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Spatiotemporal brain hierarchies of auditory
memory recognition and predictive coding

L. Bonetti 1,2,3,4 , G. Fernández-Rubio1, F. Carlomagno 1,5, M. Dietz 6,
D. Pantazis 7, P. Vuust1 & M. L. Kringelbach 1,2,3

Our brain is constantly extracting, predicting, and recognising key spatio-
temporal features of the physical world in order to survive. While neural
processing of visuospatial patterns has been extensively studied, the hier-
archical brain mechanisms underlying conscious recognition of auditory
sequences and the associated prediction errors remain elusive. Using mag-
netoencephalography (MEG), we describe the brain functioning of 83 parti-
cipants during recognition of previously memorised musical sequences and
systematic variations. The results show feedforward connections originating
from auditory cortices, and extending to the hippocampus, anterior cingulate
gyrus, and medial cingulate gyrus. Simultaneously, we observe backward
connections operating in the opposite direction. Throughout the sequences,
the hippocampus and cingulate gyrus maintain the same hierarchical level,
except for the final tone, where the cingulate gyrus assumes the top position
within the hierarchy. The evoked responses of memorised sequences and
variations engage the samehierarchical brain network but systematically differ
in terms of temporal dynamics, strength, and polarity. Furthermore, induced-
response analysis shows that alpha and beta power is stronger for the varia-
tions, while gamma power is enhanced for the memorised sequences. This
study expands on the predictive coding theory by providing quantitative
evidence of hierarchical brain mechanisms during conscious memory and
predictive processing of auditory sequences.

The spatiotemporal features of hierarchical processing in the brain are
essential to fully grasp the neural substrates of human perception and
cognition, as suggested by the predictive coding theory (PCT)1–7. To
elucidate such brain mechanisms, much research has focused on the
visual system8,9, which primarily relies on the recognition of patterns
arranged in space. Conversely, the auditory systemextracts information
frompatterns and sequences thatdevelopover time10, providingunique
opportunities to understand the temporal hierarchies of the brain.

Extensive research spanning decades has established the hier-
archical organisation of auditory perception, with a particular
emphasis on the processing of elementary auditory stimuli. This
hierarchical progression starts at the peripheral level within the
cochlea and moves forward to the auditory pathway, which encom-
passes the brainstem, pons, trapezoid body, superior olivary complex,
lateral lemniscus, inferior and medial geniculate nucleus of the thala-
mus, and ends in the primary auditory cortex11,12. However, how
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auditory information is integrated from the auditory cortex to the
whole brain has not been fully established yet.

Aiming to bridge this gap, prior investigations focused on auto-
matic predictive processeswithin the framework of PCT. These studies
assessed auditory automatic prediction error, often relying on well-
established event-related potential/field (ERP/F) components such as
N100, mismatch negativity (MMN), and error-related negativity
(ERAN)13–21. They demonstrated that such components were auto-
matically evoked in response to auditory stimuli, deviations from
expected sound features, likelihood of occurrence of musical tones
(N100, MMN), and varied harmonic properties (ERAN). Additional
studies employed dynamic causal modelling (DCM) to investigate
the brain hierarchical architecture during automatic predictive pro-
cesses, as indexed by MMN. This research has yielded quantitative
evidence demonstrating the flow of information from the primary
auditory cortex to the superior temporal gyrus and the inferior frontal
gyrus22.

Expanding upon these investigations, Rocchi and colleagues
provided evidence of hierarchical organisation in the auditory system
using direct electrical brain stimulation. They showed effective con-
nectivity from the auditory cortex to regions in the medial temporal
lobe and prefrontal cortex, including the hippocampus and ventro-
lateral prefrontal cortex23. Yet, it remains uncertain how the integra-
tion of auditory information across the whole brain relates to complex
cognitive functions, such as the conscious recognition and prediction
of auditory sequences evolving over time.

To address this question, a unique perspective has arisen through
the integration of musical memory paradigms with magnetoence-
phalography (MEG). Music is a complex artform acquiring meaning
through the combination of its constituent elements extended over
time24, while MEG, particularly when used in combination with MRI,
allows to track the brain activity with excellent temporal resolution in
the order of milliseconds and acceptable spatial accuracy25. It is pre-
cisely due to these attributes that this combination offers a unique
framework for investigating the rapid memory and predictive pro-
cesses of temporal information in the human brain7,26.

Indeed, recent studies employing MEG and musical paradigms
investigated the brain mechanisms associated with perception,
manipulation and recognition of sound sequences. As an example,
Albouy and colleagues27 explored the brain activity underlying mem-
ory retention, showing that theta oscillations in the dorsal stream of
the participants’ brain predicted their auditory WM performance.
Along this line, we recently uncovered a vast network of brain areas
responsible for encoding and recognising previously memorised and
novelmusical sounds. This networkextended from the auditory cortex
to the medial cingulate, inferior temporal cortex, insula, frontal
operculum, and hippocampus28–30. We also observed that the com-
plexity of music31 and individual cognitive differences32 influenced the
activity recorded in this network.

In our previous studies, we utilised relatively rapid musical tones
with a duration of 250ms. However, this approach prevented us from
closely tracking the neural dynamics associated with each sound
within the sequences, leading to frequent overlap with the brain
responses to subsequent tones. For this reason, wewere also unable to
study the rapidhierarchies between the brain regions thatwe revealed,
which is necessary to understand the neurophysiology of conscious
recognition of auditory sequences.

Moreover, while our previous works showed differences in brain
activity when comparing previously memorised versus completely
novel auditory sequences, we did not investigate the scenario in which
an original sequencewas systematically varied. This prevented us from
exploring how the brain generates prediction errors within the fra-
mework of a conscious long-term memory recognition task, as
opposed to the several instances of automatic prediction errors
described in the literature13–21.

To address these questions, in the present study we made two
essential modifications to our previously employed experimental
paradigm: (i) we compared the original five-tone melodies with sys-
tematic variations occurring at the second, third, fourth, or fifth tone;
(ii) we increased the duration of the tones from 250ms to 350ms.
These seemingly minor modifications were of great importance, as
they enabled us to directly address our three main hypotheses, stated
as follows. First, the conscious recognition of previously memorised
auditory sequences relied on the hierarchical recruitment of a wide-
spread brain network including auditory cortex, hippocampus and
cingulate gyrus. We expected to observe that these regions responded
to each tone forming the sequence,with the auditory cortex preceding
the hippocampus and cingulate gyrus. Second, the detection of the
varied auditory sequences elicited a prediction error, originating in the
auditory cortex and then propagating to hippocampus, anterior cin-
gulate and ventromedial prefrontal cortex. While we expected a con-
sistent response in the auditory cortex to the introduction of varied
sounds at any point in the sequence, we hypothesised that the anterior
cingulate gyrus and ventromedial prefrontal cortex exhibited their
strongest response exclusively when the variation in the sequencewas
introduced. Third, sequence recognition relied on a brain hierarchy
characterised by feedforward connections from auditory cortices to
hippocampus and cingulate gyrus, simultaneous with feedback con-
nections in the opposite direction. Moreover, recognition of both
previously memorised and varied sequences relied on the same hier-
archy, while the temporal dynamics, strength and polarity of brain
responses differed.

These hypotheses were confirmed by the results of the experi-
ment, which showed that the brain distinctively responds to each tone
forming the previously memorised sequence, with the auditory cortex
preceding hippocampus and anterior and medial cingulate gyrus. In
addition, the detection of the sequence variations elicits a conscious
prediction error in the brain, originating in the auditory cortex and
propagating to hippocampus, anterior andmedial cingulate. While the
auditory cortex has a constant response to the varied sounds intro-
duced at any point in the sequence, the hippocampus and anterior and
medial cingulate gyrus exhibit their strongest response exclusively to
the sound which introduced the variation in the sequence. Finally, we
provide quantitative evidence of the brain functional hierarchies dur-
ing long-term auditory recognition. Here, as hypothesised, feedfor-
ward connections originate from the auditory cortices and extend to
the hippocampus, anterior cingulate gyrus, and medial cingulate
gyrus, along with feedback connections in the opposite direction.
Notably, throughout the sequence, the hippocampus and cingulate
gyrus maintain the same hierarchical level, except for the final tone,
where the cingulate gyrus assumes the top position within the
hierarchy.

Results
Experimental design and behavioural results
Eighty-three participants performed an old/new auditory recognition
task during MEG recordings. After learning a short musical piece
(Supplementary Fig. S1), participantswerepresentedwith 135five-tone
musical sequences lasting 1750ms each and were requested to state
whether each sequence belonged to the original music (‘memorised’
sequence (M), old) or it was a varied sequence (‘novel’ sequence (N),
new) (Fig. 1a).

Twenty-seven sequenceswere extracted from the originalmusical
piece and 108 were variations of the original melodies. We organised
these variations in four categories depending on whether changes
involved every musical tone of the sequence after the first (NT1), sec-
ond (NT2), third (NT3) or fourth (NT4) tone (Fig. 1b and Supplemen-
tary Fig. S2).

We performed statistical analyses on the MEG task behavioural
data (see Table 1 for descriptive statistics). We computed two
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independent Kruskal-Wallis H tests to assess whether the five cate-
gories of temporal sequences (M, NT1, NT2, NT3, and NT4) differed in
terms of response accuracy and reaction times (Supplemen-
tary Fig. S3).

The Kruskal-Wallis H test for response accuracy was significant
(H(4) = 36.38, p <0.001), indicating a difference between categories in

the number of correct responses. The Tukey–Kramer correction for
multiple comparisons highlighted that NT4 trials were correctly
identified with a lower frequency than M (p = 0.001), NT1 (p = 0.001),
NT2 (p =0.0003), and NT3 trials (p = 0.0001).

The Kruskal-Wallis H test for the reaction times was also sig-
nificant (H(4) = 22.53, p =0.0002). The Tukey-Kramer correction for

Fig. 1 | Experimental design, stimuli, and analysis pipeline. aThebrain activity of
83 participants was collected using magnetoencephalography (MEG) while they
performed an auditory old/new recognition task. One at a time, five-tone auditory
sequenceswerepresented in randomised order andparticipantswere instructed to
respond with button presses whether they were old (memorised musical sequen-
ces,M) or new (novelmusical sequences, N).b Five types of auditory sequences (M,
NT1, NT2, NT3, NT4) were used in the study (see Supplementary Fig. S2 for the full
set of sequences). The N sequenceswere created through systematic variations (V.)
of the M sequences. This procedure consisted of changing every musical tone of
the sequenceafter thefirst (NT1), second (NT2), third (NT3) or fourth (NT4) tone, as
illustrated by the red musical tones. c After MEG data pre-processing, multivariate
pattern analysis was used to assess whether it was possible to discriminate the
experimental conditions based on the neural activity recorded with MEG.
d Univariate analyses on the MEG channels that primarily contributed to the

decoding algorithm were performed using t-tests, independently for each
time point, to compare theM condition with each of the N conditions (i.e. M versus
NT1, M versus NT2, etc.). e The MEG data was co-registered with the individual
anatomical magnetic resonance imaging (MRI) data, and source reconstructed
using a beamforming algorithm. This resulted in one time series for either the 3559
reconstructed brain sources (8-mm parcellation) or for the 90 non-cerebellar
automated anatomical labelling (AAL) regions of interest (ROIs). The reconstructed
brain activity was contrasted across experimental conditions (M versus each
category of N). f Evoked and induced responses were computed for the AAL ROIs
and contrasted across experimental conditions. g Dynamic causal modelling was
applied to a restricted set of AAL ROIs: left Heschl’s gyrus (LHG), right Heschl’s
gyrus (RHG), left hippocampus (LHP), right hippocampus (RHP), anterior cingulate
gyrus (ACC), andmedial cingulate gyrus (MC), to assess the functional hierarchical
organisation of the brain during the recognition of auditory sequences.
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multiple comparisons highlighted that NT4 trials were correctly
identified with greater reaction times than M (p =0.0016), NT1
(p = 0.0013), NT2 (p =0.0054), and NT3 trials (p = 0.0008).

