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Healthy brain dynamics can be understood as the emergence of a complex system far from thermodynamic equilibrium. Brain dy-
namics are temporally irreversible and thus establish a preferred direction in time (i.e., arrow of time). However, little is known about
how the time-reversal symmetry of spontaneous brain activity is affected by Alzheimer’s disease (AD). We hypothesized that the level
of irreversibility would be compromised in AD, signaling a fundamental shift in the collective properties of brain activity toward equi-
librium dynamics. We investigated the irreversibility from resting-state fMRI and EEG data in male and female human patients with
AD and elderly healthy control subjects (HCs). We quantified the level of irreversibility and, thus, proximity to nonequilibrium dy-
namics by comparing forward and backward time series through time-shifted correlations. AD was associated with a breakdown of
temporal irreversibility at the global, local, and network levels, and at multiple oscillatory frequency bands. At the local level, tempor-
oparietal and frontal regions were affected by AD. The limbic, frontoparietal, default mode, and salience networks were the most
compromised at the network level. The temporal reversibility was associated with cognitive decline in AD and gray matter volume in
HCs. The irreversibility of brain dynamics provided higher accuracy and more distinctive information than classical neurocognitive
measures when differentiating AD from control subjects. Findings were validated using an out-of-sample cohort. Present results offer
new evidence regarding pathophysiological links between the entropy generation rate of brain dynamics and the clinical presentation
of AD, opening new avenues for dementia characterization at different levels.
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Significance Statement

By assessing the irreversibility of large-scale dynamics across multiple brain signals, we provide a precise signature capable of
distinguishing Alzheimer’s disease (AD) at the global, local, and network levels and different oscillatory regimes.
Irreversibility of limbic, frontoparietal, default-mode, and salience networks was the most compromised by AD compared
with more sensory–motor networks. Moreover, the time-irreversibility properties associated with cognitive decline and atro-
phy outperformed and complemented classical neurocognitive markers of AD in predictive classification performance.
Findings were generalized and replicated with an out-of-sample validation procedure. We provide novel multilevel evidence
of reduced irreversibility in AD brain dynamics that has the potential to open new avenues for understating neurodegenera-
tion in terms of the temporal asymmetry of brain dynamics.

Introduction
The irreversibility [of time] is the mechanism that brings order out
of chaos

(Prigogine and Stengers, 1984)

From physics to biology, the second law of thermodynam-
ics states that closed systems evolve in the direction of entropy
increases. A central consequence of the second law is the
appearance of an asymmetry in the flow of temporal events
that leads to the thermodynamic “arrow of time” (Eddington,
1928; Schrödinger, 1929). Such asymmetry distinguishes between
reversible and irreversible/nonequilibrium (Seif et al., 2021). In the
context of recent brain studies, large-scale self-organizing brain dy-
namics evolve away from thermodynamic equilibrium and remain
in a healthy regime of multistability (Fingelkurts and Fingelkurts,
2004; Deco et al., 2017; Demirtaş et al., 2019; Luppi et al., 2019; Perl
et al., 2021), where a positive correlation exists between neural
dynamic complexity and the extent of temporal irreversibility, in-
dicative of an association between healthy brain activity and none-
quilibrium dynamics (Deco et al., 2022). Notably, this temporal
signature reflects the complexity of the brain’s functional organiza-
tion and has been shown to relate to the level of consciousness (Perl
et al., 2021; de la Fuente et al., 2022), cognitive performance (Deco
et al., 2021; Lynn et al., 2021; Ibanez, 2022), and certain neuro-
psychiatric diseases (Zanin et al., 2019).

