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A B S T R A C T

Turbulence is a universal principle for fast energy and information transfer. Moving beyond the turbulence of 
fluid dynamics, turbulence has recently been demonstrated in brain dynamics. Importantly, turbulence can be 
expressed as the rich variability across spacetime of the local levels of synchronisation of coupled brain signals. 
In fact, the optimal mixing properties of turbulence is what allows for efficient transfer of energy/information 
over space and time in the brain. This is especially important for survival given the need to overcome the 
inherent slowness in neural dynamics. Here, we review the research showing that the turbulence offers a 
convenient framework for describing brain dynamics and that the scale-free nature of turbulence, reflected in 
power-laws, provides the necessary mechanisms for time-critical information transfer in the brain. Whole-brain 
modelling of turbulence as coupled-oscillators has been shown to provide precise signatures of many different 
brain states. The levels of turbulence change in disease, and careful research of the vortex space could potentially 
help discover new avenues for a better understanding of this breakdown and offer better control of these highly 
non-linear, non-equilibrium states. Overall, the framework of the turbulent brain is a highly fertile, fast devel
oping field with great potential.

1. Introduction

“Big whirls have little whirls / That feed on their velocity, / And little 
whirls have lesser whirls / And so on to viscosity …”.

Lewis Fry Richardson (1881–1953)

“Let no-one who is not a mathematician read my principles”.

Leonardo da Vinci (1452–1519)

A major question in our pursuit of understanding the mind is the 
paradox of how quickly the brain is able to respond and adapt to change 
despite the underlying slowness of neuronal processes. Indeed, rates of 

information transfer between neurons are surprisingly slow, on the 
order of approximately 10–20 ms (Itoh et al., 2022) as shown by the 
Nobel prizewinning research of Hodgkin and Huxley (Hodgkin and 
Huxley, 1952b). This slowness is rooted in the fact that electrical signals 
in the myelinated fibres must be converted to a chemical signal at the 
synaptic junction before being converted back to an electrical signal 
(Cotterill, 2002). The speed of information transfer is several orders of 
magnitude slower than that found in silicon-based computers, yet the 
brain is clearly better at solving hard problems with often minimal in
formation and using much smaller amounts of energy. This problem of 
how the brain overcomes the limitations of speed for information 
transfer across spacetime has been a longstanding conundrum in the 
field of neuroscience. In this perspective, we show that part of the 
answer comes from the principles of turbulence in non-reversible 
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dynamical regimes taking place far from thermodynamic equilibrium, 
showing strong temporal asymmetry and obeying so-called power laws, 
providing scale-freeness (see Glossary) as the basis of efficient infor
mation transfer. This significant increase in speed from scale-free in
formation transfer is over and above any increases in speed from parallel 
processing. In fact, here we show how turbulence, as a form of deter
ministic spatiotemporal chaos (Frisch, 1995), provides a convenient 
framework which can be understood as a mechanistic operationalisation 
of spacetime brain dynamics within a promising new field of neurosci
ence which we have previously termed “thermodynamics of mind” 
(Kringelbach et al., 2024). This new theory describes brain dynamics in 
terms of non-equilibrium thermodynamics and production entropy, and 
thus establishing a link with turbulence, which recently received 
confirmation by the findings of Yao and colleagues in field of fluid dy
namics (Yao et al., 2024).

In order to survive in a complex world, the brain has to mix a large 
amount of information across space and time. This mixing is exactly 
what turbulence has been shown to facilitate. Originally coined as 
“turbolenza” (from the Latin word for ‘crowdiness’ or disturbed) by 
Leonardo DaVinci over half a millennium ago (Deco et al., 2021a) and 
subsequently developed by many mathematicians, turbulence is ubiq
uitous in Nature as an essential dynamical regime facilitating efficient 
energy and information transfer across spatiotemporal scales (Cross and 
Hohenberg, 1993).

In fact, recently, we discovered turbulence in empirical whole-brain 
dynamics (Deco and Kringelbach, 2020). Rather than focusing on just 
the signal as with most methods, we characterised the local level of 
synchronisation across space and time (roughly comparable to vortices 
in fluid dynamics). Intuitively, any system that has high variability of 
this local level of synchronisation is turbulent and with this comes all the 
important properties needed for information transfer. More formally, 
the Russian mathematician Andrey Kolmogorov demonstrated the effi
ciency of turbulence by finding a spatial power scaling law in fluid dy
namics, revealing a cascade of energy and information in fluids 
(Kolmogorov, 1941a, b) (see excellent review in (Frisch, 1995)). This 
provides the basis for highly efficient energy transmission.

Beyond the limited domain of fluid dynamics, the physicist Yoshiki 
Kuramoto was able to generalise turbulence to other physical systems 
including coupled oscillators (Kuramoto, 1984), which has been shown 
to be an excellent basis for describing brain dynamics (Deco et al., 
2017b; Kringelbach and Deco, 2020). This is important, since mathe
matical research has more generally shown that information transfer is 
analogous to energy transfer, as demonstrated by the close links between 
vortex propagation of disturbances and the transmission of information 
(Cross and Hohenberg, 1993; Oono and Yeung, 1987). Within the 
context of turbulence in the brain, information transfer can therefore be 
formally defined as the hierarchical transfer of information across scales 
(for a mathematical definition, see Eq. 13 in the Appendix). In fact, the 
rotational, spiral-like vortices in fluid dynamics can also be found in 
brain dynamics where oscillatory vortices spin around their phase sin
gularity centres (Xu et al., 2023). As such, vortices can be described 
using the local Kuramoto parameter characterising the local level of 
synchronisation of their phases (see Eqs. 4 and 7 in the Appendix). These 
oscillating brain vortices are very similar to those found in the turbu
lence of other complex physical and biological systems (Bewley et al., 
2006; Christoph et al., 2018).

In this perspective, we show the important implications and findings 
arising discovering turbulence in the local metastability of brain dy
namics and modelling the brain with turbulent coupled oscillators. This 
complements other attempts to formulate a general theory of brain 
function such as the free energy principle (Friston, 2010) but crucially 
focusing on spacetime mechanisms of information transfer in brain 
function. Other important spacetime theories of consciousness include 
Global Workspace (Baars, 1989; Deco et al., 2021c; Dehaene et al., 
1998), Integrated Information Theory (Tononi et al., 1994) and the 
Temporo-spatial Theory of Consciousness (Northoff, 2013, 2024; 

Northoff and Huang, 2017). Here, we first describe how, moving beyond 
just correlational measures, it is straightforward to create a whole-brain 
modelling framework of turbulence given that brain dynamics can be 
described by a whole-brain model of coupled oscillators and in partic
ular the Hopf whole-brain model (Deco et al., 2017b), describing the 
behaviour of a Stuart-Landau non-linear oscillating system (Hopf, 
1942). Second, the level of turbulence has been shown to distinguish 
different empirical brain states including different forms of coma, sleep 
(Escrichs et al., 2022) and psychedelics (Cruzat et al., 2022). Third, 
brain dynamics also exhibit a turbulent power law similar to that found 
for fluid dynamics, strongly suggesting the presence of a cascade of 
efficient information processing across scales needed for fast 
whole-brain distributed processing (Deco and Kringelbach, 2020). 
Finally, pointing towards the relevance of turbulence for higher order 
brain function, evidence has been found of higher order 
structure-functions demonstrating multi fractality and turbulence (Perl 
et al., 2023a).

2. A brief history of turbulence

Leonardo DaVinci constantly explored the capacity of pre-Newtonian 
laws of dynamics to lead to the complexity observed in nature (for his 
most developed discussions of water, see the Codex Leicester (Laurenza 
and Kemp, 2019)). Achieving an accurate drawing of the complexity of 
turbulent motion was extremely difficult, not least when he tried to 
draw the incessant movements of intersecting bodies of water, especially 
since it was not possible for him to freeze movement in time. Instead, he 
needed to develop a deep understanding of the underlying ordered 
mechanisms creating disorder. In fact, he was forced to use mathematics 
to explain the complexity of fluids in motion in a pioneering way.