Multivariate pattern analysis on the MEG channels
Using a support vector machine (SVM) classifier (see details in Meth-
ods, and Fig. 1c), we performedmultivariate pattern analysis to decode
different neural activity associated with the recognition of M versus N.
Specifically, we computed four independent analyses, decoding M
versus each of the four categories of novel sequences (i.e., M versus
NT1, M versus NT2, M versus NT3, and M versus NT4).

As shown in Fig. 2a and Supplementary Fig. S4, each of these
analyses returned a decoding time series showing how the neural
activity differentiated the pair of experimental conditions. Overall, the
results showed that the SVM was able to detect significant differences
between M and N sequences. As illustrated in Fig. 2a, decoding M
versus NT1 returned the following main significant time windows:
0.53–0.73 s; 0.91–0.95 sec; 1.27–1.30 s; 1.62–1.88 s (p <0.012, false-
discovery rate [FDR]-corrected). Decoding M versus NT2 gave rise to
the following main significant time windows: 0.89–1.18 s; 1.26–1.42 s;
1.54–1.89 s (p < 0.012, FDR-corrected). Decoding M versus NT3
returned one main significant time window: 1.25–2.07 s (p < 0.012,
FDR-corrected). Finally, decoding M versus NT4 showed the following
main significant time window: 1.64–2.07 (p < 0.012, FDR-corrected).
The contribution of each MEG channel to the decoding algorithm in
the significant time windows is depicted in Fig. 2b. Detailed statistical
results are reported in Supplementary Data 1 and illustrated in Sup-
plementary Fig. S4.

To evaluate the persistence of discriminable neural information
over time, we used a temporal generalisation approach by training the
SVM classifier at a given time point t and testing it across all
time points. This was calculated for the four pairs of experimental
conditions described above. The signed-rank permutation test against
chance level and cluster-based Monte-Carlo simulations29,30,32,33 (MCS;
α =0.05, MCS p-value = 0.001) showed that the performance of the
classifier was significantly above chance even a few hundreds of mil-
liseconds beyond the diagonal, for all pairs of conditions. Notably, the
neural difference between M and N was comparable across diverse
musical tones, as shown by the recurrent patterns depicted in Fig. 2c
and highlighted by the red graphs. Detailed statistical results are
reported in Supplementary Data 2.

Univariate analysis on the MEG channels
Pairwise decoding is a powerful technique, but it can only tell if two
conditions are characterised by significantly different brain activity
and does not provide information about which condition presents
the strongest brain activity. To answer this question, we computed
an additional analysis focusing on the MEG channels showing the
strongest activation patterns (one standard deviation plus the
mean) in the decoding algorithm (Fig. 1d). This was done inde-
pendently for magnetometers and gradiometers and returned 16
magnetometers and 32 gradiometers (see Methods for the chan-
nels number).

These MEG channels were then averaged based on the channel
type (magnetometers or gradiometers) and the polarity of the
signal (positive or negative orientation of the N100 to the first

sound of the sequence). Using this procedure, four distinct groups
were created: (i) magnetometers negative N100 (Fig. 2d, left), (ii)
magnetometers positive N100 (Fig. 2d, right), (iii) gradiometers
negative N100 (Fig. 2e, left), (iv) gradiometers positive N100
(Fig. 2e, right) (further details are provided in the Methods
section).

Then, independently for each group, we computed one two-sided
t-test for each time point and each combination of M versus Ns (i.e., M
versus NT1, M versus NT2, M versus NT3, M versus NT4). We corrected
for multiple comparisons using a one-dimensional (1D) cluster-based
MCS (MCS α =0.05, MCS p-value = 0.001). As reported in detail in
Supplementary Data 3, the results showed significant differences
between experimental conditions which aligned closely in timing with
the decoding analyses reported in the previous section, indicating
consistency between the two methods.

To provide full disclosure of our data, we complemented these
computations with the same univariate analysis calculated indepen-
dently for each MEG channel. As shown in Supplementary Fig. S5a–z2
and Supplementary Data 4, the significant differences between
experimental conditionswere coherent and spread across a large array
of MEG channels.

Neural sources of the MEG channels peak activity
First, we computed source reconstruction by employing a single-shell
forward model and a beamforming approach as inverse solution in an
8-mmgrid (corresponding to 3559brain voxels), usingmagnetometers
only (Fig. 1e). This procedure returned a time series for each of the
reconstructed bran voxel, which is commonly referred to as neural
activity index (see Methods for extensive details on this standard
procedure).

Second, we extracted the time indices of the minimum and max-
imum value recorded by the magnetometers shown in Figs. 2d and 3 in
a 400ms time window following the onset of each tone. The duration
of this time window reflects the period during which independent
responses to each sound occurred. This procedure returned the time
index of two neural peaks for each experimental condition and each
tone of the sequence (with exclusion of the 1st one which did not differ
across conditions). This revealed that one peak of the neural activity
occurred around 350ms after the onset of each tone (highlighted in
yellow in Fig. 3a, b). With regards to this peak, condition M showed the
strongest response among all conditions. The other peak occurred in
response to the tone which introduced the variation in the musical
sequence (highlighted in purple in Fig. 3a, b). In this case, the N con-
dition which introduced the variation reported the strongest response
among all other conditions. This occurred approximately at 250ms
after the varied tone (i.e. NT1 showed the strongest response to tone
two among all conditions, NT2 to tone three, NT3 to tone four and NT4
to tone five). Extensive details on these neural activity peaks are
reported in Table 2.

Third, for each of the defined peaks, we computed contrasts in
MEG source space betweenM andN.More specifically, with regards to
the peaks occurring approximately at 350ms after each tone, we
contrastedM versus NT1 (illustrated in the yellow boxes in Fig. 3). This
was done because the peaks occurring 350ms after each tone were
always greater for M, and NT1 was the only condition comprising
sounds that were always different from M. Similarly, with regards to

Table 1 | MEG task behavioural results

Behavioural variables M NT1 NT2 NT3 NT4

Correct recognition 22.33 ± 5.30 22.36 ± 4.27 21.58 ± 5.31 21.66 ± 5.34 17.04 ± 7.12

Reaction times (ms) 2426 ± 226 2407 ± 284 2431 ± 282 2415 ± 272 2578 ± 259

Mean and standard deviations across participants of number of correctly recognised trials and reaction times (ms) for the five experimental conditions (previously memorised [M], novel T1 [NT1],
novel T2 [NT2], novel T3 [NT3], novel T4 [NT4]). Participants were presented with 27M, 27 NT1, 27 NT2, 27 NT3, and 27 NT4 trials.
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the peaks occurring approximately at 250ms after the onset of the
varied tones, we contrasted the N condition which showed the stron-
gest peak against M (illustrated in the purple boxes in Fig. 3). Here,
for each condition in the pair, we averaged the absolute value of
the activity of each of the 3559 reconstructed brain voxels in the
±20ms time window around the correspondent time index. Then, we

computed two-sided t-tests for each of the 3559 brain voxels by con-
trasting the pairs of conditions and FDR-corrected for multiple com-
parisons. The results of these analyses are shown in Fig. 3 and reported
in detail in Table 2 and Supplementary Data 5. In addition, we reported
the neural activity recorded by theMEG channels in topographicmaps
in Supplementary Fig. S6.
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Furthermore, the brain activity recorded by the magnetometers
for each peak and hemisphere was correlated with the measure of
participants’ musical training provided by the Goldsmith Musical
Sophistication Index (GOLD-MSI)34 and corrected for multiple com-
parisons using FDR (Table 2).

Automated anatomical labelling (AAL) time series
After evaluating the neural sources of the different brain activity
associated with the experimental conditions using the fine-grained 8-
mm parcellation of the brain (Fig. 1e, 8-mm parcellation), we focused
on a set of anatomically defined regions of interest (ROIs) (Fig. 1e, AAL

Fig. 2 | Multivariate pattern analysis and cluster-based univariate analysis on
MEG channels. a Multivariate pattern analysis decoding the different neural
activity associated with memorised versus novel musical sequences. The plot
shows the decoding time series (50% chance level) for four rounds of pairwise
decoding (memorised [M] versus novel T1 [NT1],M versus novel T2 [NT2],M versus
novel T3 [NT3], and M versus novel T4 [NT4]). The sketch of the musical tones
represents the onset of the sounds forming the auditory sequences. The blue-black
lines indicate the significant time points when the algorithm successfully decoded
the experimental conditions (signed-rank permutation test against chance level
and false-discovery rate [FDR] correction for multiple comparisons resulting in
adjusted p <0.012). b Activation patterns estimated by the decoding weights
(without unit of measure). They represent the relative contribution of the MEG
channels to the decoding algorithm when it successfully distinguished the two
experimental conditions from the neural data (as indicated in a). c Temporal
generalisation of pairwise decoding results, tested against a 50% chance level. Plots
display the significant time points (either yellow or dark blue) where conditions

were successfully distinguished after cluster-basedMonte-Carlo simulations [MCS]
correction for multiple comparisons. d Univariate analysis computed on the mag-
netometers which primarily contributed (one standard deviation plus the mean
over magnetometers) to the decoding algorithm. After averaging the magnet-
ometers channels in two independent groups (see Methods for details), two-sided
t-tests were conducted for each time point and M versus NTs pair (i.e., M versus
NT1, M versus NT2, M versus NT3, M versus NT4), and corrected for multiple
comparisons using cluster-based MCS (MCS, α =0.05, MCS p-value =0.001). Blue-
black lines highlight the temporal extent of the significant differences between M
and N conditions. Different hues of blue-black show specific M versus N condition
comparisons. e Same procedure observed for d was performed on gradiometers.
All the time series illustrated in thisfigure correspond to averages over participants
(n = 83), while shaded areas indicate standard errors. For all plots, musical tone
sketches indicate sounds sequence onset. Source data are provided as a Source
Data file.

Fig. 3 | Neural activity peaks recorded by magnetometers and contrasts in
magnetoencephalography (MEG) 8-mm source space. a Exactly as illustrated in
Fig. 2, thewaveformplot displays the time series averagedoverparticipants (n = 83)
for the following groups of MEG channels: (i) magnetometers negative N100, and
(ii) magnetometers positive N100. Shaded areas indicate the standard errors. In
addition, herewe havemarked themaximumandminimumpeaks of neural activity
following the onset of each tone (excluding the first tone). These peaks occurred
approximately at 250ms (purple circle) and 350ms (yellow circle) after each tone’s
onset. bWithin a time window of ±20ms around each peak, we averaged the brain
activity across all 3559 reconstructed brain voxels for each condition. In the yellow

boxes,we represent the significant brain voxels obtainedby contrasting the activity
associated with memorised (M) versus novel T1 (NT1). These contrasts were done
by using two-sided t-tests and false discovery rate (FDR) to correct for multiple
comparisons. Purple boxes depict the same analysis, but for comparisons involving
M versus NT1 (tone 2), M versus novel T2 (NT2, tone 3), M versus novel T3 (NT3,
tone 4), and M versus novel T4 (NT4, tone 5). In both cases, the red colour shows
the brain voxels (t-values) characterised by a stronger activity for M versus NTs,
while the blue colour indicates the opposite pattern. For a detailed statistical
report, consult Supplementary Data 5. Source data are provided as a Source
Data file.
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parcellation). Here, we used a standard anatomical parcellation
method known as automated anatomical labelling (AAL)35 and calcu-
lated a time series for eachof the90non-cerebellarROIs of AAL (Fig. 1f,
left, Evoked responses).

As specified above, the source reconstruction was conducted in
an 8-mm space, resulting in 3559 brain voxels, each with its own time
series. Afterwards, for each of the 90 ROIs, we identified the corre-
sponding brain voxels and then averaged the time series of these
associated voxels. This allowed us to obtain a final time series for each
AAL ROI.