Across hundreds of studies, Alzheimer’s disease (AD) has
been characterized by an abnormal decrease in the complexity of
brain activity, diminishing the entropy generation rate of neural
dynamics (for review, see Sun et al., 2020). These imbalances in
neural dynamics affect both cognition (Chand et al., 2018) and
the intrinsic connectivity of resting-state networks (RSNs) across
temporal levels [electroencephalography (EEG): Dottori et al.,
2017] and spatial levels [functional magnetic resonance imaging
(fMRI): Moguilner et al., 2021; see also both EEG and fMRI in
the same study: Herzog et al., 2022)]. Therefore, the deviation
from the expected level of entropy in the healthy brain may also
involve substantial deviations from nonequilibrium, making
brain dynamics in dementia less irreversible on different spatio-
temporal scales. Despite this apparent connection, to our knowl-
edge, no previous study has explored the arrow of time in the
brain dynamics of AD patients.

Based on these considerations, we hypothesized that the level
of irreversibility (i.e., the temporal asymmetry of brain dynamics
and the variability of the global level of irreversibility over time),
reflecting the nonstationarity nature of brain signals, would be
compromised in AD patients. First, we anticipate that less irre-
versible brain dynamics would characterize AD across spatial
(fMRI) and temporal (EEG) domains, from the global level
(large-scale networks) to local regions and including different os-
cillatory frequency bands. Moreover, we propose that the more

endogenous RSNs (i.e., default-mode, limbic, salience, and fron-
toparietal networks)—usually compromised in AD (Zhou and
Seeley, 2014; Badhwar et al., 2017; Kucikova et al., 2021; Meng et
al., 2022)—would show less irreversible dynamics than the more
exogenous ones (somatosensory, motor, and visual networks) in
AD patients. Second, we expect the level of irreversibility to be
partially associated with classical neurocognitive markers of AD.
We foresee an association of irreversibility with functional con-
nectivity (FC) of RSNs and cognitive impairment. No specific
associations would be observed between the level of irreversibil-
ity in AD and less transient measures such as brain atrophy.
Finally, if less irreversible dynamics are a core signature of AD,
the predictive classification power of multimodal irreversibility
features (fMRI and EEG) would be similar to or greater than
standard disease markers, including brain atrophy, functional
brain connectivity, and cognitive deficits. Combining standard
markers and irreversibility features would increase the classifica-
tion power, suggesting that the latter measure provides addi-
tional information that the classic markers do not explain. We
expect our measures to generalize to other unseen cohorts.

To test these hypotheses, we adopted a theoretical nonequili-
brium thermodynamics-inspired framework (Deco et al., 2021,
2022; Perl et al., 2021; de la Fuente et al., 2022) and implemented
the associated methods (Fig. 1) to capture the temporal asymme-
try of brain dynamics acquired using fMRI and EEG in patients
with AD and elderly healthy control subjects (HCs). We assessed
the temporal irreversibility by comparing forward and backward
time series through time-shifted correlations applied to multimo-
dal neuroimaging data, seeking to identify the brain networks
predominantly affected by neurodegeneration and their ana-
tomic and neuropsychological correlates.

Materials and Methods
Participants
We analyzed data from 107 male and female participants, 42 AD
patients, and 65 matched elderly HCs, for which resting-state high-
density EEG (hdEEG) and fMRI were acquired. Post hoc analyses
revealed a calculated statistical power of 0.9898 (1 – b error probabil-
ity) for the fMRI population sample, and 0.9979 for the hdEEG popula-
tion sample. Recruitment was conducted in clinical centers in Chile
(Geroscience Center for Brain Health and Metabolism, Memory and
Neuropsychiatric Clinic, Universidad de Chile; Center for Social and
Cognitive Neuroscience, Universidad Adolfo Ibáñez) and Argentina
(Centro de Neurociencias Cognitivas, Universidad de San Andres) as
part of an ongoing EEG/fMRI approach (Donnelly-Kehoe et al., 2019;
Salamone et al., 2021; Birba et al., 2022; Legaz et al., 2022) led by
BrainLat (Latin American Brain Health Institute; Duran-Aniotz et al.,
2022). Consensus groups diagnosed participants with AD following
National Institute of NINCDS (National Institute of Neurological and
Communicative Disorders and Stroke)–ADRDA (Alzheimer’s Disease
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and Related Disorders Association) clinical criteria (McKhann et al.,
1984; 2011). Diagnoses were supported by an extensive battery of neu-
rologic and neuropsychiatric assessments (Piguet et al., 2011; Baez et
al., 2014; Melloni et al., 2016; Santamaría-García et al., 2017), con-
ducted in line with the Multi-Partner Consortium to Expand Dementia
Research in Latin America (ReDLat) protocol (Ibanez et al., 2021a, b;
Maito et al., 2023). Participants with a history of neurologic disorders,
primary language deficits, psychiatric disorders, or substance abuse
were excluded. Table 1 reports demographic information for the fMRI,
hdEEG, and matched samples, respectively. The relevant Institutional
Review Boards approved the study, and all participants provided writ-
ten informed consent before participation following the Helsinki decla-
ration, National Institutes of Health guidelines, and local regulations.

