hz7,71,72.

Grand average functional connectivity: The grand average FC is defined as the
matrix of correlations of the BOLD signals between two brain areas over the whole
time window of acquisition. We compare the empirical and simulated FC by the
Pearson correlation.

Kuramoto synchronisation index: We measure the synchronisation index as the
mean of the Kuramoto order parameter across time. In order to compute the global
level of synchronisation, we detrended and extracted the phases of the fMRI time
series of each of the 90 brain regions. The Hilbert transform (HT) was applied to
the filtered BOLD signals to obtain the associated analytical signals. The analytic
signal represents a narrowband signal, a(t), in the time domain as a rotating vector
with an instantaneous phase, φ(t), and an instantaneous amplitude, A(t), i.e. a(t)=
A(t)cos(φ(t)). The phase and the amplitude are given by the argument and the
modulus, respectively, of the complex signal z(t), given by z(t)= a(t)+j. HT[a(t)],
where j is the imaginary unit. Note that narrowband filtering is a requirement for
obtaining meaningful phases and envelopes through the HT.

The global level of phase synchrony was quantified by the Kuramoto order
parameter, R(t), given by:

RðtÞ ¼
Xn
k¼1

eiφkðtÞ
�����

�����=n ð12Þ

where n is the number of regions in the model (here n= 90 for AAL). Thus, R is
the average phase of the system and takes the values 0 and 1 for the completely
asynchronous and completely synchronized cases, respectively. We compute the
difference between the synchronisation index of the model and the empirical data
in order to find the optimal working point of the global coupling parameter, G, of
the model. It has already been shown that the Kuramoto order parameter is
excellent for constraining the dynamical working point of whole-brain models
fitting empirical neuroimaging data73. Similarly, this research also showed that at
the optimal dynamic working point of the Kuramoto order parameter, there was
also had a good fitting with the FC matrix and more importantly a good fit with the
dynamical FC (FCD), which characterizes not only the static spatial correlations
(like the FC) but also the spatiotemporal fluctuations. It has also been shown that
there is a good correspondence between FC and FC based on Kuramoto. In
addition, in the present study, we confirmed that the Kuramoto parameter is
consistent with a good model fit to the FC and FCD matrices of the empirical data.

(B) Extraction of spatiotemporal dynamics structure (spacetime motifs). For
the extraction of the spacetime motifs, we generalised to the whole-brain level
established methods for detecting neuronal assemblies from spike data as used by
Lopes-dos-Santos and colleagues20. Briefly summarising our method in three main
steps: (1) construction of event matrix, where events are binned according to
different timescales (using a point-process estimation); (2) determination of the
number of spacetime motifs, where a null hypothesis distribution based on random
matrix theory, the so-called Marčenko–Pastur distribution is generated22; and (3)
extraction of spacetime motifs using ICA of the Marčenko–Pastur distribution and
estimation of corresponding activity, where co-activation patterns are found and
used to track the activity over time of the spacetime motifs.

The procedure for extracting spacetime motifs is summarised in Fig. 2. In order
to study systematically the relevant timescale, we perform a binning of the data by
averaging the neuronal signals in slicing windows of a given width that fix the
timescale at that particular level. For this, we utilized the well-established point-
process binarisation algorithm for BOLD and MEG signals18,19,21. We apply this to
the averaged time bin neuronal data from the model (fitted to the BOLD signal)
and we also apply this to the beamformed MEG data averaged over all narrow-
bands in averaged time bins.

In the procedure, an event for a given brain region is defined by binarising the
transformed averaged time bin neuronal time series into z-scores zi(t) and
imposing a threshold θ such that the binary sequence σi(t)= 1 if zi(t) > θ, and is
crossing the threshold from below, and σi(t)= 0 otherwise. Next, the extracted
event matrix (with dimension number of regions × binned time points) is
normalized by z-score transformation:

eib ¼ σ ib � σ ibh i½ �=std σ ibð Þ ð13Þ

where eib is the z-scored event count of brain region i in time bin b, σib is the
number of events of brain region i in bin b, ⟨σib⟩ is the mean event count of brain
region i over all time bins, and std(σib) is the standard deviation of the event counts
of brain region i over bins. Thus, in the z-scored event matrix each brain region is
set to have null mean and unitary variance.

This procedure has been shown by Tagliazucchi and colleagues21 to be
threshold independent given that the binarisation results from a Poincaré section,
which is a classical method for reducing the dimensionality of a dynamical system
by analysing the set of points which are the coordinates of the successive
intersections of the secant Poincaré plane by the phase space trajectories.