With his powers of observation, Leonardo was fully aware of the 
ordered layered fashion of flow of water in a river, now termed laminar 
flow. He studied how a sudden obstacle like a branch in a river can create 
turbulent flow, resulting in varying types of vortices or eddies. Laminar 
flow is beautiful but ultimately rather boring from a dynamics point of 
view, while turbulent flow is seemingly chaotic but incredibly useful. 
For example, when cooking, laminar flow (stirring the spoon in repeti
tive, predictable circular movements) does not allow for proper mixing 
of the ingredients, but when you introduce more complex stirring pat
terns, and thus turbulence, much more efficient mixing occurs.

Merging art and science seamlessly, Leonardo discerned and repre
sented underlying orders in what appeared to be disordered natural 
phenomena. His detailed analyses of the behaviour of water combine 
mathematical theories of motion, as understood at the time, with acute 
observation. His quest to embrace complexity is reflected in how he used 
Italian vernacular to describe his observations. At one point he listed 68 
terms that might describe the varieties of fluid motion and their many 
effects, eventually decided on using ‘turbolenza’ to encompass them all.

Leonardo’s characterisation of eddies at varied scales remarkably 
predates the seminal observations by the English polymath Lewis Fry 
Richardson (1881–1953), pioneer of the mathematical weather fore
casting, who described the important turbulent energy cascade principle. 
As shown by Leonardo, fluids have differently sized vortices or eddies, 
where each corresponds to a rotational movement. The interactions 
between larger and smaller eddies interchange energy, in the form of 
velocity or kinetic energy; this is called the energy cascade and transfers 
energy across scales, which roughly correspond to the size of different 
eddies.

This energy cascade was described in a humorous verse above by 
Richardson, as a play on words from Siphonaptera, the taxonomic order 
of fleas, a brief poem by Augustus De Morgan, rewording Jonathan 
Swift: “Great fleas have little fleas upon their backs to bite ‘em; And little 
fleas have lesser fleas, and so ad infinitum”.

Also focusing on fluid dynamics, Kolmogorov published his ground- 
breaking phenomenological theory of turbulence over 80 years ago 
(Kolmogorov, 1941a, b). This highly influential theory demonstrates a 
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fundamental power scaling law, revealing the key underlying mecha
nisms of fluid dynamics, namely the energy cascades that balance ki
netics and viscous dissipation (Fig. 1A). This spatial power-scaling law is 
a hallmark of turbulence and provides a mathematical description of 
Richardson’s earlier concept of cascaded eddies (Richardson, 1922).

Kolmogorov’s approach successfully overcomes the severe limita
tions of the prevailing description of turbulence at the time, which 
described the movement of each particle of the fluid mathematically. 
These fundamental movements are described by the Navier-Stokes 

equations, named after the French engineer Claude-Louis Navier and 
the British mathematician George Gabriel Stokes (Navier, 1823; Stokes, 
1843). The idea was to apply these equations to microscopic elements of 
the fluid to infer or construct the macroscopic laws governing the whole 
fluid. Such an approach to the study of fluid dynamics at the microscopic 
level resulted in comparably little success given the large computational 
power needed, but unavailable at the time.

There are strong parallels to the way that the scientists have tried — 
and failed — to describe the macroscopic behaviour of the brain by 
modelling each microscopic neuron with the Hodgkin–Huxley equations 
(Hodgkin and Huxley, 1952a). These were named after the Nobel 
prizewinning British physiologists Alan Hodgkin and Andrew Huxley, 
who described the activity of neurons by modelling the ionic mecha
nisms underlying the initiation and propagation of activity in the squid 
giant axon.

There are severe computational limitations with the idea of recon
structing macroscopic properties from microscopic descriptions such as 
the Navier-Stokes equation for fluid dynamics and Hodgkin-Huxley 
equations for neural dynamics. Instead, the study of turbulence is bet
ter described by the statistical approach started by Kolmogorov’s vital 
insight. On an abstract level, Kolmogorov’s approach is a way to 
discover order in disorder, which is, of course, exactly the same 
approach used by Leonardo over 500 years ago when he tried to char
acterise the ordered vortex configurations of crowded, disordered tur
bulent flows in fluids. Similar to the case of fluids, it is clear that brain 
activity should be described statistically directly at the macroscopic 
level.

As it happens, a more general form of coupled oscillators, namely 
non-linear oscillators can also generate turbulence. Building on previous 
important work starting in the 1940s, Kuramoto was able to show in the 
1980s that coupled oscillators can describe turbulence in many different 
physical system (Kuramoto, 1984).

3. Turbulent power laws in fluid and brain dynamics

Specifically, Kolmogorov’s phenomenological theory of turbulence 
introduced the important concept of structure functions, which are based 
on computing the spatial correlations between any two points in a fluid. 
He was able to demonstrate a fundamental power scaling law revealing 
the underlying key mechanisms of fluid dynamics, namely the energy 
cascades that balance kinetics and viscous dissipation. This spatial 
power scaling law is a hallmark of turbulence and appears at an inter
mediate spatial range called the “inertial subrange” where kinetic en
ergy is not dissipated, and merely transferred to smaller scales following 
Richardson’s concept of cascaded eddies (Richardson, 1922) (Fig. 1A, 
middle panel). In that inertial subrange, what Kolmogorov called 
‘structure functions’ (usually denoted S(r)) show a universal scaling factor 
of r2/3 and an energy scaling of k− 5/3, where r is the spatial scale and k 
the associated wave number of the spectral scale (see Fig. 1A, right 
panel). Crucially, Kolmogorov demonstrated that at small scales turbu
lence is homogeneous isotropic and universal. In other words, the ex
istence of power laws means that turbulence is a scale-free phenomenon. 
In particular, his approach was very successful in overcoming the severe 
limitations of inferring macroscopic laws from microscopic principles.

We hypothesised that Kolmogorov’s approach using ‘structure 
functions’ would also be useful for neuroscience, especially given that 
the brain dynamics ultimately come from the spiking behaviour of 
neurons described by the Hodgkin-Huxley equations, which are a similar 
set of microscopic differential equations to the Navier-Stokes. Similarly 
to fluid dynamics, using Hodgkin-Huxley equations is inappropriate for 
explaining whole-brain brain dynamics (Fregnac, 2017) similar to the 
situation in turbulence research before Kolmogorov’s vital insight.

Kolmogorov’s ‘structure functions’ should not be confused with the 
structure function relations in neuroimaging. But they are highly useful 
and can be used to uncover the fundamental principles of brain 

Fig. 1. Power laws for measuring turbulence in fluid dynamics and brain 
activity. A) The study of turbulence started with the study of fluids. Leonardo 
da Vinci coined “turbolenza” to describe the whirls of chaotic movement which 
promotes optimal mixing. Over the following centuries, the underlying physical 
principles were worked out, culminating in Kolmogorov’s phenomenological 
theory of turbulence which is based on the concept of structure functions, 
inspired by Richardson’s concept of cascading eddies. This allowed him to 
describe the statistical properties of the high dimensional space non-linear fluid 
dynamics. By doing this, Kolmogorov discovered the power laws in an inertial 
subrange where the structure functions show a universal energy scaling of 
k− 5/3, where k is the associated wave number of the spectral scale. This power 
law behaviour reflects the energy/information transfer cascade found in tur
bulence. B) More recently, Kuramoto was able to show turbulence in non-fluid 
dynamics. He used coupled-oscillators to describe the turbulent whirls of 
synchronised oscillators promoting optimal mixing. Specifically, he defined a 
local order parameter which represents a spatial average of the complex phase 
factor of the local oscillators weighted by the coupling. The standard deviation 
of the modulus of this measure defines the level of amplitude turbulence, which 
is shown in the left panel for a ring of Stuart-Landau oscillator system 
(Kawamura et al., 2007). Whole-brain neuroimaging offers the potential to 
obtain precise measurements of activity. The phases of these timeseries can be 
described over time and space by the local Kuramoto order parameter, which in 
turn reflects the amplitude turbulence rendered at different time steps on a 
flattened hemisphere of the brain. This captures the evolution of the rich 
variability of the whirls of local synchronisation in brain dynamics. In turn, this 
has been shown to follow a power law in the inertial subrange for the corre
lation B(r) as a function of r. This reflects the optimality of efficiency of 
spacetime information flow in brain dynamics.
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dynamics at the macroscopic level using large Human Connectome 
Project (HCP) database with resting state data from 1003 healthy human 
participants. To discover if human brain dynamics are organised around 
a homogeneous isotropic functional core, we used the ‘structure functions’ 
on the spatiotemporal fMRI BOLD signals from the HCP resting state 
data (applying the Schaefer parcellation of 1000 parcels). This empirical 
analysis allowed us to find a homogeneous isotropic functional core and 
turbulent-like power scaling law for the average functional correlations in 
a broad spatial range.