Participants for out-of-sample validation
For out-of-sample validation, we used data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu/).
We analyzed resting-state fMRI data from 206 participants, 91 AD
patients, and 115 elderly HCs. Both clinical groups were matched in age,
gender, and years of education (Table 2).

Neuropsychological assessment
The overall cognitive state of the participants was examined using the
Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005). The

a

b

c

FED

CBA

Figure 1. Overview of the framework to estimate the arrow of time in brain dynamics. We used a framework inspired by stochastic thermodynamics to capture the departure from equilib-
rium in large-scale brain dynamics as a potential distinctive signature of AD. A, The second law of thermodynamics accounts for the energy transfer direction often referred to in the concept of
“the arrow of time.” This physical law establishes that the entropy of an isolated system left to spontaneous evolution does not decrease, explaining the irreversibility of natural processes. The
panel shows a three-state system and its transitions illustrated by circles and arrows. A system at thermodynamic equilibrium does not produce entropy; therefore, there are no net probability
fluxes of transitions between states leading to reversible dynamics. B, We used resting-state fMRI and source-inverted hdEEG data from the same pool of elderly healthy control subjects and
Alzheimer’s disease patients. Both datasets were parcellated using the AAL atlas. C, From all brain regions in all participants, we extracted the forward brain activity time series and generated
the corresponding backward versions. D, The framework estimates the arrow of time (i.e., the level of irreversibility/nonequilibrium) using pairwise and multidimensional time-shifted correla-
tion measurements. The correlation among time series captures the interaction between them. The bottom plots illustrate the interaction among the forward (left) and reversal (right) time se-
ries for a given time shift (Dt). As can be seen, the correlation declines faster for signals with weak compared with a strong time dependency. E, The level of irreversibility/nonequilibrium was
estimated at different spatial scales, from the global coverage of the entire brain, the level of networks, and the local level of individual brain regions. F, Finally, we used this framework to
evaluate the irreversibility of neuroimaging data from patients with neurodegeneration. We hypothesized that the arrow of time would be affected by neurodegeneration and that this measure
could equal or even surpass standard neuroimaging measures in the classification of neurodegenerative diseases.

Table 1. Demographics and cognitive performance

HCs AD patients Statistics

fMRI sample N= 65 N= 42
Gender (F/M) 41/24 26/16 x 2 ¼ 0:0149; p ¼ 0:9026
Age (mean 6 SD) 69.92 6 7.89 76.85 6 7.46 F ¼ 20:51 ; p ¼ 1:56e� 05
Education (mean years) 14.89 10.45 F ¼ 25:57; p ¼ 1:81e� 06
MoCA (mean) 25.95 15.53 F ¼ 163:08; p ¼ 5:32e� 21

hdEEG sample N= 25 N= 28
Gender (F/M) 15/10 17/11 x 2 ¼ 0:0028; p ¼ 0:9576
Age (mean 6 SD) 72.16 6 6.70 76.53 6 7.61 F ¼ 4:87; p ¼ 0:0317
Education (mean years) 13.6 9.89 F ¼ 7:70; p ¼ 0:0076
MoCA (mean) 25.15 16.36 F ¼ 38:67; p ¼ 5:07e� 07