Then, we computed one two-sided t-test for each AAL ROI, each
time point and each combination of M versus Ns, and we corrected for
multiple comparisons using 1Dcluster-basedMCS (MCS,α =0.05,MCS
p-value = 0.001). Confirming the results from the 8-mm brain parcel-
lation shown in Fig. 3, this analysis returned several significant clusters
of differential brain activity over time between M and Ns. These were
primarily localised in auditory cortices (e.g. Heschl’s gyrus, superior
temporal gyrus), hippocampus and para-hippocampal gyrus, inferior
temporal cortex, anterior, medial and posterior cingulate gyrus, and
ventromedial prefrontal cortex. Supplementary Fig. S7a–g and Sup-
plementary Data 6 and 7 show all AAL ROIs and the significant differ-
ences between conditions. Figure 4 and Supplementary Fig. S8 show
instead a selected array of ROIs which were particularly relevant for
this study. Here, we identified the two ROIs that showed themaximum
activity in absolute value among auditory regions (i), medial temporal
lobe (ii) and cingulate and prefrontal cortices (iii). We selected these
broad brain regions based on the cognitive processes involved in the
experimental task used in this study: audition (i), memory (ii), eva-
luation and decision-making (iii). As shown by Fig. 4 and Supplemen-
tary Fig. S8, the selected AAL ROIs were left and right Heschl’s gyrus
(LHG, RHG), left and right hippocampus (LHP, RHP), anterior cingulate
gyrus (ACC, left and right averaged together) and medial cingulate
gyrus (MC, left and right averaged together), respectively.

In essence, the contrasts showed that M versus N was char-
acterised by stronger activity in RHG, LHP, RHP and ACC at
350–450ms after the onset of each tone. Similarly, M presented
stronger negative activity than N in the MC at 400–500ms after the
onset of each tone (Fig. 4). Conversely, lateN100 responses localised in
LHG were stronger for N versus M. Moreover, LHP, RHP and ACC
showed a stronger response for N versus M occurring at 250–300ms
after altering the original sequences (Fig. 4). Table 3 reports detailed
statistics of the largest significant clusters, while complete statistical
results of these six ROIs are described in Supplementary Data 7.

In addition, we applied themultivariate source leakage correction
method proposed by Colclough and colleagues36 (see Methods for
details) to the ROIs time series and computed the same statistical
analysis described above. As shown in Supplementary Fig. S9 and
Supplementary Data 8, the results aligned with our initial findings,
thereby corroborating their robustness.

Finally, as a further reliability measure, we reported in supple-
mentary materials the description of an alternative, functional parcel-
lation derived from the data (Supplementary Fig. S10 and
Supplementary Data 9). As shown by Supplementary Figs. S7a–g and S11
and Supplementary Data 9, the contrasts across experimental condi-
tions when using the functional parcellation returned results which
were highly comparable with AAL, demonstrating that the significance
of our findings did not depend on the chosen parcellation. All the
subsequent analyses reported in the manuscript were computed on
the AAL parcellation.Moreover, we complemented themby performing
the same analyses using the functional parcellation, as reported in the
supplementary materials (Supplementary Figs. S15–S18, Supplementary
Table S1 and Supplementary Data 13, 14).

Prediction error across brain regions of interest
After differentiating the brain activity of M versus N, we conducted an
additional analysis to investigate the peak responses elicited by the

Table 2 | Neural activity peaks recorded by magnetometers, musical expertise and contrasts in MEG 8-mm source space

Tone # Tone 2 Tone 3 Tone 4 Tone 5

Peak Max Min Max Min Max Min Max Min

Magnetometers in the left
hemisphere

Time (s) 0.708 (M) 0.612 (NT1) 1.092 (M) 0.992 (NT2) 1.452 (M) 1.340 (NT3) 1.804 (M) 1.736 (NT4)

Musical expertise (FDR-corrected) r = 0.093
p = 0.473

r = −0.218
p = 0.084

r = 0.239
p = 0.066

r = −0.186
p = 0.132

r = 0.286
p = 0.040

r = −0.261
p = 0.050

r = 0.344
p = 0.014

r = −0.034
p = 0.768

Contrasts in MEG source space

Conditions M versus NT1 M versus NT1 M versus NT1 M versus NT2 M versus NT1 M versus NT3 M versus NT1 M versus NT4

Max t-val 5.79 n.s 5.45 −6.09 5.81 −6.56 5.1 −6.03

FDR-adjusted p-value 0.003 n.s 0.009 0.008 0.01 0.01 0.01 0.02

MNI coordinates −6 −22 64 n.s −6 −30 40 2 34 0 −6 −38 32 2 18 −16 26 −30 −8 −6 26 −16

AAL region Supp Motor Ar n.s Cingulum Mid Cingulum Ant Cingulum Mid Subgenual Hippocampus Front Med Orb

Magnetometers in the right
hemisphere

Time (s) 0.620 (NT1) 0.832 (M) 0.988 (NT2) 1.088 (M) 1.352 (NT3) 1.456 (M) 1.732 (NT4) 1.920 (M)

Musical expertise (FDR-corrected) r = 0.242
p = 0.061

r = 0.051
p = 0.819

r = 0.428
p <0.001

r = −0.034
p = 0.819

r = 0.459
p < 0.001

r = −0.050
p = 0.819

r = 0.257
p = 0.050

r = −0.026
p = 0.819

Contrasts in MEG source space

Conditions M versus NT1 M versus NT1 M versus NT2 M versus NT1 M versus NT3 M versus NT1 M versus NT4 M versus NT1

Max t-val n.s 4.41 −6.14 5.50 −7.13 5.61 −6.17 5.24

FDR-adjusted p-value n.s 0.001 0.008 0.01 0.02 0.01 0.02 0.01

MNI coordinates n.s 58 −14 −16 2 34 −8 −6 −30 40 2 18 −16 −6 −38 32 −6 26 −16 10 −46 48

AAL region n.s Temporal Mid Cingulum Ant Cingulum Mid Subgenual Cingulum Mid Front Med Orb Precuneus

The table shows the time index of themaximumandminimumpeaks recordedby themagnetometers (see Fig. 3) for each tone (excluding thefirst one). Additionally, the table indicates the condition
for which the strongest peaks were observed (in parenthesis). The table also illustrates the correlations between the absolute value of the neural peaks and the participants’ musical training
(r = Pearson’s correlation coefficient, p-values are adjusted by the false discovery rate [FDR] correction formultiple comparisons). Finally, the table provides details of theMEG source contrasts (two-
sided t-tests) in 8-mm space. This includes the conditions which were contrasted, t-value, FDR-adjusted p-value, Montreal Neurological Institute (MNI) coordinates, and automated anatomical
labelling (AAL) region of the brain voxel which showed the strongest difference between the experimental conditions.

Article https://doi.org/10.1038/s41467-024-48302-4

Nature Communications |         (2024) 15:4313 7



varied tones within the N conditions. Regarding Heschl’s gyrus (left
and right), the peaks corresponded to the late N100, occurring
approximately at 150ms after the onset of each varied tone. Regarding
the hippocampus (left and right), anterior and medial cingulate gyrus,
the peaks occurred approximately at 250ms after the onset of each
varied tone (these responses were negative for the hippocampus and

anterior cingulate gyrus and positive for the medial cingulate gyrus).
We computed the average neural activity within a ±20ms timewindow
centred around the designated time index (depicted in Fig. 5 by red
circles). Subsequently, we performed separate one-sided analyses of
variance (ANOVAs) for each ROI and selected condition, with the
sequential neural peaks as independent variable and the neural activity
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as the dependent variable. Since this approach led to a total of 18
ANOVAs (six ROIs for NT1, NT2, NT3), we applied FDR correction to
account for multiple comparisons. Moreover, the Tukey-Kramer cor-
rection was applied to the post-hoc analysis computed for each
ANOVA (Supplementary Data 10). Results revealed that the responses
in Heschl’s gyri to subsequent varied tones were not significantly dif-
ferent: LHGNT1: F(3, 331) = 0.87, p = 0.51; LHGNT2: F(2, 248) = 1.33,
p =0.37; LHGNT3: F(1, 165) = 0.68, p = 0.51; RHGNT1: F(3, 331) = 0.90,
p =0.51; RHGNT2: F(2, 248) = 0.18, p = 0.83; RHGNT3: F(1, 165) = 0.33,
p =0.60. In contrast, for the hippocampus and cingulate gyrus, the
responses to different varied tones were significantly different, high-
lighting the stronger activity following the initial tone which

introduced the sequence variation: LHPNT1: F(3, 331) = 2.82, p = 0.05;
LHPNT2: F(2, 248) = 7.29, p =0.002; LHPNT3: F(1, 165) = 7.86, p =0.01;
RHPNT1: F(3, 331) = 7.40, p = 2.9e−04; RHPNT2: F(2, 248) = 14.33, p = 1.3e
−06; RHPNT3: F(1, 165) = 27.16, p = 5.56e−07; ACCNT1: F(3, 331) = 4.98,
p =0.005; ACCNT2: F(2, 248) = 11.54, p = 1.6e−05; ACCNT3: F(1,
165) = 17.55, p = 2.05e−04; MCNT1: F(3, 331) = 3.21, p =0.02; MCNT2: F(2,
248) = 8.40, p = 2.9e−04; MCNT3: F(1, 165) = 6.24, p = 0.02.

Dynamic causal modelling
In this study, DCM was used to test our hypothesised model of brain
hierarchies during recognition of memorised and varied musical
sequences against five competing models, which are described in
detail in the Methods section and illustrated in Figs. 1g and 6. These
models comprised the six AAL ROIs described in the previous section
and depicted in Supplementary Fig. S8. Our hypothesised model
consisted of feedforward connections fromLHGandRHG to LHP, RHP,
ACC, andMC, and feedback connections from LHP, RHP, ACC andMC
to LHG and RHG (Fig. 6a, red box).

Since DCM for MEG is usually computed on relatively short
time windows (e.g. 350–400ms) and for one experimental perturba-
tion (i.e. sound) at a time37,38, we computed a series of DCM analyses
independently for each tone of the sequences, in a 350ms time win-
dow from each tone onset. Specifically, for each participant, we com-
puted an independent DCM for tones two, three, four and five for
condition M. In relation to the N conditions, we were interested in the
tone that introduced the variation in the sequences. Thus, we com-
puted four DCMs, organised as follows: tone two for NT1; tone three
for NT2; tone four for NT3; tone five for NT4.

To compare alternative models, we estimated the free energy F
associated with the computation of each model (model evidence). To
study the consistency of F across the population, we used a random-
effects Bayesianmodel selection (RFXBMS) procedure, which provides
the posterior probability and protected exceedance probability of each
model, indicating which of the alternative models has the strongest
model evidencewithin thewhole population. In addition,we computed
the Bayesian omnibus risk (BOR), which represents the probability that
the protected exceedance probability associated with each model
comparison is attributable to chance within the sample of participants
(Fig. 6b, c)37. This procedure was observed independently for the eight
DCM analyses described above (four for M and four for Ns).

Results indicated that our hypothesised model was the one with
the highest evidence for all the DCM analyses of tones two, three and
four (Fig. 6). This result showed a high probability of not being driven
by chance, as demonstrated by the BOR parameter: BORM-tone2 = 2.91e
−07; BORM-tone3 = 4.33e−04; BORM-tone4 = 0.008; BORNT1-tone2 = 4.49e
−12; BORNT2-tone3 = 0.010; BORNT3-tone4 = 0.003.

Regarding tone five, the model with the highest evidence for M
showed a hierarchical architecture which consisted of the auditory
cortex leading to the hippocampus and anterior cingulate gyrus and
subsequently to the medial cingulate gyrus (BORM-tone5 = 0.006). For
NT4, the model with the highest evidence presented a hierarchy
which started in the auditory cortex and led to the hippocampus and
medial cingulate gyrus and then to the anterior cingulate gyrus
(BORNT4-tone5 = 0.036).