We explored whether power laws exist in the inertial subrange sus
taining the functional core for both S(r) and found that both fulfil a 
power law (Deco and Kringelbach, 2020). The findings clearly show this 
for the inertial subrange, similar to Kolmogorov’s observations in fluid 
dynamics. The results show a power scaling law for S(r) with an expo
nent of approximately 1/2 in the range between r = 8.13 mm and 
r = 33.82 mm in the inertial subrange coinciding with the functional 
core. Equally, the functional correlation between two nodes, B(r), is 
computed as a function of the distance between those nodes (averaged 
across nodes and time), that is using homogenous isotropy (see Fig. 1B, 
right panel). Again, this obeys a power law, here with a negative 
exponent of approximately − 1/2 in the same inertial subrange in the 
functional core.

Interestingly, in their pioneering research on wave turbulence and 
energy cascade in the local field potentials found in the mice hippo
campus, Maurer and colleagues observed a striking similarity between 
the standard turbulence model and LFP spectral evolution (Sheremet 
et al., 2019). This observation led to their speculation that power in the 
theta band is the source of energy at microscopic level, while higher 
frequencies correspond to the inertial subrange, allowing for a 
cross-scale energy flow. Importantly, they also speculated that the 
observed peak in the gamma band is similar to the bottleneck effect in 
hydrodynamics and can thus be interpreted as the existence of a tran
sitional scale right above microscopic with a limited energy-flux ability.

Beyond this initial power law, we note that a defining property in 
turbulence systems is that they deviate from perfect scale invariance. 
Many critical systems are scale invariant, such as, for example, critical 
phase transitions (Cocchi et al., 2017). Turbulence is an 
out-of-equilibrium forced and dissipative system which has deviations 
from scale invariance characterising how perturbations are transported 
and dissipated. One scaling law (or, equivalently, one critical exponent) 
is unable to capture turbulent deviations from equilibrium, and higher 
order critical exponents are needed to identify this behaviour.

This led to the question of whether the different scaling laws in 
turbulent fluid dynamics are also found in turbulent neuronal dynamics. 
Sanz Perl and colleagues used this equation on HCP neuroimaging data 
from over 1000 participants to discover a spatial power law scaling of 
higher-order structure functions Sp(r) as a function of log(r) within the 
inertial subrange (Perl et al., 2023a). These results suggest that human 
brain dynamics display at least a bi-fractal structure. This turbulent 
behaviour is reminiscent of the case of fluids following the Burgers 
equation, where the departure from mono-fractality and saturation of 
the scaling exponents is associated with large-scale intermittency in a 
disordered system (Bouchaud et al., 1995). This observation is also 
aligned with findings of multifractality in brain dynamics, and impor
tant principles of fractality are revealed in a number of key articles 
(Kelty-Stephen et al., 2013; Likens et al., 2015). Overall, this shows that 
human brain dynamics are clearly turbulent, allowing for efficient in
formation transfer across spacetime.

4. Turbulence generated by coupled oscillators

Moving beyond general power laws, it is important to get closer to 
the local dynamics of turbulence. Important for this approach is the 
seminal finding by Kuramoto (shown in Fig. 1B, left panel), namely that 
coupled oscillators exhibiting local synchronisations give rise to turbu
lence in a non-fluid context (Kuramoto, 1984). This uses the concept of 

‘local metastability’, which is measuring the local level of synchronisa
tion of the coupled oscillators and thereby capturing brain signal vari
ation across spacetime. In general, metastability is a very useful concept 
from the dynamical systems literature which can be used to capture the 
balance between integration and segregation needed for healthy brain 
dynamics (Hancock et al., 2024; Kelso, 1995). But metastability can be 
found in many systems as demonstrated by Kelso and colleagues who 
developed a mathematical model to explain the metastable behaviour 
observed in bimanual coordination studies of finger flexing with a 
pacing metronome (Kelso, 1995).

In the context of brain dynamics, turbulence can be measured as the 
local metastability, defined by local synchronisation levels at varying 
spatial scales, λ, by means of the local Kuramoto order parameter Rλ, 
therefore providing a measure of local vorticity. In other words, turbu
lence is defined as the spacetime variability of the local metastability 
measured by the local Kuramoto order parameter, which is in essence an 
extension of the concept of global metastability (Kawamura et al., 2007) 
(Eq. 4 in Appendix). The global metastability has been applied in 
neuroscience as the global Kuramoto order parameter – a measure of 
temporal variability of the global synchronisation level of the whole 
system (Cabral et al., 2014; Kitzbichler et al., 2009; Kuramoto, 1984; 
Shanahan, 2010; Tognoli and Kelso, 2014; Wildie and Shanahan, 2012). 
As a consequence, turbulence is a local spatiotemporal generalisation of 
the global metastability (Hancock et al., 2024).

Specifically, the local Kuramoto order parameter, Rλ(x, t), is defined 
as the modulus of the local Kuramoto order parameter for a given brain 
node as a function of time (see Eq. 5 in Appendix). Hence, Rλ represents 
the local levels of synchronisation at a given scale, λ, as a function of 
space, x, and time, t. The turbulence measure characterizes the brain 
vortex space, Rλ, over time. The level of amplitude turbulence, Dλ, is 
defined as the standard deviation across time and space of the modulus 
of local Kuramoto order parameter (Rλ).

Moving beyond the model-free approach, the next goal becomes to 
develop a model-based approach (Gollo et al., 2017). As we will see 
later, brain dynamics can be described through a whole-brain model of 
coupled oscillators (Deco and Kringelbach, 2020; Deco et al., 2017b). In 
particular, one of the best descriptions of brain dynamics uses the Hopf 
whole-brain model (Deco et al., 2017b), describing the behaviour of a 
Stuart-Landau non-linear oscillating system (Hopf, 1942). As such, it is 
straightforward to create a whole-brain modelling approach to 
turbulence.

5. Model-free turbulence in empirical fMRI data

In order to demonstrate turbulence in empirical fMRI data, the 
model-free turbulence framework was applied to the timeseries of the 
fine-grained Schaefer parcellation with 1000 regions extracted from the 
1003 participants from the HCP. These timeseries were grouped ac
cording to the Euclidian distance between pairwise regions (Fig. 2A). To 
demonstrate turbulence in brain dynamics, we first measure the vari
ability across time and space of the local order Kuramoto parameter of 
the timeseries (Eqs. 4, 5 and 7 in the Appendix), similar to the method 
developed by Kuramoto and colleagues (Kawamura et al., 2007). 
Importantly, for this process the BOLD fMRI time series were trans
formed to phase space by first filtering the signals in the range between 
0.008 and 0.08 Hz (standard filter for spontaneous BOLD signals) and 
using the Hilbert transform to extract the evolution of the phases of the 
signal for each brain node over time. In other words, the BOLD signals 
from different spatial parts of the brain are oscillating over time and the 
frequency can be extracted from the corresponding power spectrum. 
Different brain regions have very different signals, where some are very 
noisy, some are like damped oscillators while others are very regular and 
oscillatory.

As can be seen in Fig. 2B (left panel) amplitude turbulence is present 
only in the empirical data and not in the surrogate data (which is a 
shuffled version maintaining the spatiotemporal characteristics of the 
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empirical data (Kantz and Schreiber, 1997)). Furthermore, the absence 
of regular spatiotemporal patterns in the empirical data can be seen 
through the autocorrelation of the local Kuramoto order parameter 
across spacetime (right panel), showing a rapid decay in turbulence, as 
predicted. Examples of turbulence is depicted through the temporally 
consecutive snapshots of phases of all brain regions for the empirical 
data (top) showing something clustering resembling vortices, which is 
absent in the surrogate data (bottom) (Fig. 2C).