Matched sample N= 22 N= 22
Gender (F/M) 13/9 13/9 x 2 = 0; p ¼ 1
Age (mean 6 SD) 71.86 6 6.94 76.18 6 7.7 F ¼ 3; 82; p ¼ 0; 0575
Education (mean years) 13.13 10 F ¼ 5:22; p ¼ 0:0274
MoCA (mean) 25.35 16.36 F ¼ 51:29; p ¼ 1:72e� 08

F, Female; M, male. Data presented for fMRI, hdEEG, and Matched samples. Categorical variables
were analyzed using Pearson’s x 2 test, and continuous variables were assessed using ANOVA with
an level of 0.05.
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MoCA evaluates multiple cognitive domains, including attention, con-
centration, orientation, memory, language, executive functions, visuo-
spatial skills, abstraction, and calculation.

Neuroimaging data acquisition and preprocessing
hdEEG
Electrical brain signals were recorded using a Faraday cage with a
128-channel 24 bit resolution system (Active Two, Biosemi) located
according to the radial electrode placement system and sampled at
1024 Hz while participants sat still and awake with their eyes closed.
Two electrodes placed at the right and left mastoids served for off-
line rereference. Electrodes at periocular locations served to control
for blinks and eye movements. Analog filters were applied at 0.03
and 100Hz to the raw hdEEG data. Recordings were then bandpass
filtered between 0.5 and 40Hz using a zero-phase shift Butterworth
filter, rereferenced to the average of all channels, and downsampled
to 512 Hz. Malfunctioning electrodes were removed, and their val-
ues were estimated from neighboring electrodes using weighted
spherical interpolation. Artifacts induced by eye movements were
corrected using independent component analysis (Kim and Kim,
2012) and a visual inspection protocol (Schandry and Montoya,
1996; Dirlich et al., 1997; Pollatos and Schandry, 2004; Terhaar et
al., 2012; García-Cordero et al., 2017; Yoris et al., 2017, 2018;
Salamone et al., 2018). Recording and preprocessing of resting-
state data followed current standards for multicentric connectivity
studies in dementia harmonization regarding recording proce-
dures, data acquisition Brain Imaging Data Structure (BIDS), pre-
processing pipeline (denoising, artifact removal, spatial normalization,
data normalization), and connectivity at the source space (Prado et al.,
2022). All data and statistical analyses were performed using custom
code written in MATLAB (MathWorks) following standard procedures
(García-Cordero et al., 2017; Yoris et al., 2017, 2018; Mikulan et al.,
2018; Salamone et al., 2018; Josefsson et al., 2019; Amoruso et al., 2022;
Legaz et al., 2022).

EEG source space
We used the standardized Low-Resolution Electromagnetic Tomography
(sLORETA) method (Pascual-Marqui et al., 1994) to estimate the neural
sources of the hdEEG recordings. sLORETA computes the standardized
current density at each of 2394 voxels located in the cortical gray matter
and the hippocampus of a reference brain (MNI 305, Brain Imaging
Center, Montreal Neurologic Institute) based on the linear, weighted sum
of the scalp electric potentials. The electrodes layout was registered onto
the scalp MNI152 coordinates, with landmarks for registering the electro-
des located at the nasion, inion, the left preauricular point, and the right
preauricular point. The locations of landmarks and recording elec-
trodes were expressed in millimeters using the Cartesian coordi-
nate system. To calculate the transformation matrix sLORETA
(direct operator for the inverse solution problem), we used a regu-
larization method with a signal-to-noise ratio of 1. The standar-
dized current densities maps were obtained using a three-shell
spherical head model registered to the Talairach space and parcel-
lated using the Automated Anatomical Labeling (AAL; Tzourio-
Mazoyer et al., 2002), removing subcortical regions. Time-varying
current densities computed at each time point were averaged
among voxels belonging to the same AAL region, such that a single

(mean) time series was obtained for each cortical region (Prado et
al., 2022).

fMRI recordings
Data were acquired at two different centers following Organization for
Human Brain Mapping (OHBM) recommendations (Smith et al., 2013;
Nichols et al., 2017; Poldrack et al., 2017) with the following parameters.