For extracting the spacetime motifs, we applied the method for detecting neuronal
assemblies from spike data introduced by Lopes-dos-Santos and colleagues20 but here
we used at the whole-brain level (after the binning of the binarised data). This method
first determines the number of neuronal assemblies using eigenvalue analysis for
determining the statistical significance of assembly patterns, as introduced by Peyrache
and colleagues75. The key idea is to estimate the number of assemblies (subsets of brain
regions with correlated activity, i.e. what we here call spacetime motifs) by finding the
number of principal components of the event matrix with significantly large
eigenvalues. For that, we compute the principal components by finding the eigenvectors
and corresponding eigenvalues of the covariance matrix of the event matrix eeT/NB

(where e is the z-scored event matrix with elements eib and NB is the number of time
bins). The number of spacetime motifs is given by the number of significant
components, i.e. significant larger eigenvalues compared to the null hypothesis given by
the Marčenko–Pastur distribution. Indeed, Marčenko and Pastur22 demonstrated that
the eigenvalues of the correlation matrix of a normal randommatrix M with statistically
independent rows follow a probability function described by:

p λð Þ ¼ q
2πρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax � λð Þ λ� λminð Þp

λ
ð14Þ

with q=Ncolumns/Nrows ≥ 1,where ρ2 is the variance of the elements of M (in our
case ρ2= 1 due to z-score normalization), Ncolumns is the number of columns and
Nrows the number of rows. λmax and λmin are the maximum and minimum bounds,
respectively, and are calculated as:

λmax
min ¼ ρ2 1 ±

ffiffiffiffiffiffiffi
1=q

p� �2 ð15Þ

This probability function has finite support given by the interval λmin ≥ λ ≥ λmax.
Thus, if the rows of M are statistically independent, the probability of finding an
eigenvalue outside these bounds is zero. In other words, the variance of the data in
any axis cannot be larger than λmax when brain regions are uncorrelated. Therefore,
λmax can be used as a statistical threshold for detecting assembly activity75. That is,
the number of eigenvalues above λmax is used to estimate the number of spacetime
motifs (assemblies in the event matrix).

Knowing the number of spacetime motifs, i.e. significant brain assemblies, one
can extract them explicitly by using ICA. Here, we employ the FastICA algorithm74

(as implemented in the FastICA toolbox for MATLAB, http://research.ics.aalto.fi/
ica/fastica/). More precisely, we compute the spacetime motifs by applying ICA to
the dimensionality-reduced event matrix e obtained by projecting e onto the
subspace spanned by the significant principal components (according the
procedure explained above). We will denote the significant components, i.e. the
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spacetime motifs or brain assemblies, by a matrix wic where i corresponds to a
brain region and c the ICA component.

We can use the spacetime motifs to compute the time course of each assembly
activity with single-bin resolution. The activity of each assembly c (~wc one of the
extracted ICA components of the reduced event matrix, i.e. one column of the
matrix wic) can be estimated by projecting the columns of the event matrix onto the
axis spanned by that spacetime motif. The projection is defined as the square of the
projection length, which can be calculated as:

Acb ¼ eTb Pceb ð16Þ

where the projection matrix P is defined as:

Pc ¼ ~wc �~wc ¼ ~wc~w
T
c ð17Þ

where ⊗ is the outer product operator, eb is the b column of the event matrix
(events at time bin b). At each time bin, the length of the projection is a measure of
the similarity between the activity of the whole brain regions and the spacetime
motif.

Furthermore, we can compute the probability of activation of one particular
spacetime motif c by:

p cð Þ ¼
X
b

Acb=
X
c;b

Acb ð18Þ

Entropy of the spatiotemporal dynamical complexity of spacetime motifs:
Having computed the spacetime motifs and the associated probability of each
pattern at a given timescale allows us to compute the entropy of the occurrence of
the spacetime motifs. Given that these spacetime motifs provide a convenient
quantitative measure of the dynamical repertoire, the measure of entropy given by
the following equation is an excellent way to characterise the richness of the
repertoire of spacetime motifs:

H ¼ �
X
c

p cð Þlog p cð Þð Þ ð19Þ

The entropy characterizes the richness of the switching activity between
different spacetime motifs. Complementary to this measure we also introduced a
novel, unrelated measure of hierarchical organisation, as a variation on our
previous ignition-based hierarchical measures18,19. The hierarchy expresses the
relevancy of each brain region for the broadcasting of information across the whole
brain. We define the hierarchy as the degree of diversity of brain regions according
to the level of cohesiveness, i.e. by the standard deviation of the cohesiveness across
all brain areas. The cohesiveness of a single brain region, i, is given by:

CohðiÞ ¼
X

c
wicp cð Þ

X
j

wjc

 !
ð20Þ

In other words, the cohesiveness reflects the degree of participation of a single
brain region i in spreading information across the whole brain. Note that the above
definition is essentially determined by the summation over spacetime motifs of the
product of three things: the degree of participation in a spacetime motif c, i.e.
importance of that node for that assembly (wic); the probability of that spacetime
motif, i.e. its relevance across time (p(c)); and the ‘broadness’ of the spacetime
motif defined as its size, i.e. how broad is the spreading of the information
(correlation) across the whole brain

P
j wjc

� �
.

Data availability
The code and multimodal neuroimaging data from the experiment are available
upon request.
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