Further demonstrating the turbulence found in neuroimaging data, 
Fig. 2D shows the spacetime changes in the local Kuramoto order 
parameter as the spatiotemporal evolution of amplitude turbulence. 
Specifically, we show the empirical data of a single participant in a 2D 
plot of all 500 parcels in the left hemisphere over the 1200 timepoints. 
These findings, however, do not depict the true spatiotemporal evolu
tion of amplitude turbulence, given that this is a simplification of the 3D 
space through a 1D representation, and the 500 parcels are not ordered 
in terms of spatial neighbourhood. Rather, to appreciate the synchro
nisation of neighbouring clusters over time, Fig. 2E shows snapshots for 
two time-distinct segments (the left and right parts marked on the 2D 
plot) rendered on a flatmap of the hemisphere. In the original paper, the 
clear vorticity of the local synchronisation is made evident through the 
inclusion of time evolving videos. Furthermore, Fig. 2F shows an 
alternative representation of this by plotting only 26 neighbouring 
parcels, from the front to the back of the brain.

6. Whole-brain modelling of turbulence

The Hopf whole-brain model was used to model turbulence in brain 
dynamics as this is a system of coupled-oscillators, which can show 
turbulence dependent on coupling strength. Research has shown that the 
synchronous behaviour of brain dynamics can be modelled by coupled 
Stuart-Landau oscillators models (Hopf models) which can be derived 
from biophysical neuronal models using exact mean field models (Perl 
et al., 2023b). This is the reason for the successful modelling of this 
system with anatomically coupled Hopf oscillators (Hopf, 1942), i.e. a 
system of Stuart-Landau non-linear oscillators (Deco et al., 2017b). The 
whole-brain model used the dynamic intrinsic backbone of the 
anatomical brain connectivity, allowing for understanding of the 
mechanisms underlying turbulence. Moving to the whole-brain level, 
coupled together with the brain network architecture, the complex in
teractions between Hopf oscillators have been shown to reproduce sig
nificant features of brain dynamics observed in electrophysiology 
(Freyer et al., 2011; Freyer et al., 2012), MEG (Deco et al., 2017a) and 
fMRI (Deco et al., 2019; Kringelbach et al., 2020).

The structural connectivity matrix was constructed using the well- 
known Exponential Distance Rule (EDR) of anatomical connections as a 
cost-of-wiring principle. Massive tract-tracing studies have shown that 
the anatomical architecture of the mammalian cortex uses simple short- 
range wiring with an exponential drop off in strength over distance 
(Ercsey-Ravasz et al., 2013; Gămănuţ et al., 2018; Theodoni et al., 2020) 
(see fitting to empirical tractography in Fig. 3A-D).

The whole-brain model used Stuart-Landau oscillators with the fitted 

Fig. 2. Turbulence modelled with coupled oscillators. A) The timeseries of the fine-grained Schaefer parcellation with 1000 regions were extracted from state-of- 
the-art resting state data from a large set of 1003 healthy human participants in the Human Connectome Project (HCP) database. These were grouped according to 
the Euclidian distance between pairwise regions. B) The boxplot (left panel) shows amplitude turbulence in the empirical resting state data and not in the carefully 
matched surrogate data, which were significantly different (P < 0.001, two-sided Wilcoxon rank sum test). The right panel shows the autocorrelation of the local 
Kuramoto order parameter across space and time. The rapid decay demonstrates absence of regular spatiotemporal patterns in the empirical data. C) The figures 
demonstrate the presence of turbulence by plotting consecutive snapshots over time of the phases of all brain regions for both the empirical data (top) and the 
surrogate data (bottom). This clearly shows the absence of structure in the surrogate data and clustering resembling vortices in the empirical data. D) The figure 
visualises the change over time and space of the local Kuramoto order parameter, R, reflecting amplitude turbulence in a single participant. Amplitude turbulence can 
be clearly seen in the 2D plot of all 500 parcels in the left hemisphere over the 1200 timepoints. E) This can be appreciated from the continuous snapshots for two 
segments separated in time (left and right parts) rendered on a flatmap of the hemisphere (see insert with renderings of a single snapshot on the inflated and 
flatmapped cortex). F) The synchronisation of clusters over time is dependent on the neighbourhood and so to further visualise the spatiotemporal evolution of 
amplitude turbulence, we show a 2D plot of 26 neighbouring parcels running from the front to the back of the brain (see blue insert).
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EDR SC matrix (Deco and Kringelbach, 2020). Running this whole-brain 
model across coupling strengths produces a plot of the whole brain fit of 
the root squared error between the empirical and simulated B(r) in the 
inertial subrange as a function of the global coupling parameter G 
(black, Fig. 3E). The model shows amplitude turbulence (red line) in a 
broad range of G but maximal amplitude turbulence is found at the 
optimal working point fitting the data (G=0.8). The dotted line shows 
the amplitude turbulence estimated from the empirical data, and it is 
interesting that the model at the optimal working point also corresponds 

to this value.
Equally, the model also shows the point of maximal amplitude tur

bulence, reflecting the optimal level of information processing. This can 
be quantified in a measure of information capability, a meaningful 
extension of the standard concept of susceptibility. Susceptibility of the 
whole-brain model is the sensitivity of the brain to the processing of 
external stimulations. As can be seen from Eq. 8 in the Appendix, sus
ceptibility is produced by changing the bifurcation parameter of the 
Hopf model to become more noisy or more oscillatory, which is pro
ducing the same effect as an external oscillatory stimulation (Escrichs 
et al., 2022).

We perturbed the Hopf whole-brain model at each G by randomly 
changing the local bifurcation parameter (a). This allowed us to estimate 
the sensitivity of these perturbations on the spatiotemporal dynamics by 
measuring the local Kuramoto order parameter. The information capa
bility of the whole-brain model is a measure of how different external 
stimulations are encoded in the existing dynamics. The results show that 
the maximum of information capability (red line) is found at G= 0.8 
which corresponds to the optimal fitting of the whole-brain model to the 
empirical data (black line) and maximal amplitude turbulence (Fig. 3F). 
In contrast, the simple measure of susceptibility (orange line) although 
high, is not maximal at the working point. This is highly interesting since 
normal susceptibility should not necessarily be maximal at the optimal 
working point. Maximal susceptibility typically occurs near critical 
transitions, but operating too close to a critical point may carry risks, 
such as the potential transition into a super-critical phase. Additionally, 
proximity to criticality can lead to critical slowing down, which might 
hinder computational efficiency. For optimal computation, which bal
ances multiple factors, the system might be expected to remain at least 
slightly subcritical.

The model can further estimate global integration and segregation. 
Fig. 3H shows that at the optimal point where the whole-brain model fits 
the empirical data (black line) and is exhibiting maximal amplitude 
turbulence, an optimal balance between segregation and integration 
(red line) is observed as a function of coupling strength.

In summary, similar to the 1D ring toy model of coupled oscillators 
introduced by Kuramoto and colleagues (Kawamura et al., 2007), we 
have shown in empirical data that turbulence arises in 3D space and time 
from the underlying EDR brain connectivity between coupled 
oscillators.

7. Discovering the role of exceptional long-range connections

Moving beyond the ubiquitous EDR structure of physical systems, the 
brain is likely unique in terms of its complex architecture spanning 
multiple scales (Changeux et al., 2021). Unlike other known physical 
systems, where the elements communicate with nearest and close 
neighbouring elements (such as for example fluids or the heart), the 
brain uniquely possesses distant connections including a small contin
gent of long-range anatomical outliers. These long-range exceptions 
have a significant role for enhancing information processing, presum
ably under strong evolutionary pressure.

Uniquely, whole-brain modelling offers the possibility to test the 
importance of rare long-range (LR) exceptions for the brain’s informa
tion processing capabilities. Two models were created using structural 
connectivity with rare long-range exceptions (EDR+LR) and without 
(EDR). These were tested on the HCP dataset of 1003 subjects. Fig. 4
shows that the inclusion of long-range exceptions confers a significant 
improvement in information processing as measured through turbu
lence, using both model-free and model-based measures.

In terms of the model-free measures, Fig. 4C shows significant dif
ferences in average values of FC long-range (with distances over 40 mm) 
for the EDR+LR model compared to the EDR model. Similarly, the 
boxplot in Fig. 4D shows a larger information cascade for the EDR+LR 
model compared to the EDR model. This confirms the significant role of 
LR exceptions in increasing the information cascade.