Fig. 4 | Source-localised differences in evoked responses across experimental
conditions. This figure illustrates the source-localised brain activity averaged over
participants (n = 83) for each experimental condition (memorised [M], novel T1
[NT1], novel T2 [NT2], novel T3 [NT3], novel T4 [NT4]) within six selected auto-
mated anatomical labelling (AAL) regions of interest (ROIs): left Heschl’s gyrus
(LHG), right Heschl’s gyrus (RHG), left hippocampus (LHP), right hippocampus
(RHP), anterior cingulate gyrus (ACC), andmedial cingulate gyrus (MC). The shaded
areas indicate standard errors. Musical tone sketches indicate the onset of the
sounds forming the sequences. Brain templates depict the spatial extent of the
selected ROIs. Blue-black lines highlight the temporal extent of the significant

differences betweenMversus each category of Ns (i.e. M versus NT1,M versus NT2,
M versus NT3, M versus NT4). Here, the contrasts were computed using two-sided
t-tests, independently for each time point, and correcting formultiple comparisons
using one-dimensional Monte-Carlo simulations (MCS; MCS, α =0.05, MCS
p-value = 0.001) Different hues of blue-black correspond to specific M versus N
condition comparisons. For a comprehensive depiction of all AAL ROIs, please refer
to Supplementary Fig. S7a–g. For a detailed statistical report on significant differ-
ences between experimental conditions in all ROIs, consult Supplementary Data 6.
Source data are provided as a Source Data file.

Table 3 | Largest clusters of stronger activity of memorised
(M) versus novel sequences (Ns)

Contrast ROI Temporal extent of the
largest clusters from the
1st tone of the
sequence (ms)

Peak
t-value

P-value

Positive activity

M versus NT1
(onset deviation
NT1: 350ms)

ACC 580–830 7.45 <0.001

LHG 520–630 7.17 <0.001

RHP 580–780 7.66 <0.001

M versus NT2
(onset deviation
NT2: 700ms)

ACC 940–1160 7.48 <0.001

LHG 890–970 6.26 <0.001

RHP 950–1160 6.24 <0.001

M versus NT3
(onset deviation
NT3: 1005ms)

ACC 1310–1540 6.13 <0.001

RHG 1660–1760 5.37 <0.001

RHP 1320–1520 6.72 <0.001

M versus NT4
(onset deviation
NT4: 1400ms)

ACC 1700–1890 6.54 <0.001

LHG 1640–1720 6.58 <0.001

RHP 1680–1890 6.56 <0.001

Negative activity

M versus NT1
(onset deviation
NT1: 350ms)

MC 680–860 −6.06 <0.001

M versus NT2
(onset deviation
NT1: 700ms)

MC 980–1180 −6.17 <0.001

M versus NT3
(onset deviation
NT1: 1005ms)

MC 1360–1550 −5.96 <0.001

M versus NT4
(onset deviation
NT1: 1400ms)

MC 1720–1920 −6.17 <0.001

Largest clusters of significantly stronger activity of M versus Ns computed for the six selected
automated anatomical (AAL) regions of interest (ROIs): left Heschl’s gyrus (LHG), right Heschl’s
gyrus (RHG), left hippocampus (LHP), right hippocampus (RHP), anterior cingulate gyrus (ACC),
and medial cingulate gyrus (MC). The table shows the contrast (two-sided t-tests), the onset of
thefirst variednote in theN sequence, the correspondent ROI, the temporal extent (inms) of the
largest cluster, the peak t-value of the cluster and the associatedMonte-Carlo simulations (MCS)
p-value. The MC shows stronger negativity since the polarity of the MC signal was primarily
negative, thus stronger activity in the MC for M versus N was indicated by a more pronounced
negativity forMcompared toN.All theother significant clusters, for both the selected six and the
remaining AAL ROIs, are reported in detail in Supplementary Data 6 and 7.
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Time-frequency analysis for induced responses
We computed time-frequency analysis using complex Morlet wavelet
transform (from 1 to 60Hz with 1-Hz intervals). This analysis was
conducted for induced responses. First, we estimated independent

time-frequency decompositions for each trial and each voxel of the six
ROIs described above (LHG, RHG, LHP, RHP, ACC, MC) plus left and
right occipital superior lobe for comparison purposes. Here, baseline
correction was applied by subtracting, for each frequency, the average

Fig. 5 | Focus on prediction error: differentiating Heschl’s gyrus from hippo-
campus and cingulate gyrus. This figure focuses on prediction error responses in
three novel (N) experimental conditions (novel T1 [NT1], novel T2 [NT2], novel T3
[NT3]) within six selected automated anatomical labelling (AAL) regions of interest
(ROIs): left Heschl’s gyrus (LHG), right Heschl’s gyrus (RHG), left hippocampus
(LHP), right hippocampus (RHP), anterior cingulate gyrus (ACC), and medial cin-
gulate gyrus (MC). The figure shows the time series averaged over participants
(n = 83). Shaded areas indicate standard errors. Musical tone sketches indicate the
onset of the sounds forming the sequences. Brain templates illustrate the spatial
extent of the selected ROIs. For each ROI, the circles highlight the peak responses

indexing the prediction error to each of the varied tones in the sequences
(occurring approximately at 150ms after tone onset for LHG and RHG, and at
250ms for LHP, RHP, ACC, MC. To be noted, LHP, RHP and ACC exhibit negative
peaks, while MC displays positive peaks). Beneath each waveform, violin plots
display the distribution of the amplitude of the peaks highlighted by the circles
(each dot represents a participant). The different amplitude of these peaks was
statistically tested using one-sided analyses of variance (ANOVAs), independently
for each ROI. The stars indicate the significant ANOVAs after false discovery rate
(FDR) correction formultiple comparisons (FDR-adjusted p-values: *<0.05; **<0.01;
***<0.001; n.s. not significant). Source data are provided as a Source Data file.
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power in the baseline interval from thepower at all timepoints39. Then,
the computed power spectrawere averaged over voxels and over trials
within each ROI. Finally, in line with the previous analyses, we calcu-
lated four contrasts (MversusNT1,M versusNT2,M versusNT3, andM
versus NT4). Specifically, we computed a two-sided t-test for each
frequency and time point and corrected for multiple comparisons
using 2D cluster-based MCS (MCS, α =0.05, MCS p-value = 0.001). As

shown in Fig. 7, results were similar across ROIs and displayed a gen-
eralised stronger power for N versus M between 2 and 20Hz (corre-
sponding to, approximately, theta, alpha, and beta bands), in the
timewindow 1.0–3.0 s (p < 0.001). In addition, a few significant clusters
showed a moderate yet significant increase of power for M versus N
(p < 0.001) for frequencies higher than 30Hz, which are normally
referred to as gamma40. Detailed statistical results about this
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procedure are extensively reported in Supplementary Data 11 and
depicted in Supplementary Fig. S12.

Finally, to strengthen the reliability of our results in MEG source
space, we computed the same analysis for eight fronto-temporal and
occipital MEG channels. Supplementary Fig. S13 and Supplementary
Data 12 show that the outcome of this procedure aligned with the
results in MEG source space.

Discussion
This study is rooted in the foundation of previous investigations and
provides adeeper understanding of theneuralmechanismsandbrain’s
functional hierarchies underlying the long-term recognition of audi-
tory sequences. Here, in contrast to prior studies, we deliberately
reduced the speed of the musical stimuli28–32. This allowed us to reveal
that the recognition of auditory sequences relied on distinct brain
responses to each tone forming the sequence, as opposed to the slow
response lasting for the entire duration of the sequence detected by
previous studies28–32. This evidence suggests that such slow signal
might havebeen the summation of the neural responses to each sound
of the sequence occurring at a faster tempo (i.e. each sound lasting
250ms28–32 as opposed to the 350ms employed in the current study).

Furthermore, here we introduced systematic variations to the
original memorised sequences to examine the brain mechanisms
associated with conscious prediction error. The declarative nature of
the prediction error, where participants were asked to identify differ-
ences in the sequences and provide a conscious response, extends our
understanding beyond the existing body of research focused on
automatic prediction error indexed by well-known ERP/Fs compo-
nents such as N100, MMN, and ERAN16,17,19–21. Those studies revealed
that such components were primarily generated by the auditory
cortex41,42, reporting a complementary yet much reduced recruitment
of the medial cingulate gyrus, inferior frontal gyrus, and frontal and
hippocampal regions14,42. Conversely, in our study we revealed an
initial recruitment of the auditory cortex (100–150ms) and then of the
anterior and medial cingulate gyrus, ventromedial prefrontal cortex,
and bilateral hippocampus (250–500ms). Notably, our results showed
that Heschl’s gyrus discriminated memorised melodies versus sys-
tematic variations but did not distinguish the strength of the errors
(i.e., the response was not significantly different across varied tones).
Conversely, the prediction error observed in the bilateral hippo-
campus, anterior andmedial cingulate gyrus was significantly stronger
in response to the tone that introduced the variations compared to all
other tones. Given the different brain responses observed in our study
in comparison to previous literature on automatic prediction error, we
argue that the brain signature underlying the awareness of the varia-
tion might be represented by the responses recorded in the anterior
cingulate gyrus, ventromedial prefrontal cortex and hippocampus and
their specific temporal dynamics.

Our results fit the well-known PCT6,7,26, which states that the brain
is constantly updating internal models to predict external information
and stimuli. Recently, this theory has been proposed to explain the

brainmechanisms underlying complex cognitive processes43, finding a
remarkable example in the neuroscience of music7,26. However, while
PCT holds promise for understanding complex cognitive processes,
the quantitative evidence in its favour has been limited. Thus, our
study filled this gap by providing quantitative evidence of the brain
functional hierarchies during long-term recognition of previously
memorised and novel sequences. The results showed feedforward
connections from the auditory cortices, representing sensory
regions44,45, to the hippocampus, anterior cingulate gyrus, and medial
cingulate gyrus, brain areas which were previously associated with
memory and predictive processes46,47, and evaluation48. Simulta-
neously, we observed backward connections operating in the opposite
direction. This hierarchical alignment persisted consistently through-
out the entire sequence, except for the final tone. Here, the cingulate
gyrus, whichholds apivotal role in decision-making andevaluation48,49,
assumed the top position within the hierarchy. For the memorised
sequences, the hierarchy consisted of the auditory cortex sending
feedforward signals to the hippocampus and anterior cingulate gyrus,
and subsequently to the medial cingulate gyrus (and receiving feed-
back signals in the opposite direction). Similarly, for the varied
sequences, the hierarchy showed feedforward connections from the
auditory cortex to the hippocampus and medial cingulate and then to
the anterior cingulate (and feedback in the opposite direction). This
result suggests that, upon hearing the last tone, the brain might pre-
pare the evaluation of the sequence (i.e. categorising it as ‘memorised’
or ‘novel’) and exactly for this reason either the anterior or medial
cingulate gyri, both relevant regions for decision-making and evalua-
tive processes48,49, occupy the highest position in the hierarchy. In
addition, our results present a significant dissociation between ante-
rior and medial cingulate gyri, suggesting a prominent role of the
medial part of the cingulate for recognition of memorised sequences
and of the anterior part for novelty detection.