Fig. 3. Whole-brain modelling of turbulence. A) The structural connectivity 
(SC) matrix of the empirical data was estimated using tractography. B) It has 
been shown that the underlying brain connectivity in mammals follows the 
exponential decay described by the Exponential Distance Rule (Ercsey-Ravasz 
et al., 2013). The figure shows the histogram of interareal projection length for 
all labeled neurons (n = 6494,974) in a massive tract tracing study in 
non-human primates. The line shows the exponential fit with a decay rate 
0.188 mm− 1. C) The Exponential Distance Rule is also evident in the empirical 
HCP dMRI tractography of the human brain, as shown by the fibre densities 
between the pairs of regions in the Schaefer parcellations as a function of the 
Euclidian distance between the nodes with green showing dMRI tractography 
and orange line showing the fitted Exponential Distance Rule at the optimal 
λ= 0.18 mm− 1. The remarkable similarity can be appreciated by comparing the 
curves. D) The SC matrix shows the optimally fitted Exponential Distance Rule, 
which was used as the basis for the whole-brain model. E) The whole-brain 
model was based on Stuart-Landau oscillators (Deco et al., 2017b) aiming to 
establish the causal mechanisms underlying the emergence of turbulence. F) 
The plot shows the whole brain fit of the root squared error between the 
empirical and simulated B(r) in the inertial subrange as a function of the global 
coupling parameter G (black). The model shows amplitude turbulence (red line) 
in a broad range of G but maximal amplitude turbulence is found at the optimal 
working point fitting the data (G=0.8). The dotted line shows the amplitude 
turbulence estimated from the empirical data, and it is interesting that the 
model at the optimal working point also corresponds to this value. G) The 
maximal amplitude turbulence is likely to reflect an optimal level of informa
tion processing, which we quantify in a measure of information capability, a 
meaningful extension of the standard concept of susceptibility. As can be seen 
the maximum of information capability (red line) is found at G= 0.8 which 
corresponds to the optimal fitting of the whole-brain model to the empirical 
data (black line) and maximal amplitude turbulence. In contrast, the simple 
measure of susceptibility (orange line) is high but not maximal at the working 
point. H) Interestingly at the optimal point where the whole-brain model fits 
the empirical data (black line) and shows maximal amplitude turbulence and 
information capability, we also find an optimal balance between segregatio
n/integration (red line) as a function of G.
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As for the more sensitive model-based measures, Fig. 4D shows that 
in terms of susceptibility, the EDR+LR model outperforms the EDR 
model. The findings confirm how rare long-range exceptions to the 
anatomical exponential distance rule are key to the efficiency of tur
bulent information processing.

Beyond the fundamental properties of information processing in the 
brain, it is of considerable interest to note that a simplified ring archi
tecture has been used to bolster the role of long-range exceptions (in
dependent of the spatial location) (Deco et al., 2021b).

Overall, these results confirm the hypothesis that turbulence 

provides the underlying functional regime allowing for the enhanced 
information processing at the whole-brain level provided by the long- 
range connectivity.

8. Turbulence fingerprint of different brain states

Together, the model-free and model-based approaches to turbulence 
enable effective characterisation of different brain states. These ap
proaches can be further refined to be more discerning by not simply 
taking a fixed spatial scale (as above) but by accounting for varying 
spatial scales, capturing the brain vortex space.

The concept of local metastability not only enables generalisation of 
vorticity in fluid dynamics but also, importantly, provides a mechanistic 
explanation of why such turbulent information transfer is highly effi
cient. More specifically, the turbulent information cascade can be defined 
by the hierarchical transfer of information across scales. This measure of 
brain vortex space, Rλ, over time, can be interpreted as the rotational 
vortices found in fluid dynamics, although of course the two are not 
identical. As such the information cascade flow is the predictability of a 
given brain vortex space at scale λ from the brain vortex space at scale 
λ − Δλ (where Δλ is the discretisation of scale). In other words, the 
measure captures information transfer across scales through local syn
chronisation in brain vortex space. This allows us to define the infor
mation cascade as the average of the information cascade flow across 
different scales. Therefore, an enhanced information cascade is a 
signature of enhanced information processing or enhanced information 
transfer across spacetime. This measure captures information trans
mission as mediated by local synchronisation levels at varying spatial 
scales. The precise mathematical definitions can be found in the pub
lished papers (Cruzat et al., 2022; Deco et al., 2023; Deco et al., 2021b; 
Escrichs et al., 2022).

Fig. 5 shows examples of how these model-free and model-based 
measures can be used to distinguish between the brain states of medi
tation, sleep and disorders of consciousness (Escrichs et al., 2022). In all 
three cases, the level of turbulence was computed for the different brain 
states on spatial scales from λ= 0.01 (100 mm) to λ= 0.3 (3 mm). The 
first panel in Fig. 5A shows the differences for λ= 0.12. As can be seen, 
the deep sleep, minimally conscious and unresponsive wakefulness 
states show significantly lower turbulence than healthy resting state. In 
contrast, at this spatial scale, meditation does not show a significant 
difference in turbulence compared with the resting state. The second 
panel of Fig. 5A provides a summary of all the spatial scales, which 
reveals significant differences at other spatial scales for meditation as 
well as for the other states – highlighting the informativeness of using 
different values of λ, covering the different spatial scales. Note especially 
how the evolution across spatial scales are different for different states of 
consciousness. Fig. 5B demonstrates that the model-based approach is 
more sensitive and shows significant differences in susceptibility and 
information capability for all brain states.

Finally, Fig. 5C shows how turbulence can provide a fingerprint of 
individual brain states through generation of spiderweb plots of turbu
lence levels in Yeo networks estimated through node-level turbulence.

A similar approach was used on other brain states, such as those 
elicited by psychedelics (LSD and psilocybin) (Cruzat et al., 2022) or 
those found in different periods of the menstrual cycle (De Filippi et al., 
2021). Here again, the measurements were able to clearly distinguish 
between the brain states.

9. Turbulence in fast brain dynamics

This perspective has shown turbulence in whole-brain networks 
derived from slow haemodynamic signals measured with fMRI. How
ever, turbulence has also been found in fast local hippocampal circuits 
(Sheremet et al., 2019), as well as fast whole-brain dynamics measured 
with magnetoencephalography (Deco et al., 2023). The latter provides 
new, deep insight suggesting turbulence could be the skeleton 

Fig. 4. Rare long-range exceptions are essential to the efficiency of tur
bulent information processing. Massive tract-tracing studies in primates have 
revealed the simple, yet powerful economy of anatomy as a cost-of-wiring 
principle of rare long-range exceptions on top of an exponential distance rule. 
Whole-brain modelling provided a unique opportunity to disentangle the 
functional role of these long-range exceptions by testing alternative hypotheses. 
A) First, human diffusion MRI was used to fit the exponential distance rule 
(EDR) and extract rare long-range exceptions on top of these (EDR+LR). The 
two different anatomical hypotheses are illustrated by the cartoon of two rings 
(EDR in blue and EDR+LR in red). B) Second, two different whole-brain models 
using these anatomical hypotheses were fitted the functional MRI data from 
1003 participants. At the optimal working point, these Hopf models were able 
to reproduce the empirical whole-brain dynamics that emerges from the local 
dynamics of each brain region (described using a Stuart-Landau oscillator) 
coupled through the two different underlying anatomical hypotheses. C) The 
boxplot shows the mean values of the FC long-range (involving pairs with 
distances over 40 mm) for the two models across 100 trials. There is a signifi
cant increase for the EDR+LR model (p < 0.001, Wilcoxon rank sum), which 
shows the important role of long-range exceptions. D) The boxplot shows the 
results of investigating the role of LR exceptions in information processing by 
measuring the information cascade. This confirms the significant role 
(p < 0.001, Wilcoxon rank sum) for LR exceptions in increasing the information 
cascade (compare the EDR+LR with EDR boxplots). The information cascade is 
the integration of information cascade flow across scales. E) Using whole-brain 
modelling allows to measure the susceptibility (the reaction of the model to 
external perturbation) of the two models and again the EDR+LR model out
performs the EDR model. Overall, the findings confirm how rare long-range 
exceptions to the anatomical exponential distance rule are key to the effi
ciency of turbulent information processing.
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underlying efficient spatiotemporal information transfer required for 
survival. The key insight as to how turbulence facilitates efficient in
formation transfer across scales, comes from the definition of a vorticity 
in neural dynamics as the local level of synchronisation.

One problem with using fMRI is that it is both relatively slow with a 
timescale of seconds due to haemodynamic response (Kwong et al., 
1992) and that it does not directly measure neural dynamics. Therefore, 
we used MEG, a neuroimaging modality directly measuring fast 
neuronal dynamics at the whole-brain level (Hansen et al., 2010). To do 
this, a new method was needed to overcome the problem of MEG having 
less accurate spatial resolution than fMRI, that is much more coarse 
grained brain regions. This is important since the method for 

demonstrating turbulence in fMRI signals requires high spatial resolu
tion using a fine parcellation of around 1000 regions, which is difficult 
to obtain with MEG.

So in order to detect turbulence in fast brain dynamics, we overcame 
the limited number of brain regions in MEG by moving from node to 
edges and inventing a novel edge metastability measure. As the name 
suggests, rather than using the timeseries of nodes, this method relies on 
using the spatiotemporal variability of edge time series, recently intro
duced to capture fine-scale dynamics in fMRI recordings (Faskowitz 
et al., 2020; Sporns et al., 2021; Zamani Esfahlani et al., 2020). In 
contrast to existing methods, this novel edge metastability measure can 
capture turbulence with high temporal precision in a coarse-grained ring 

Fig. 5. Turbulence describes key features of different brain states. The turbulence framework provides precise model-free and model-based quantification of the dynamics 
underlying any brain state. Here we show examples how this can be used to characterise the differences between neuroimaging data of meditation, sleep and disorders of 
consciousness. A) The level of turbulence was estimated for different brain states on spatial scales from λ= 0.01 (100 mm) to λ= 0.03 (3 mm). Here we show the differences for 
λ= 0.12, where the deep sleep, RMCS and RUWS states show significantly lower turbulence than resting state. In contrast at this spatial scale, meditation does not show a 
significant difference in turbulence compared with the resting state. However, as can be seen from the summary of all the spatial scales, there are significant difference at other 
spatial scales for meditation and the other states. B) As can be seen, the model-based approach is more sensitive and shows significant differences in susceptibility and in
formation capability for all brain states. C) Turbulence provides a convenient way of visualising a fingerprint of different brain states. The node-level turbulence can be 
computed as the standard deviation across time of the local Kuramoto order parameter. Here is shown brain renderings of meditation, deep sleep and disorders of 
consciousness (minimal conscious state, MCS and unresponsive wakefulness syndrome, UWS) as the absolute difference of the node-level of turbulence between each 
brain state in each dataset for scale λ = 0.12. Generating the fingerprint for each brain state as a spiderweb graph is done by picking the upper 15 % quantile of the 
absolute difference of the node-level turbulence between conditions, indexed the resting-state Yeo network to which they belong and estimated the number of nodes 
per network. Here, the spiderweb charts graphs outline the number of nodes in the higher 15 % quantile of the absolute difference for each comparison and network 
(VIS: visual; SOM: somatomotor; DAN: dorsal attention network; VEN: ventral network; LIM: limbic; FPN: frontoparietal network; DMN: default-mode network.).
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of coupled oscillators, where the level of turbulence can be exactly 
analytically determined (Kawamura et al., 2007).

These methods were used to detect turbulence in spatially coarse but 
temporally fine MEG resting-state data from 89 participants from the 
HCP. Fig. 6A shows the pipeline of pre-processing MEG data: beam
forming the sensor signals and using a DK68 parcellation (Desikan et al., 
2006) to extract the signal from each coarse parcel in the five classical 
bands (delta 1–3 Hz, theta 3.5–7 Hz, alpha 7.5–13.5 Hz, beta 
14–30.5 Hz, gamma 31–40 Hz). Please note that due to constraints in 
the beamforming technique, it is not possible to spatially reconstruct the 
signal at more than 60–90 nodes.

The results clearly show the existence of turbulence for all bands (see 
Fig. 6B) compared to circular shifted surrogate data (Deco et al., 2021c; 
Quiroga et al., 2002). This method generates 89 independent circular 
time-shifted surrogates by separately resampling the signal for each of 
the 89 participants. Specifically, for each timeseries of each parcel, one 
independent random integer c is generated within the interval [0.05 n 
0.95 n] (where n is the number of time points in the timeseries signal). 
Then the circular time-shift is performed by moving the first c values of X 
= [X1,…,Xn] to the end of the time series which creates the surrogate 
sample X = [Xc+1,…,Xn,X1,…,Xc]. Such surrogates do not assume 
Gaussianity and have been shown to preserve the whole statistical 
structure of the original timeseries.

Fig. 6C shows the Edge Spacetime Predictability (ESP) measure on 
the MEG data (compared with surrogate data) and demonstrates sig
nificant differences for all bands.Fig. 6D E shows visualisations for a 

single participant of the edge turbulence for the five different bands for 
successive timepoints rendered on sideways, midline and flat map ren
derings of the whole brain. Fig. 6E displays an example of the evolution 
of the seven different predictions (different coloured curves, τ = [1..7]) 
for the delta band in a specific participant as function of the Euclidean 
distance between parcels (x-axis). Applying edge spacetime predict
ability to the MEG data shows clear spacetime predictability, while 
applying this to the surrogate data shows no predictability. This suggests 
the efficiency of the turbulent regime for information transfer which is 
significantly better than that obtained in other regimes.

10. Conclusion

The discovery of turbulence in the human brain has provided new 
insights into how the brain is able to efficiently process and transmit 
information across time and space. The universality of turbulence has 
been demonstrated in many systems (L’vov, 1998) but here it provides 
new insight into a fundamental problem of brain function, namely how 
to overcome the inherent slowness of the neural responses for 
time-critical computation ensuring survival for the organism (Deco 
et al., 2023). Indeed, turbulence is a fundamental and highly useful – 
and almost always non-reversible – thermodynamic principle providing 
optimal mixing properties and allowing for the efficient transfer of 
energy/information over space and time (Frisch, 1995). Careful research 
has shown how the brain is turbulent and how the scale-free nature of 
turbulence provides a dynamical regime, where hierarchical 

Fig. 6. Turbulence in fast MEG dynamics. A) The pipeline of pre-processing MEG data shows the sensor signals. These signals are beamformed and a coarse DK68 
parcellation was used to extract the MEG signals. The third panel shows examples from each coarse parcel in the five classical bands (delta 1–3 Hz, theta 3.5–7 Hz, 
alpha 7.5–13.5 Hz, beta 14–30.5 Hz, gamma 31–40 Hz). B) The measure of edge-centric metastability shows clear turbulence for all five bands of MEG data 
compared to circular shifted surrogate data. C) Using measure of Edge Spacetime Predictability (ESP) on MEG data (compared with surrogate data), shows significant 
differences for all five bands, suggesting the efficiency of the turbulent regime for information transfer. D) Visualisations for a single participant of the edge tur
bulence for the delta band for three successive timepoints rendered on 3D views (sideways and midline) as well as flat map renderings of the whole brain. E) An 
example for the delta band in a specific participant of the evolution of the seven different predictions (different coloured curves, τ = [1..7]) as function of the 
Euclidean distance between parcels (x-axis) for the empirical (left) and surrogate data (right). The error bars depict the standard error.
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information cascades allow the brain to function optimally despite its 
relative slowness (Deco et al., 2021a; Deco and Kringelbach, 2020; Deco 
et al., 2021b).

In fact, turbulence has already proven to be a highly sensitive 
biomarker of different brain states such as sleep, coma and meditation 
(Escrichs et al., 2022) and psychedelics (Cruzat et al., 2022) as well as 
depression (Escrichs et al., 2024). In depression, the level of turbulence 
pre-treatment was also predictive of the treatment outcome of the 
pharmacological intervention (Escrichs et al., 2024).

Importantly, as shown in the work of Sanz Perl and colleagues (Perl 
et al., 2023a), the fact that turbulence uses higher order scaling expo
nents makes it an excellent framework for distinguishing between crit
icality as found in equilibrium systems, which are, in most cases, scale 
invariant – and in out-of-equilibrium systems, which, as in the para
digmatic case of turbulence, display deviations from scale invariance 
associated with their dissipative and forced nature.

Moving forward, at the microscopic level Maurer and colleagues 
have demonstrated turbulence (Sheremet et al., 2019) but the under
lying microcircuitry should be further explored to see how information 
cascades to higher levels of organisation. This could help determine how 
cross-frequency coupling is a general rule, making oscillations 
interdependent.