These findings align with previous research demonstrating the
flowof information from sensory cortices to themedial temporal lobe,
associative areas, and prefrontal regions of the brain23,50. Moreover,
our results are coherent with the several studies which used PCT to
investigate perceptual51 and automatic memory mechanisms in the
brain22, as reviewed by Spratling43. These studies described how
information processing, orientation tuning, contour integration, and
binocular rivalry in the visual system relied on the hierarchical transi-
tion of the psychophysical and neurophysiological signals from the
retina to the lateral geniculate nucleus and V152–55. In the context of
automatic sensory memory, PCT has also lent support to the inter-
pretation of the MMN as an error signal which aids the brain in
adjusting its internal predictivemodel, returningquantitative evidence
of information flow from the primary auditory cortex to the superior
temporal gyrus and inferior frontal gyrus22. Our findings expand on
these studies by providing quantitative evidence of the hierarchical
organisation of the brain during a complex cognitive task, involving
episodicmemory recognition formusical sequences. In addition,while
the hierarchical architecture involved in recognising both memorised

Fig. 6 | Brain hierarchies during recognition of auditory sequences revealed by
Dynamic Causal Modelling (DCM). a Graphical depiction of the six alternative
models employed in DCM analysis. The connections between the six selected
automated anatomical labelling (AAL) regions of interest (ROIs) (left Heschl’s gyrus
[LHG], right Heschl’s gyrus [RHG], left hippocampus [LHP], right hippocampus
[RHP], anterior cingulate gyrus [ACC], medial cingulate gyrus [MC]) are illustrated
within a brain template, and through a graphical representation. Our hypothesised
model of brain hierarchies during recognition of memorised and varied musical
sequences is enclosed in a red box. Blue, red and black circles illustrate subse-
quently higher levels of brain hierarchy. b Posterior probability, protected excee-
dance probability and Bayesian omnibus risk (BOR) indicating the model with the
highest evidence across the population (n = 83; inference computed using random-
effects Bayesian model selection) for the memorised (M) sequence. We conducted

four independent DCM analyses, one for each tone (excluding the first tone, which
was common across all experimental conditions). Our hypothesisedmodel (model
one) had the highest evidence for tones two, three and four, while model three
reported the highest evidence for tone five. c Posterior probability, protected
exceedance probability and BOR indicating the model with the highest evidence
across the population (n = 83; inference computed using random-effects Bayesian
model selection) for the novel (N) conditions. Here, we focused on the first tone
which introduced the variation in the sequence (i.e. tone 2 for novel T1 [NT1], tone 3
for novel T2 [NT2], tone 4 for novel T3 [NT3], tone 5 for novel T4 [NT4]). Our
hypothesisedmodel (model one) had the highest evidence for tones two, three and
four, while model six reported the highest evidence for tone five. Source data are
provided as a Source Data file.
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and varied sequences remained largely unchanged, the temporal
dynamics, strength, and polarity of the brain signal sharply differed.
Here, our results suggest that when the upcoming sound of the
sequence matched the predicted sound based on the previously
storedmemory trace, first the auditory cortex and then hippocampus,
anterior and medial cingulate gyri responded with positive

components. Conversely, when the upcoming sound was incoherent
with the predictionmade by the brain, a pathway of primarily negative
and faster components emerged within the same brain network. It is
worth noting that also the inferior frontal gyrus, typically linked to
short-term and working memory for music56,57, displayed significantly
different activity across experimental conditions. However, this region
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exhibited overall reduced responses compared to the other brain
regions within the network. This observation further underscores the
differentiation between long-term memory recognition for auditory
sequences and other memory subsystems.

An additional finding pertains to our utilisation of multivariate
pattern analysis and temporal generalisation techniques, as described
by King and Dehaene58. Here, we revealed that when decoding mem-
orised from novel sequences, the algorithm could differentiate the
conditions starting from the first tone that was varied in the novel
sequences. This learning could then be generalised by the algorithm
with significant (yet reduced) accuracy for all the subsequent tones.
This pattern was consistently observed across all categories of varia-
tions, and it implies that the differential processes between the two
conditions remained consistent over time, indicating that the brain not
only identifies the initial varied tone but also monitors the entire
auditory sequence. This monitoring might have served the purpose of
assessing whether the varied tone represented a transient mistake or
the beginning of a proper varied sequence.

Our findings revealed a positive overall correlation between
musical training and neural activity associated with the recognition of
memorised and varied musical sequences. This correlation was parti-
cularly evident with regards to the neural responses to the sounds that
introduced variations. This aligns with previous research indicating a
connection between musical expertise and altered brain character-
istics, including enhanced neural responses (e.g. enhanced auditory
automatic prediction error)14,26,59 and structural changes60. In this
study, what distinguishes our findings was the extension of this rela-
tionship to the domain of long-term recognition of musical sequences
and the underlying brain mechanisms.

On a behavioural level, both reaction times and accuracy
remained consistent across memorised and three categories of novel
sequences: NT1, NT2, and NT3. However, accuracy was significantly
reduced, and reaction times increased for NT4. This shift might be
attributed to the altered final tone in the sequence, eliciting a slower
behavioural prediction error. Alternatively, the reduced accuracy and
prolonged reaction times in NT4 could be linked to chunking; the
mental grouping process that occurs when sequences are presented
with a beat every four tones. In this view, after listening to four tones of
the memorised sequence (corresponding to a complete beat), the
perception that the sequence belonged to the group of previously
learned sequences was very strong, and especially much stronger than
after only three tones. For this reason, we did not observe a linear
increase in reaction times and accuracy but only a difference between
T4 and all the other conditions. Currently, we do not have enough data
to make definitive claims and future studies are needed to system-
atically vary the length of the sequences.

Finally, the induced-response analysis showed that, after the end of
the sequence, alpha and beta bands were stronger for the varied com-
pared to thememorisedsequences.Considering themodulationof alpha
andbeta activity in encoding andworkingmemory tasksdescribed in the
scientific literature61, thisfindingmay suggest thatpost-stimulus increase
of alpha-beta power might be relevant to process novel information. In
addition, this analysis revealed a weak yet significant increase in gamma
power for the memorised compared to the varied sequences, especially
in the left hippocampus and Heschl’s gyrus and in the cingulate gyrus.
This is coherent with previous studies which reported increased gamma

power during recognition of target stimuli62,63 and, more generally, a
modulation of the brain oscillations associated with memory load and
complex cognitive functions64. Although this study provided initial
insights on the time-frequencymodulation occurring in the brain during
long-term recognition of auditory sequences, further research employ-
ing MEG and additional tools such as stereo-electroencephalography
(SEEG) is needed to expand our experimental design and conduct cross-
frequency coupling analysis, testing whether gamma-theta coupling is
connected to long-term recognition of auditory sequences. This would
also provide supporting evidence of the quality of the source recon-
struction performed in this study since SEEG data is less sensitive to
source leakage artifacts than MEG source reconstruction algorithms65.

In conclusion, this study reveals the brain mechanisms and hier-
archical dynamics of long-term memory recognition of previously
memorised and varied auditory sequences, effectively integrating the
PCT in the domain of complex cognitive tasks.

Methods
Participants
The participant sample consisted of 83 volunteers [33 males and 50
females (sex, biological attribute, self-reported)] aged 19–63 years old
(mean age: 28.76 ± 8.06 years). The sample was recruited in Denmark
and participants came fromWestern countries. We have not collected
information about participants’ gender since this was beyond the
scope of our research. All participants were healthy and reported
normal hearing. Their educational background was overall homo-
geneous. Specifically, 73 participants had either a university degree
(bachelor’s or master’s degree, n = 54) or were university students
(n = 19). The remaining 10 were divided as follows: five had a profes-
sional degree obtained after finishing high-school, while the remaining
five had a high-school diploma. The project was approved by the
Institutional Review Board (IRB) of Aarhus University (case number:
DNC-IRB-2020-006). The experimental procedures were carried out in
compliance with the Declaration of Helsinki – Ethical Principles for
Medical Research. All participants gave the informed consent before
starting the experimental procedure and received compensation for
their participation in the study.

Experimental stimuli and design
In this study, we used an old/new paradigm auditory recognition
task28,29,31,32 during magnetoencephalography (MEG) recordings. First,
participants listened to a short musical piece twice and were asked to
memorise it as much as possible. The musical piece consisted of the
first four bars of the right-handpart of Johann SebastianBach’s Prelude
No. 2 in C Minor, BWV 847. In this piece, each bar included 16 tones.
Thus, the total number of tones was 16*4 = 64. Each tone lasted
approximately 350ms for a total of 22,400ms. In addition, to provide
a sense of musical closure, we included a final tone after the four bars
which lasted 1000ms. Thus, the total duration was 23,400ms (23.4 s).
The stimulus is illustrated inmusical notation in Supplementary Fig. S1.
Second, participants were presented with 135 five-tone musical
excerpts that lasted 1750ms each. Participants were requested to state
whether each excerpt belonged to the original music (‘memorised’
sequence [M], old) or was a variedmusical sequence (‘novel’ sequence
[N], new) (Fig. 1a). Twenty-seven excerptswere drawn from theoriginal
musical piece and 108 were variations of the original melodies

Fig. 7 | Induced responses during the recognition of memorised (M) and novel
T1 (NT1) sequences. For each of the selected automated anatomical labelling (AAL)
regions of interest (ROIs; left Heschl’s gyrus [LHG], right Heschl’s gyrus [RHG], left
hippocampus [LHP], right hippocampus [RHP], anterior cingulate gyrus [ACC],
medial cingulate gyrus [MC], plus left and right occipital superior lobe for com-
parison purposes), three plots are provided. First, we illustrate the power spectrum
computed using complex Morlet wavelet transform for the M and NT1 conditions.
The power spectra were baseline corrected by subtracting, for each frequency, the

average power in the baseline interval from the power at all time points. The col-
orbar indicates squared femtotesla (fT2). Second,we illustrate the significant results
emerging from the contrasts between the power spectra of M versus NT1 (two-
sided t-tests [n = 83 participants] and cluster-basedMonte-Carlo simulations [MCS;
MCS, α =0.05, MCS p-value = 0.001] correction for multiple comparisons). In this
case, the colorbar indicates the t-values obtained by contrasting M versus NT1.
Source data are provided as a Source Data file.
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(Supplementary Fig. S2 shows all the sequences used in the study). The
two categories of stimuli (M and N) were created as follows. The M
sequences were comprised by the first five tones of the first three
measures of the musical piece. These sequences were presented nine
times each, for a total of 27 trials. The N sequences were created
through systematic variations of the three M sequences (Fig. 1b). This
procedure consisted of changing every musical tone of the sequence
after thefirst (NT1), second (NT2), third (NT3) or fourth (NT4) tone.We
created nine variations for each of the original M sequences and each
of the four categories of N. This resulted in 27N sequences for each
category, and 108N in total. To be noted, the variations were created
according to the following rules:

• Inverted melodic contours (used twice): the melodic contour of
the variation was invertedwith respect to the originalM sequence
(i.e., if the M sequence had the following melodic contour: down-
down-up-down, the N sequence would be: up-up-down-up).

• Same tone scrambled (used three times): the remaining tones of
theM sequence were scrambled (e.g., M sequence: C-E-D-E-C, was
converted into NT1 sequence: C-C-E-E-D). When this was not
possible (e.g., in the case of NT4, where only the last tone is dif-
ferent from theM sequence),we substituted the last tone of theM
sequence with a random tone.

• Same tone (used three times): the same tonewas repeatedly used,
in some cases varying only the octave (e.g., M sequence: C-E-D-E-
C, was transformed into NT1 sequence: C-E8- E8- E8

- E8).
• Scrambling intervals (used once): the intervals between the tones
were scrambled (e.g.,M sequence: 6thm – 2ndm– 2ndm– 3rdm,
was adapted to NT1 sequence: 2nd m, 6th m, 3rd m, 2nd m).

To be noted, the harmonic structure of the N sequences with
regards to the original M sequences was preserved in most of the
cases. Theonly exceptions occurred for a few instances of the ‘inverted
melodic contours’ and ‘scrambling intervals’ strategies, which were
however important to control for other musical features such as
melodic contour and intervals. This strategywas implemented to avoid
potential confounding variables stemming from changes in harmony.
However, investigating harmonic alterations concerning conscious
brain prediction errors could prove relevant for future studies centred
on diverse types of prediction errors.

The current procedure allowed us to investigate (i) the brain
dynamics underlying the recognition of previously memorised audi-
tory sequences and (ii) the conscious detection of the sequence
variation.

MIDI versions of the musical piece and of the musical sequences
described above were created using Finale (version 26, MakeMusic,
Boulder, CO) and presented using Psychopy v3.0.