At the macroscopic level, the interacting turbulent vortices express 
the levels of local synchronisation in the underlying brain signals, in 
other words a ‘turbulent vortex space’ a more space for describing the 
information processing underlying the necessary computation for 
behaviour (Xu et al., 2023). This vortex space offers an excellent 
abstraction for capturing the mechanisms underlying the orchestration 
of brain function over spacetime. Furthermore, this space could be used 
to find novel ways of controlling the turbulent vortices in disease using 
whole-brain modelling. One obvious prediction is that the interactions 

of vortices in vortex space will change in disease, and that careful 
modelling of these vorticity interactions will allow for better control in 
the brain. Another prediction is that the hierarchical orchestration of 
brain function at the vortex level is likely to be more informative of the 
underlying evolutionary principles and that this orchestration is 
different across species.

Overall, turbulence is ubiquitous in nature and was also recently 
found in the brain. Turbulence offers the tantalising prospect of under
standing key mechanisms underlying the efficient spatiotemporal in
formation transfer necessary for survival. Understanding how 
turbulence changes in health and disease also offers the potential for 
developing new strategies for controlling turbulence and thereby of
fering new routes to flourishing (Kringelbach et al., 2024).
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Appendix. : Relevant turbulence equations

In turbulence the ‘structure functions’ of a variable u usually have a transversal or longitudinal fluid velocity, which can be written: 

S(r) =
〈
(u(x + r) − u(x))2

〉
= 2[B(0) − B(r)] (1) 

In Eq. 1, the basic spatial correlations of two points separated by Euclidean distance r, given by: 

B(r) = 〈u(x+ r)u(x) 〉 (2) 

where the symbol 〈〉 refers to the average across the spatial location x of the nodes and time.
The extended Kolmogorov theory for higher orders (p > 2) claims that the scaling results generalize to ‘structure functions’ of any order 

Sp(r) = 〈(u(x + r) − u(x))p
〉 (3) 

Specifically, the local Kuramoto order parameter, Rλ(x, t), is defined as the modulus of the local Kuramoto order parameter for a given brain node 
as a function of time: 

Rλ(x, t) =
⃦
⃦
⃦
⃦k

∫ ∞

− ∞
dxʹGλ(x − xʹ)eiφ(xʹ

,t)
⃦
⃦
⃦
⃦ (4) 

where ‖‖ is the modulus of the complex number, Gλ is the local weighting kernel Gλ(x) = e− λ|x|, φ(x, t) are the phases of the spatiotemporal data, k is 
the normalisation factor [

∫∞
− ∞ dx́ Gλ(x − x́ )]

− 1, and λ defines the spatial scaling. Hence, Rλ represents the local levels of synchronisation at a given scale, 
λ, as function of space, x, and time, t. Inspired by the rotational vortices found in fluid dynamics, the turbulence measure characterizes the brain vortex 
space, Rλ, over time.

The level of amplitude turbulence, Dλ, is defined as the standard deviation across time and space of the modulus of local Kuramoto order parameter 
(Rλ). 

Dλ =
〈
Rλ

2〉

x,t − 〈Rλ〉
2
x,t (5) 

where the brackets 〈〉x,t denote averages across time and space.
Massive tract-tracing studies have shown that the anatomical architecture of the mammalian cortex uses simple short-range wiring with an 

exponential drop off in strength over distance (Ercsey-Ravasz et al., 2013; Gămănuţ et al., 2018; Theodoni et al., 2020). Mathematically this can 
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expressed as an exponential decay function: 

Cnp = e− λ(r(n,p)) (6) 

where r(n,p) is the Euclidean distance between the regions n and p, and where the spatial decay λ = 0.18 mm− 1 estimated from fitting the EDR rule to 
empirical tractography

We define the susceptibility of a whole-brain model as the sensitivity of the brain to the processing of external stimulations. We perturb the Hopf 
whole-brain model at each G by randomly changing the local bifurcation parameter in the range [-0.02:0]. In this case, we define the discrete version 
of Eq. 4 for a given brain region n as a function of time t: 

Rλ(n, t)eiϑn(t) =
∑

p

[
Cnp

∑
qCnq

]

eiφp(t) (7) 

where φp(t) are the phases of the BOLD time series and Cnp the anatomical exponential distance rule connectivity matrix. The BOLD fMRI time series 
were transformed to phase space by first filtering the signals in the range between 0.008 and 0.08 Hz and using the Hilbert transforms to extract the 
evolution of the phases of the signal for each brain node over time.

We estimate the sensitivity of these perturbations on the spatiotemporal dynamics by measuring the local Kuramoto order parameter, i.e. R̃
(m)

λ (n, t)
for the perturbed case, and R(m)

λ (n, t) for the unperturbed case in trial m. The susceptibility is defined in the following way: 

χ =

〈〈〈
R̃
(m)

λ (n, t)
〉

t
−
〈
R(m)

λ (n, t)
〉

t)
〉

trials

〉

s
(8) 

where 〈〉t, 〈〉trials and 〈〉s are the mean averages across time, trials and space, respectively.
Moving beyond susceptibility, we define the information capability of the whole-brain model as a measure to capture how different external 

stimulations are encoded in the dynamics. Specifically, we perturb the model as above, but here the information capability І is defined as the standard 
deviation across trials of the difference between the perturbed and unperturbed mean of the modulus of the local order parameter across time, 
averaged over all brain nodes n, i.e.: 

І =
〈〈

(
〈

R̃
(m)

λ (n, t)
〉

t
−
〈
R(m)

λ (n, t)
〉

t)
2
〉

trials
−
〈
(
〈

R̃
(m)

λ (n, t)
〉

t
−
〈
R(m)

λ (n, t)
〉

t)
〉2

trials

〉

s
(9) 

where the averages (〈〉t, 〈〉trails and 〈〉s) are defined as above.
Here, integration is defined as the mean value of all functional correlation pairs i and j, i.e. 

Y =
1
k
∑

i,j>i
Fij =

〈
uiuj

〉

t (10) 

where k is the number of upper triangular elements in the functional connectivity matrix F, whose elements are defined as the temporal average of the 
z-scored functional signals u between regions i and j.

As a complement of the integration, we used the modularity measure (Rubinov and Sporns, 2011) as a measure of segregation. Modularity is 
defined as a measure of the goodness with which a network is optimally partitioned into functional subgroups, i.e. a complete subdivision of the 
network into non-overlapping modules, and supported by densely connected network communities. We consider the modularity of our FC matrix. Our 
measure of modularity is given by, 

S =
1
v+

∑

ij
(w+

ij − e+ij )δMiMj (11) 

Where the total weight, v+ =
∑

ijw
+
ij is the sum of all positive or negative connection weights (counted twice for each connection), being w+

ij ∈ (0,1] the 

weighted connection between regions i and j. The chance-expected within-module connection weights e+ij =
s+i s+j
v+ , where the strength of node i, si

+ =
∑

ijw
+
ij , is the sum of positive or negative connection weights of i. The δMiMj = 1 when i and j are in the same module and δMiMj = 0, otherwise 

(Newman, 2006). For a complete description see (Sporns, 2010).
Specifically, the spatial information transfer shows how the information travels across space at a specific scale, λ. This measure is defined as the 

slope of a linear fitting in log-log scale of the time correlation between the local Kuramoto order parameter of two brain areas, at the same scale as a 
function of its Euclidean distance (r) within the inertial subrange (the limited range where turbulence energy is transferred from larger to smaller 
scales without loss). We used the linear fit only to quantify the level of decay of the correlation of the local level of synchronisation with distance. 
Please note that we compute the linear fit in a limited log-log space and, as such, we do not have a distribution, and thus not trying to fit a power law. 

log(corrt(Rλ(x),Rλ(x+ r)) ) = Aλ ∗ log(r)+Bλ (12) 

where corrt is the pairwise correlation across time, Aλ and Bλ are the fitting parameters for each scale (λ), where r is the spatial distance in the brain. 
The negative slope (Aλ) stands for the transfer in the spatial direction r of the information in terms of time correlation of the local level of syn
chronization. In this regard, when the slope is steeper, the information travels across shorter distances; while a flatter slope indicates that the in
formation is transferred across longer distances. Thus, the negative slope stands for the spatial information transfer. Note that the parameter A only 
depends on λ. It does not depend on t as the correlation is over time, neither on the brain areas, as the pairwise correlations are organized as a function 
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of the Euclidean distances.
Complementarily, the information cascade flow characterizes the stream of information between a given scale (λ) and a subsequent lower scale (λ 