Data acquisition
The MEG recordings were acquired in a magnetically shielded room
at Aarhus University Hospital (AUH), Aarhus, Denmark, using an
Elekta Neuromag TRIUX MEG scanner with 306 channels (Elekta
Neuromag, Helsinki, Finland). The data was recorded at a sampling
rate of 1000Hz with an analogue filtering of 0.1–330Hz. Before the
recordings, the head shape of the participants and the position of
four Head Position Indicator (HPI) coils were registered with respect
to three anatomical landmarks using a 3D digitiser (Polhemus Fas-
trak, Colchester, VT, USA). This recording was later used to co-
register the MEG data with the MRI anatomical scans. For the entire
duration of the MEG recordings, the HPI coils registered the con-
tinuous localisation of the head, which was subsequently employed
for movement correction. In addition, two sets of bipolar electrodes
were used to record cardiac rhythm and eye movements.
This allowed us to remove the electrocardiography (ECG) and elec-
trooculography (EOG) artifacts in a later stage of the analysis
pipeline.

The MRI scans were recorded on a CE-approved 3T Siemens MRI-
scanner at AUH. The recorded data consisted of structural T1 (mprage
with fat saturation) with a spatial resolution of 1.0 × 1.0 × 1.0mm and
the following sequence parameters: echo time (TE) = 2.61ms, repeti-
tion time (TR) = 2300ms, reconstructed matrix size = 256 × 256, echo
spacing = 7.6ms, bandwidth = 290Hz/Px.

TheMEG andMRI recordings were acquired in two separate days.

Behavioural data
We obtained behavioural data (number of correctly recognised trials
and correspondent reaction times) from the experimental task carried
out during the MEG recording.

Since the data was not normally distributed, we computed two
independent Kruskal-Wallis H tests (non-parametric one-way analysis
of variance) to assess whether the five categories of temporal
sequences (M, NT1, NT2, NT3, NT4, NT5) differed in terms of correct
responses and reaction times. Multiple comparisons were corrected
using the Tukey-Kramer correction66.

MEG data pre-processing
The raw MEG sensor data (204 planar gradiometers and 102 magnet-
ometers) was first pre-processed by MaxFilter67 (version 2.2.15) to
attenuate external interferences. We applied signal space separation
(MaxFilter parameters: spatiotemporal signal space separation [SSS],
down-sample from1000Hz to 250Hz,movement compensation using
cHPI coils [default step size: 10ms], correlation limit between inner
and outer subspaces used to reject overlapping intersecting inner/
outer signals during spatiotemporal SSS: 0.98). We opted to down-
sample the data by a factor of four because MEG is not particularly
sensitive to high-gamma frequency (e.g. 100Hz)25,68, while it provides
much better outcomes for lower frequency bands (e.g. 0.1–60Hz, as
done in the current study)25,68. Moreover, our research primarily
focused on the event-related broadband brain data during memory
recognition, which are often expressed in slower bands27,28. For these
reasons, as commonly done in the literature25,68, we downsampled the
data, a procedure which significantly accelerated the computations by
reducing data volume without substantial data loss25,68.

The data was then converted into Statistical Parametric Mapping
(SPM) format and further pre-processed and analysed in MATLAB
(MathWorks, Natick, MA, USA) using a combination of in-house-built
codes (LBPD, https://github.com/leonardob92/LBPD-1.0.git) and the
Oxford Centre for Human Brain Activity (OHBA) Software Library
(OSL)69 (https://ohba-analysis.github.io/osl-docs/), a freely available
software that builds upon Fieldtrip70, FSL71, and SPM72 toolboxes.

The continuous MEG data was visually inspected to identify and
remove large artifacts using the OSLview tool. The data that was
removed was less than 0.1% of the amount of collected data. Inde-
pendent component analyses (ICA) were used (OSL implementation)
to discard the interference of eyeblinks and heartbeat artefacts from
the brain data73. First, we decomposed the original signal into inde-
pendent components. Second, we correlated all the components with
the activity recorded by the EOG and ECG channels. This procedure
identified the ICAcomponentX that strongly correlatedwith either the
EOG or the ECG (strongly correlated means that the correlation coef-
ficient for component X was at least three times higher than the cor-
relation coefficients for the remaining components). To further
validate the accuracy of this procedure, we also visually inspected the
highly correlated components.We assessedwhether their topographic
distribution across MEG channels matched the typical distribution
associated with eyeblink and heartbeat activity. When both the cor-
relations and visual inspections converged, indicating that the ICA
component strongly reflected eyeblink or heartbeat activity, those
components were discarded. Third, the signal was rebuilt using the
remaining components. Finally, the signal was epoched in 135 trials
(27M, 27 NT1, 27 NT2, 27 NT3, 27 NT4) and baseline-corrected by
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removing the mean signal recorded in the baseline from the post-
stimulus brain signal. Each trial lasted 4500ms (4400ms plus 100ms
of baseline time).

Multivariate pattern analysis (decoding) – MEG sensors
Weperformedmultivariate pattern analysis to decode different neural
activity associated with the recognition of M versus N (Fig. 1c). Here,
we computed four independent analyses, decodingM fromeach of the
four categories of the novel sequences (i.e., M versus NT1, M versus
NT2, M versus NT3, M versus NT4). This was our first analysis since
decoding relies on all the available data and makes no assumptions
about whichMEG channels or time points should be selected.We used
support vector machines (SVMs)74 and calculated independent ana-
lyses for each participant. TheMEG data was rearranged in a 3Dmatrix
(channels x time points x trials) and submitted to the SVM algorithm.
To avoid overfitting, a leave-one-out cross-validation approach was
adopted to train the SVM classifier to decode the two experimental
conditions. This procedure divided the trials into N different groups
(here N = 5). Then, for each time point, it assigned N – 1 groups to the
training set and the remaining Nth group to the testing set. After that,
the classifier ability to separate the two conditions was evaluated. This
process was performed 100 times with random reassignment of the
data to training and testing sets. To summarise, the decoding accuracy
time series were averaged to obtain a final time series showing the
performance of the classifier for each participant. In addition to the
decoding accuracy time series (Fig. 2a), this analysis returned
weights and activation patterns which can be used to learn whichMEG
channels provided the strongest contribution to the decoding
analysis75 (Fig. 2b).

To test the significance of the decoding results (chance level set
at 50%), we employed a signed-rank permutation test against the
chance level for each time point and then corrected for multiple
comparisons using false-discovery rate (FDR) correction (α = 0.05;
FDR-adjusted q <0.012).

To assess whether each pair of conditions were differentiated by
neural patterns which were stable over time, we computed four
temporal generalisation multivariate analyses (Fig. 2c). In this case,
the algorithm used each time point of the training set to predict not
only the same time point in the testing set, but all time points76. Here,
the significance was tested using a signed-rank permutation test
against the chance level (50%) for each time point, as the previous
analyses. Then, we corrected for multiple comparisons using two-
dimensional (2D) cluster-based Monte-Carlo simulations (MCS,
α = 0.05, MCS p-value = 0.001). First, we computed the clusters size of
the continuous, binarized, significant values over time. The MCS
α = 0.05 means that to binarize the values outputted by the signed
permutation test against the chance level that we described above, we
used a p-value threshold of .05 (i.e. values below0.05were considered
significant and inputted to the MCS as ‘1s’ while values above 0.05 as
‘0s’). Thus, the first step of the MCS algorithm consisted of detecting
the clusters of ‘1s’. Second, we made 1000 permutations of these
binarized values. For each permutation, we computed the size of the
maximum emerging cluster and built a reference distribution using
those values. Finally, we considered significant the original clusters
that were bigger than the 99.9% of the permuted data maximum
cluster sizes (in other words, the MCS p-value = 0.001 refers to the
percentage of the cluster sizes in the reference distribution that the
original clusters should exceed to be considered significant). This
procedure was observed for all the analogous MCS described in the
study. Moreover, additional details on this MCS algorithm can be
found in28,31,32,77.

Univariate analysis – MEG sensors
Pairwise decoding is a powerful technique, but it can only tell if two
conditions are characterised by significantly different brain activity. It

does not provide information about which condition presented the
strongest brain activity. To answer this question, we computed an
additional analysis using the brain activity recorded by the MEG
channels which mainly contributed to the decoding algorithm. This
was done following two steps: (i) averaging the activation patterns of
theMEGchannels in all the significant timewindowsemerged from the
decoding algorithm (i.e. FDR-corrected decoding accuracy time series
for M versus NT1, M versus NT2, M versus NT3, M versus NT4); (ii)
selecting the MEG channels whose activation pattern was higher than
the average (over theMEG channels) plus one standard deviation. This
was done independently for magnetometers and gradiometers
and returned the following MEG channels; magnetometers: 1321,
0211, 1441, 0131, 1411, 1221, 1331, 0121, 1311, 0341, 2611, 0241, 1511,
1341, 0111, 0221; gradiometers: 1442, 0242, 0222, 1332, 2612, 0232, 1513,
1312, 0312, 1222, 1342, 0342, 0123, 1423, 2422, 2613, 0213, 1212, 1323,
0413, 0132, 0142, 0113, 1233, 2033, 1413, 1123, 0143, 0323, 1343,
1612, 1412.

TheseMEGchannelswere then averaged into four distinct groups,
based on the channel type and the polarity of the signal: (i) magnet-
ometers negative N100 (Fig. 2d, left), (ii) magnetometers positive
N100 (Fig. 2d, right), (iii) gradiometers negative N100 (Fig. 2e, left),
and (iv) gradiometers positive N100 (Fig. 2e, right). The reasons why
these four groups were considered are as follows: (i) magnetometers
and gradiometers are different types of sensors and have a difference
scale so they are usually analysed independently25,68; (ii) because of the
relationship between electrical activity and the correspondent mag-
netic field, when the brain generates a truly negative response (e.g.
N100 to the first sound of the sequence), the MEG channels record a
magnetic field characterised by both negative and positive values (i.e.
the same electric activity generates both a positive and negative
polarity of the magnetic field that are measured independently by
different MEG channels). The result of this well-known effect is that
somechannels show the ‘true’polarity of thebrain signal (e.g. theN100
to thefirst sound is negative) and other show the inverted polarity (e.g.
the N100 to the first sound is positive). When averagingMEG channels
together, this must be considered to prevent averaging out the signal.
Thus, as depicted in Fig. 2, we averaged the MEG channels into the
above-described four groups. As follows, we report the selected MEG
channels divided into the four groups. (i) Magnetometers negative
N100: 0131, 0211, 0121, 0341, 0241, 1511, 0111; (ii) magnetometers
positive N100: 1321, 1441, 1411, 1221, 1331, 1311, 2611, 1341; (iii) gradi-
ometers negative N100: 0213, 0232, 0312, 0342, 0132, 0222, 1423, 1212,
1123, 0413, 1413, 1233, 0323, 2613; (iv) gradiometers positive N100:
1442, 0242, 1332, 2612, 1513, 1312, 1222, 1342, 0123, 2422, 1323, 0142,
0113, 2033, 0143, 1343, 1612, 1412.

Then, independently for each group, we computed one two-sided
t-test for each time point and each combination of M versus Ns (i.e., M
versus NT1, M versus NT2, M versus NT3, M versus NT4). We corrected
for multiple comparisons using a one-dimensional (1D) cluster-based
MCS (MCS, α = 0.05, MCS p-value =0.001) (Supplementary Data 3).
First, we identified the clusters of significant continuous values in time.
Second, we computed 1000permutations, randomising the significant
values obtained from the t-tests. For each permutation, we extracted
themaximumcluster size andbuilt their referencedistribution. Finally,
we considered significant the original clusters that were larger than
99.9% of the permuted ones.

To provide full disclosure of our data, we have complemented
these computations with a further analysis. In this case, we computed
the same procedure described above, contrasting M versus each
category of N (i.e.M versus NT1,M versus NT2,M versus NT3,M versus
NT4) and correcting for multiple comparisons with cluster-basedMCS
(MCS,α =0.05,MCS p-value =0.001). However, herewe computed the
contrasts independently for each MEG channel. The results are
depicted in Supplementary Fig. S5a–z2 and reported in detail in Sup-
plementary Data 4.
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Source reconstruction
MEG is a powerful tool to detect thewhole-brain activity with excellent
temporal resolution. However, to obtain a complete picture of the
whole-brain activity underlying complex cognitive tasks the spatial
component of the brain activity must be also identified. Here, we
employed the established beamforming method78–80 (Fig. 1e), built
upon a combination of in-house-built codes and codes available in
OSL, SPM, and FieldTrip.

To reconstruct the brain sources that generated the MEG signal,
an inverse problem must be solved. The MEG recording shows the
activity of the neural signals outside the head but cannot provide
information on the specific brain sources which generated it. Thus, we
used beamforming algorithms to solve this problem, implementing
the two following steps: (i) designing a forward model and (ii) com-
puting the inverse solution.

The forward model is a theoretical model which considers each
brain source as an active dipole (brain voxel). It describes how the
unitary strength of each dipole would be reflected over all MEG sen-
sors. Here, we employed only the magnetometer channels and an
8-mm grid, which returned 3559 dipole locations (voxels) within the
whole brain. This was done because the magnetometers are the MEG
sensors that better capture the activity coming from deep sources of
the brain, while the gradiometers are more sensitive to the activity
originated in the portion of the cortex nearest to each gradiometer25,68.
Since our hypothesis was that regions in themedial temporal lobe (e.g.
hippocampus) played a role in long-term auditory recognition, we
opted for the magnetometers to compute the source reconstruction.
After co-registering the individual structural T1 data with the fiducial
points (i.e., information about head landmarks), we computed the
forwardmodel by adopting thewidely usedmethodcalled Single Shell,
which is presented in detail in Nolte81. The output of this computation,
referred to as leadfield model, was stored in the matrix L (sources ×
MEG channels). In the three cases where the structural T1 was not
available we performed the leadfield computation using a template
(MNI152-T1 with 8-mm spatial resolution).

Then, we computed the inverse solution. Asmentioned above, we
chose thebeamforming,which is oneof themost popular andeffective
algorithms available in thefield. This procedureemploys a different set
of weights which are sequentially applied to the source locations for
isolating the contribution of each source to the activity recorded by
the MEG channels. This is done for each time point of the recorded
brain data. The beamforming inverse solution can be summarised by
the following main steps.

The data recorded by MEG sensors (B) at time t, can be described
by the following Eq. (1):

BðtÞ =L �QðtÞ + ε ð1Þ

where L is the leadfield model, Q is the dipole matrix carrying the
activity of each active dipole (q) at time t and Ɛ is noise (seeHuang and
colleagues80 for details). To solve the inverse problem, Q must be
computed. In the beamforming algorithm, weights are computed and
then applied to the MEG sensors at each time point, as shown for the
single dipole q in Eq. (2):

qðtÞ =W
T�BðtÞ ð2Þ

Toobtain q, theweightsW shouldbe computed (the superscript T
refers to transposematrix). To this goal, the beamforming relies on the
matrix multiplication between L and the covariance matrix between
MEG sensors C, which is calculated on the concatenated experimental
trials. Specifically, for each brain source (dipole) q, the weightsWq are

computed as shown in Eq. (3):

WðqÞ = ðLðqÞ
T � C�1 � LðqÞÞ

�1 � L qð Þ
T � C�1 ð3Þ

To be noted, the computation of the leadfield model was per-
formed for the three main orientations of each brain source (dipole),
according to Nolte81. Before computing the weights, the orientations
were reduced to oneusing the singular value decomposition algorithm
on the matrix multiplication reported in Eq. (4). This procedure is
widely adopted to simplify the beamforming output64,65.

L= svdðlT � C�1 � lÞ�1 ð4Þ

Here, l represents the leadfieldmodel with the three orientations,
while L is the resolved one-orientation model that was utilised in (3).
Finally, the weights were applied to each brain source (dipole q) and
timepoint. To be noted, the covariancematrixCwas computed on the
continuous signal, which was estimated by concatenating the trials of
all experimental conditions. Theweightswere applied to the brain data
associated with each condition and normalised according to Luckhoo
and colleagues78,82–84 for counterbalancing the reconstruction bias
towards the centre of the head. Theweights were applied to the neural
activity averaged over trials for the evoked responses and to the neural
activity of each independent trial for the induced responses. This
procedure returned a time series for each of the 3559 brain sources
(and each trial in the case of induced responses), commonly referred
to as neural activity index78,82. The sign ambiguity of the evoked
responses time series was adjusted for each brain source using its sign
in correspondence with the N100 response to the first tone of the
auditory sequences28,31,32.

Neural sources of the peak activity (MEG magnetometers) and
musical training
After showing evidence of the differential brain activity in relation to
the experimental conditions, we wanted to characterise the neural
sources of the main peaks of brain activity recorded by the magnet-
ometers in response to each tone of the musical sequences, as
described in the section on the univariate analysis of MEG channels.

To detect the peaks of the brain activity recorded by the mag-
netometers for each tone (except the 1st one) of themusical sequence,
we extracted the time indices of the minimum and maximum value
recorded by the magnetometers shown in Figs. 2d and 3 in a 400ms
time window following the onset of each tone. The duration of this
time window reflects the period during which independent responses
to each sound occurred. This procedure returned the time index of
two neural peaks for each experimental condition and each tone of the
sequence (with exclusion of the 1st one which did not differ across
conditions). This revealed that one peakof the neural activity occurred
approximately at 350ms after the onset of each tone (highlighted in
yellow in Fig. 3). With regards to this peak, condition M showed the
strongest response among all conditions. The other peak occurred in
response to the tone which introduced the variation in the musical
sequence (highlighted in purple in Fig. 3). In this case, the N condition
which introduced the variation reported the strongest response
among all other conditions. This occurred approximately at 250ms
after the varied tone (i.e. NT1 showed the strongest response to tone
two among all conditions, NT2 to tone three, NT3 to tone four andNT4
to tone five). Extensive details on these neural activity peaks are
reported in Table 2.

Then, for each of the defined peaks, we computed contrasts in
MEG source space betweenM andN.More specifically, with regards to
the peaks occurring approximately at 350ms after each tone, we
contrastedM versus NT1 (illustrated in the yellow boxes in Fig. 3). This
was done because the peaks occurring at 350ms after each tone were
always greater for M, and NT1 was the only condition comprising
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sounds that were always different from M. Similarly, with regards to
the peaks occurring approximately at 250ms after the onset of the
varied tones, we contrasted the N condition which showed the stron-
gest peak against M (illustrated in the purple boxes in Fig. 3). Here, for
each condition in the pair, we averaged the absolute value of the
activity of each of the 3559 reconstructed brain voxels in the ±20ms
time window around the correspondent time index. Then, we com-
puted two-sided t-tests for eachof the 3559brain voxels by contrasting
the pairs of conditions and FDR-corrected for multiple comparisons.
The results of these analyses are shown in Fig. 3 and reported in detail
in Table 2 and Supplementary Data 5. In addition, we reported the
neural activity recorded by the MEG channels in topographic maps in
Supplementary Fig. S6.

Furthermore, the brain activity recorded by the MEG magnet-
ometers for each neural peak and hemisphere was correlated with the
measure of participants’ musical training provided by the Goldsmith
Musical Sophistication Index (GOLD-MSI)34 and corrected for multiple
comparisons using FDR. The GOLD-MSI is a widely used standardised
test which measures the ability of engaging with music in five sub-
scales: (i) Active engagement with music, (ii) Perceptual abilities, (iii)
Musical training, (iv) Emotions, and (v) Singing abilities. Here, we
focused on the Musical training subscale, which encompasses data
related tomusic education, formal training, average time spent playing
musical instruments at different life stages, etc34. The Results are
reported in Table 2.

Statistical analysis – automated anatomical labelling (AAL)
time series
After evaluating the neural sources of the different brain activity
associated with the experimental conditions using the fine-grained 8-
mm parcellation of the brain (Fig. 1e, 8-mm parcellation), we focused
on a set of anatomically defined regions of interest (ROIs) (Fig. 1e, AAL
parcellation). Here, we used a standard anatomical parcellation
method known as automated anatomical labelling (AAL)35 and calcu-
lated a time series for eachof the90non-cerebellarROIs of AAL (Fig. 1f,
Evoked responses).

As specified above, our source reconstruction was conducted in
an 8-mm space, resulting in 3559 brain voxels, each with its own time
series. Thus, for each of the 90 ROIs, we identified the corresponding
brain voxels and then averaged the time series of these associated
voxels. This allowed us to obtain a final time series for each AAL ROI.

Then, we computed one two-sided t-test for each AAL ROI, each
time point and each combination of M versus Ns. Finally, we corrected
for multiple comparisons using one-dimensional (1D) cluster-based
MCS (MCS, α =0.05, MCS p-value =0.001). Supplementary Fig. S7a–g
and Supplementary Data 6 show all AAL ROIs and the significant dif-
ferences between conditions. Figure 4 and Supplementary Fig. S8
show instead a selected array of ROIs which were particularly relevant
for this study. Here, we identified the two ROIs that showed the
strongest activity in absolute terms among auditory regions (i), medial
temporal lobe (ii) and cingulate and prefrontal cortices (iii). We
selected these regions based on the cognitive processes involved in
the experimental task used in this study: audition (i), memory (ii),
evaluation and decision-making (iii). As shown by Fig. 4 and Supple-
mentary Fig. S8, these ROIs were left and right Heschl’s gyrus (LHG,
RHG), left and right hippocampus (LHP, RHP), anterior cingulate gyrus
(ACC) andmedial cingulate gyrus (MC), respectively. These six regions
were also used for the Dynamic Causal Modelling (DCM) analysis
described later.

In addition, since it has been shown that the source reconstruc-
tion can produce leakage of the brain signals between the ROIs36, we
took additional measures to ensure the robustness of our results.
Specifically, we applied the multivariate source leakage correction
method proposed by Colclough and colleagues36 to the ROIs time
series. This method consists of removing the zero-lag correlations

between the ROIs time series through a symmetric, multivariate
orthogonalization process. After computing this correction, we per-
formed the exact same statistical tests described above. The outcomes
of this analysis are illustrated in Supplementary Fig. S9 and described
in Supplementary Data 8.

Finally, as a further measure to enhance the reliability of our
findings, in supplementarymaterials we reported the description of an
alternative, functional parcellation derived from the data (Supple-
mentary Figs. S7a–g, S10, S11, S15–S18 and Supplementary Data 9,
13, 14).

Prediction error across brain regions of interest
After differentiating the brain activity of M versus N, we conducted an
additional analysis to investigate the responses elicited by the varied
tones within the N conditions. Regarding Heschl’s gyrus (left and
right), we focused on the late N100 peaking approximately at 150ms
after the onset of each varied tone. Regarding the hippocampus (left
and right), anterior and medial cingulate gyrus, we focused on the
responses peaking approximately at 250ms after the onset of each
varied tone (these responses were negative for hippocampus and
anterior cingulate gyrus and positive for the medial cingulate gyrus).
Our goal was to compare the responses to each individual tone inde-
pendently within each ROI, for N conditions containing at least two
varied tones. To achieve this, we computed the average neural activity
within a ±20ms time window centred around the designated time
index (150ms for Heschl’s gyri and 250ms for the hippocampus and
cingulate gyrus), as depicted in Fig. 5 using red circles. Subsequently,
we performed separate one-sided analyses of variance (ANOVAs) for
eachROI andN condition containing at least twovaried tones to assess
whether the responses to subsequent varied tones differed, indepen-
dently for each ROI. Here, we used the sequential neural peaks as
independent variable and the neural activity as thedependent variable.
Since this approach led to a total of 18 ANOVAs, we applied an FDR
correction to account for multiple comparisons. Moreover, the post-
hoc analyses computed for each of the ANOVAs were corrected for
multiple comparisons using Tukey–Kramer correction66.