− Δλ, where Δλ is a scale step) in consecutive time steps (t and t + Δt). In this way, the information cascade flow covers the information transfer across 
scales computed as the time correlation between the local Kuramoto order parameter in two consecutive scales and times: 

F (λ) = 〈corrt(Rλ(x, t + Δt),Rλ− Δλ(x, t)) 〉x (13) 

where the brackets 〈〉x denote averages across time and space, and corrt refers to the pairwise time correlations. Finally, the information cascade, IC, is 
defined by averaging the information transfer across scales λ, capturing the entire information processing behaviour across scales, which is simply the 
average of F (λ) across different scales (λ): 

IC = 〈F (λ) 〉λ (14) 

where the symbol 〈〉λ refers to the average across λ.
Mathematically, edge metastability was applied to MEG data (see Fig. 6A), consisting of band-passed time series. We therefore used the standard 

definition of edge-centric used in fMRI (Faskowitz et al., 2020; Sporns et al., 2021; Zamani Esfahlani et al., 2020): 

Ei,j(t) = Zi(t)Zj(t) (15) 

where Z is the z-scored Hilbert envelope of the filtered MEG signals.
Extending this for measuring information transfer, we introduced the concept of Edge Spacetime Predictability (ESP) as the information transfer 

correlation across space and time by computing the predictability of the edge measure over space and time. ESP is defined as the mean value over all 
pairs of the mean value of the shifted correlations across time shift τ = [1..7]. Thus, for each pair i, j ESP is the shifted correlation for a given τ defined as 

ESPi,j(τ) =
∑

t Ẽi,j(t − τ)Ẽi,j(t)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ẽi,j(t − τ)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅

Ẽi,j(t)2
√ (16) 

where Ẽi,j is the de-meaned version of Ei,j.
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Glossary

Chaos: Dynamical behaviour arising in a time-invariant nonlinear system, characterised 
by sustained aperiodic (nonrepeating) oscillations, where small changes in present 
values of the system can lead to extreme sensitivity of future states.

Criticality: Dynamical systems at the brink of a bifurcation display certain characteristic 
dynamic features, of which most are related to enhanced fluctuations. Within statis
tical mechanics, the term criticality refers to the behaviour of a system near a critical 
point, undergoing a phase transition (such as when transitioning from liquid to gas). 
At this critical point, the system exhibits unique properties including long-range 
correlations, scale invariance and diverging quantities such as susceptibility and 
correlation length.

Entropy: Measure of the uncertainty or disorder associated with a random system or 
process. This quantifies how spread out or unpredictable the possible outcomes of the 
system are, based on the probabilities of different states. Entropy also reflects the 
amount of information needed to describe the state of the system. High entropy means 
that the outcomes are more spread out, and therefore, more uncertain or less pre
dictable. Conversely, low entropy indicates that the system is more predictable, with 
fewer possible states having high probabilities.

Entropy production: Measure of irreversibility expressed by the Kullback-Leibler diver
gence between the forward and reversed backward transition probabilities in a given 
state space.

Generative mechanisms: The fundamental rules driving the temporal evolution of a sys
tem, where the underlying mechanisms can be derived by building a model of the 
system and investigating the causal influence of manipulating the model elements 
(also see ‘whole-brain model’).

Hierarchy: Stratified organisation of the different hierarchical levels of a system such as 
the brain. Hierarchy can be measured with a variety of mathematical tools; each 
providing a unique lens to understand the hierarchical flow of information in brain 
dynamics.

Information transfer: Quantification of information flow propagating through a system at 
a particular scale, which captures the directional flow and influence of information 
between different regions or elements.

Information cascade flow: Quantification of the directed information transfer between 
adjacent scales, providing an estimation of how information propagates from a higher 
scale to a subsequent lower scale over consecutive time steps. This concept emphasises 
the hierarchical flow of information, capturing how large-scale patterns or global 
structures influence smaller, localised dynamics.

Information cascade: Quantification of entire process of information transfer across 
multiple scales, encompassing both the flow of information within and between hi
erarchical levels. The information cascade is the average of the information cascade 
flow across scales.

Irreversibility: Property of a dynamical system whereby certain transitions or dynamics 
cannot be reversed in time. It reflects the asymmetry of time, often arising from the 
dissipation of energy, increase in entropy, or loss of information. In complex systems 
such as the brain, irreversibility is associated with the directionality of processes, such 
as the progression of brain states, and is essential for understanding complex phe
nomena like brain states and cognition within these states. Through imposing a 
temporal order on the sequence of states, irreversibility enhances the hierarchical 
complexity of the entropic dynamics of the brain. A quantification of irreversibility is 
entropy production which is closely related to the ‘arrow of time’.

Kolmogorov scaling: A set of scaling laws describing the statistical properties of fully 
developed turbulence in incompressible fluids. It is based on the idea that in the in
ertial subrange of turbulence—where energy cascades from large to small scales 
without loss—turbulent dynamics are universal and determined solely by the rate of 
energy dissipation and the scale of the eddies. In neuroscience, it is usually reflected in 
the power law observed in the functional connectivity between two regions as a 
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function their distances.
Metastability: A state in which the brain exhibits a balance between stability and flexi

bility, allowing it to flexibly switch between different activity patterns, which is a 
measure of synchronisation (whether local or global). It can be interpreted as a 
quantification of the available dynamical repertoire.

Non-equilibrium thermodynamics: Important branch of thermodynamics that deals with 
systems that are not in a state of thermodynamic equilibrium. Unlike equilibrium 
thermodynamics, which describes systems where macroscopic properties (such as for 
example temperature and pressure) are uniform and constant over time, non- 
equilibrium thermodynamics studies systems where these properties are spatially 
and temporally varying. A fundamental feature of non-equilibrium system is its 
temporal irreversibility, that is the emergence of an ‘arrow of time’.

Order parameter: A single variable that captures the collective or macro behaviour of a 
system composed of microscopic elements. In neuroscience, it conveys the synchro
nisation level of brain processes, offering a macroscopic view of the emergent 
dynamics.

Oscillator: Dynamical systems exhibiting periodic behaviour over time, characterised by 
the regular evolution of its state variables (such as phase and amplitude) around an 
equilibrium point. In neuroscience, the standard model of a perfect oscillator is the 
Kuramoto oscillator and a more general used oscillator is the Stuart-Landau oscillator 
which is defined by the normal form of a Hopf bifurcation.

Power law and scale-free dynamics: The power law indicates a special mathematical 
relationship between two quantities in which one quantity varies as a power of the 
other. The power law distribution arises when extreme events occur with low prob
ability, such as how most people in a social network only have a couple of hundred 
contacts, while some influencers may have millions. The power law often indicates 
that a system such as the brain could be scale free and operate in a critical state of self- 

organised criticality, which makes the system highly robust to random failures, but 
vulnerable to attacks.

Turbulence: This concept was first described for fluid dynamics reaching back to Leonardo 
da Vinci but subsequent research has been able to show turbulence in highly variable 
and dynamic patterns of system exhibiting local synchronisations, characterised by 
significant fluctuations across space and time. This variability can be quantified using 
the local Kuramoto parameter, which measures the degree of local synchronisation at 
any given point. Conceptually, turbulence can be viewed as a spatiotemporal exten
sion of metastability, capturing the complex interplay between order and disorder in 
the system. This phenomenon is particularly relevant in neural systems, where tur
bulence can be modelled using coupled oscillators and provide insights into the 
complex, non-equilibrium behaviour underlying brain function and cognition.

Vorticity: Defined in fluid dynamics as a measure of the local rotation of motion of a fluid 
around a specific point, which mathematically corresponds to the curl of the velocity 
field in the fluid. Here, the definition is extended to characterise the level of local 
synchronisation around a specific spatial region in the brain using the concept of the 
local Kuramoto order parameter.

Wave number: Measure of the spatial frequency of a wave, representing the number of 
wavelengths per unit distance.

Whole-brain model: Powerful tool for modelling brain dynamics from whole-brain neu
roimaging techniques, such as fMRI or magnetoencephalography. In its simplest form, 
the whole-brain model is constructed using the anatomical connectivity of a reduced 
set of typically hundreds of anatomically defined brain regions. Each anatomically 
linked region contains a model of the local dynamics, and the model is fitted to the 
neuroimaging time series by simply scaling the global connectivity. The elements of 
such an in silico model of brain dynamics can then be exhaustively probed, and the 
underlying causal mechanisms revealed.
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