Dynamic causal modelling (DCM)
DCM aims to infer the causal structure of interconnected or dispersed
dynamical systems such as a network of brain regions (Fig. 1g). It
employs a Bayesian model comparison approach that involves evalu-
ating competing models which explain the generation of time series
data associated with alternative network architectures. DCM has been
widely used in the neuroscientific literature37,38,85–88, especially but not
limited to the framework of predictive coding, and it is particularly
useful for estimating hierarchical relationships between brain regions
in relation to experimental stimuli. In brief, a dynamic causalmodel for
MEG responses starts with a reasonably plausible neuronal model
which describes how neuronal populations generate the activity of the
large brain regions that are source reconstructed using MEG. Here, we
employed the widely used neural-massmodel developed by David and
colleagues86. Thismodel characterises large brain regions by averaging
the post-synaptic membrane depolarisation of different neuronal
populations, which are interconnected in a vertical pattern, mimicking
the canonical cortical microcircuit (CMC) structure outlined by Bastos
and colleagues89. Then, the neural-mass model is integrated with a
network architecture indicating the hypothesised feedforward and
feedback connections between the brain regions that were identified
from theMEGdata. Finally, theDCM is fitted to the time series of those
brain regions and the marginal likelihood of the model (model evi-
dence), as well as the posterior and protected exceedance prob-
abilities, are estimated. Typically, a first model representing the
hypothesised network architecture/brain hierarchy is formulated, and
its evidence is compared to the evidence of a few alternative, com-
peting models. This is done to establish which is the network
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architecture which shows the highest model evidence given the
experimental data.

DCM is apopular andestablishedmethod andextensivedetails on
its functioning can be found in multiple experimental, theoretical and
review papers37,38,85–88. Additional details on the Bayesian model com-
parison are available in the next section.

In this study, DCM was used to test our hypothesised model of
brain hierarchies during recognition of memorised and variedmusical
sequences against five competing models (Fig. 6a).

These six models comprised the six AAL ROIs showed in Supple-
mentary Fig. S8 and illustrated in the previous sections of the paper
(LHG, RHG, LHP, RHP, ACC, MC). Themodels are described as follows:
1. Model 1: this is the model that we hypothesised would have the

highest evidence and consisted of feedforward connections from
LHG, RHG to LHP, RHP, ACC,MC, and feedback connections from
LHP, RHP, ACC, MC to LHG, RHG.

2. Model 2: this alternative model consisted of feedforward con-
nections from LHG, RHG to LHP, RHP, ACC, MC. No feedback
connectionswere indicated. Thismodel served to evaluate if there
was evidence for a loop of feedforward and feedback connectivity
between the auditory cortices and the other brain regions or if
only feedforward connectivity was the most likely explanation of
the data.

3. Model 3: this alternative model consisted of feedforward con-
nections from LHG, RHG to LHP, RHP and from LHP, RHP to ACC,
MC. The model also hypothesised feedback connections from
ACC, MC to LHP, RHP and from LHP, RHP to LHG, RHG. This
alternativemodel distinguishedHP fromACC andMC. Thismodel
was formulated based on the anatomical contiguity of ACC and
MC90, as opposed to HP and wished to establish if there was an
additional hierarchical layer between LHP, RHP and ACC, MC.

4. Model 4: this alternative model consisted of feedforward con-
nections from LHG, RHG to ACC, MC and from ACC, MC to LHP,
RHP. The model also hypothesised feedback connections from
LHP, RHP toACC,MCand fromACC,MC to LHG, RHG. Thismodel
was formulated with the same rationale behind model 3, but it
tested the opposite direction of the connections between LHP,
RHP and ACC, MC.

5. Model 5: this alternative model consisted of feedforward con-
nections from LHG, RHG to MC and from MC to ACC, LHP, RHP.
The model also hypothesised feedback connections from ACC,
LHP, RHP toMCand fromMCto LHG,RHG. This alternativemodel
distinguished HP and ACC from MC. This model was formulated
based on the higher correlations between the time series of ACC,
LHP, RHP (rACC-LHP = 0.542; rACC-RHP = 0.731; rLHP-RHP = 0.486)
compared to the correlations between MC and ACC (r = −0.565),
LHP (r = 0.256), andRHP (−0.163). It aimed to establish if therewas
an additional hierarchical layer between MC and LHP, RHP, ACC.

6. Model 6: this alternative model consisted of feedforward con-
nections from LHG, RHG to ACC, LHP, RHP and from ACC, LHP,
RHP to MC. The model also hypothesised feedback connections
fromMC toACC, LHP, RHP and fromACC, LHP, RHP to LHG, RHG.
This model was formulated with the same rationale behindmodel
5, but it tested the opposite direction of the connections between
LHP, RHP, ACC and MC.

Based on the extensive evidence that the auditory cortices are the
first brain regions to respond to sounds in the context of ERP/Fs44,45, all
the models hypothesised that the external auditory inputs reached
LHG and RHG.

We aimed to test the network architecture of this array of brain
regions for both recognition of previously memorised and novel
musical sequences [i.e. for conditions M and N(s)]. Since DCM for
MEEG is usually computed on relatively short time windows (e.g.
350–400ms) and for one experimental perturbation at a time (e.g. one

sound)37,38,85–88, we computed a series of DCM analyses independently
for each tone of the sequences, in a 350ms time window from each
tone onset. Specifically, we computed an independent DCM for tones
two, three, four and five for condition M. Tone one was excluded
because it was the same across all conditions.

In relation to theN conditions, wewere interested only in the tone
that introduced the variation in the sequences. Thus, we computed
four DCMs, organised as follows: NT1 for tone two; NT2 for tone three;
NT3 for tone four; NT4 for tone five. In conclusion, we computed a
totalof eightDCManalyses, always testing the samealternativemodels
since we hypothesised the same hierarchy in the network architecture
of M and Ns.

As a final note, following standard DCM procedures, the DCMs
were estimated independently for each participant. The consistency of
the results across participants was tested using random-effects Baye-
sian model selection (RFX BMS), which is described in detail in the
following section.

Bayesian model comparison across participants
Dynamic causal models are estimated with variational Laplace91. The
variational Laplace is used for deriving both the posterior distribution
and the marginal likelihood of the model itself, which is also known as
the model evidence. Employing a Laplace approximation to the mul-
tivariate posterior distribution of model parameters, denoted as
qðθjy,mÞ, we iteratively computed conditional means and covariances
bymaximising a lower bound on the logarithm of themodel evidence,
referred to as the log-evidence.

This optimisation utilises the Newton’s method and a Fisher
scoring scheme tomaximise the (negative) variational free-energy F of
the model (5):

F = Eq½lnpðyjθ,mÞ� � DKL½qðθjy,mÞjjp θjmð Þ� ð5Þ

Where Eq½�� indicates the expectation under the variational posterior
density qðθjy,mÞ, while DKL½�� refers to the relative entropy [or
Kullback–Leibner (KL) divergence]. Thismakes the free energy a lower-
bound approximation to the log-evidence.

To gain a deeper understanding of the utility of free energy in
model comparison, we can break it down into two components. The
initial component comprises the anticipated log-likelihood of the
data, denoting the model’s precision. The subsequent component is
the relative entropy, or KL divergence, between the multivariate
posterior and prior probability distributions, signifying the model’s
complexity. This formulation of complexity as a KL divergence is
based on the premise that the posterior need not deviate sig-
nificantly from the prior to accommodate new data. In essence, a
proficient model should yield posterior beliefs consistent with its
prior beliefs when exposed to new data. Consequently, free energy
can be dissected into accuracy minus complexity, jointly encapsu-
lating a model’s ability to explain the data. Our set of alternative
models were then compared using their free energy, which indexes
each model evidence87. To study the consistency of the free energy
across the participants, we used a RFX BMS model selection proce-
dure, which provides the posterior probability and protected
exceedance probability of each model for model comparison within
the entire sample of participants88.

The posterior probability is determined using normalised Baye-
sian factors (BF) and reflects the likelihood of each model being
independently a good fit based on the observed data. The protected
exceedance probability describes the likelihood that a particular
model is the best of explaining the data when compared to all the
alternative models. In addition, by accounting for variations in model
frequencies that could arise purely by chance92, the protected excee-
dance probability keeps into account potential issues associated with
multiple comparisons, enhancing the robustness of the results. Finally,
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in addition to posterior probability and protected exceedance prob-
ability, we also calculated a statistical measure called the Bayesian
omnibus risk (BOR). The BOR is a metric that quantifies the statistical
risk associated with performing Bayesian model comparisons at a
group level, taking into accountpotential variations in the likelihoodof
the models among different participants. In other words, the
BOR indicates the likelihood that the protected exceedance prob-
ability observed in each model comparison is due to random
chance within the participant sample. This parameter is a recent
addition to the DCM framework and serves as a further tool to assess
the reliability of the DCM results37. Taken together, the posterior
probability, protected exceedance probability and BOR provide a
state-of-the-art, conservative approach for determining which of
the alternative DCM models has the strongest evidence within the
entire population. Additionally, they offer a robust measure of the
probability that this evidence is not simply a result of random
chance37,85,88,92.

This procedure was observed independently for the eight DCM
analyses described in the previous section.

Time-frequency analysis for induced responses
We computed a time-frequency analysis using complexMorlet wavelet
transform (from 1 to 60Hz with 1-Hz intervals)93. This analysis was
conducted for induced responses, independently for the six AAL ROIs
and for the four contrasts considered in this study (i.e., M versus NT1,
M versus NT2, M versus NT3, M versus NT4). Specifically, the time-
frequency decomposition was done independently for each trial, brain
voxel, and participant. Moreover, baseline correction was applied by
subtracting, for each frequency, the average power in the baseline
interval from the power at all time points39,94,95.

Then, as shown in Fig. 7 and Supplementary Fig. S12, the power
spectrumof each trial and eachbrain voxel was averagedwithin eachof
the six ROIs. In addition, to provide results which can be more easily
compared with previous literature, we have also computed the power
spectrum for left and right occipital superior lobe. Finally, we per-
formed a two-sided t-test for each frequency and time point, making
four contrasts: M versus NT1, M versus NT2, M versus NT3, M versus
NT4. The emerging p-values were binarized (α =0.05) and then sub-
mitted to a 2D MCS (MCS p-value = 0.001). Here, we calculated the
clusters size of continuous significant values in time and frequency.
Then, we made 1000 permutations of the binarized p-values. For
each permutation, we measured the size of the maximum emerging
cluster and built a reference distribution with one value for each per-
mutation. Finally, theoriginal clusterswere considered significantwhen
they were bigger than the 99.9% of the permuted data maximum
cluster sizes.

To strengthen the reliability of our results in MEG source space,
we computed the sameanalysis for eight fronto-temporal andoccipital
MEG channels. In this case, the power spectra were computed inde-
pendently for each trial and then averaged (Supplementary Fig. S13
and Supplementary Data 12).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The pre-processed neuroimaging data generated in this study have
been deposited in the Zenodo database under accession code [https://
doi.org/10.5281/zenodo.1071516096] and arepublicly available. The raw
neuroimaging data are protected and are not available due to data
privacy laws. Source data exceeding 30MB as well as Supplementary
Figs. in high resolution are provided in the same Zenodo database
reported above. Source data are provided with this paper.

Code availability
TheMEG data was first pre-processed usingMaxFilter 2.2.15. Then, the
data was further pre-processed using Matlab R2016a or later versions
(MathWorks, Natick, Massachusetts, United States of America). Spe-
cifically, we used codes from the Oxford Centre for Human Brain
Activity Software Library (OSL), FMRIB Software Library (FSL) 6.0,
SPM12 and Fieldtrip. To compute multivariate pattern analysis
(decoding), we employed support vector machines (SVMs)
(libsvm:http://www.csie.ntu.edu.tw/~cjlin/libsvm/). In-house-built
code and functions used in this study are part of the LBPD reposi-
tory which is available at the following link: https://doi.org/10.5281/
zenodo.1070172497. The full analysis pipeline used in this study and the
code employed for delivering the stimuli are available at the following
link: https://doi.org/10.5281/zenodo.1107241098.
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