Center 1. Imaging was performed on a 3 T system (Skyra,
Siemens) with a standard head coil. T1-rapid gradient echo vol-
umes, parallel to the plane connecting the anterior and posterior
commissures, were acquired with the following parameters: repeti-
tion time (TR) = 1700ms; echo time (TE) = 2000ms; flip angle = 8°;
208 slices; matrix dimension = 224� 224� 208; voxel size = 1�
1� 1 mm. Functional ep2d_bold pulse sequences (parallel to the
anterior–posterior commissures) covering the whole brain were
acquired sequentially intercalating pair-ascending first with the
following parameters fMRI parameters: TR = 2660ms; TE = 30 ms;
flip angle = 90°; 46 slices; matrix dimension = 76� 76� 46; voxel
size in plane=3� 3� 3mm; slice thickness=3mm; sequence duration=
13.3min; number of volumes=300.

Center 2. Imaging was performed on a 3-T Phillips system with a
standard head coil. T1-rapid anatomic 3D gradient echo volumes were
acquired parallel to the plane connecting the anterior and posterior com-
missures, with the following parameters: TR= 8300ms; TE= 3800ms;
flip angle = 8°; 160 slices; matrix dimension= 224� 224� 160; voxel
size = 1� 1� 1 mm. Functional spin echo volumes (parallel to the
anterior–posterior commissures) covering the whole brain were sequentially
and ascendingly acquired with the following parameters: TR=2640ms;
TE=30ms; flip angle=90°; 49 slices; matrix dimension=80� 80� 49;
voxel size in plane = 3� 3� 3 mm; slice thickness = 3 mm; sequence
duration = 10min; number of volumes = 220.

fMRI preprocessing
The data were preprocessed using the Data Processing Assistant for
Resting-State fMRI (DPARSF version 2.3), an open-access toolbox with
a standardized pipeline that uses Statistical Parametric Mapping software
(SPM12) and the Resting-State fMRI Data Analysis Toolkit (REST ver-
sion 1.7). The first five volumes of each subject’s resting-state recording
were discarded to ensure that magnetization achieved a steady state. The
preprocessing included slice-timing correction (using the middle slice of
each volume as the reference scan) and realignment to the first scan of
the session to correct head movement (implemented in SPM12; García-
Cordero et al., 2016). Six motion parameters were regressed out: CSF
and white matter (WM) signals to reduce potential effects of movement-
related, physiological, and cardiorespiratory effects (REST version 1.7
toolboxes). Motion parameters were estimated during realignment, and
CSF and WM masks were derived from the tissue segmentation of each
subject’s T1 scan in native space with SPM12 (after coregistration of
each subject’s structural image with the functional image). None of the
participants showed head movements .3 mm and/or rotations .3°.
Finally, images were normalized to the MNI space using the echoplanar
imaging template from SPM12, smoothed using an 8 mm full-width-at-
half-maximum (FWHM) isotropic Gaussian kernel, and bandpass fil-
tered between 0.01 and 0.1Hz to correct and remove low-frequency
drifts from the MRI scanner. Data were parcellated with the AAL
(AAL90; Tzourio-Mazoyer et al., 2002). There is substantial disagree-
ment on global signal regression (GSR) in fMRI preprocessing. Given
the potential bias that can be introduced in data analysis, we choose not
to remove it. We based our decision on growing evidence supporting
that GSR contains valuable information, including signals that correlate
with electropshysiological sources and with vigilance fluctuations, among
other signals of neurobiological relevance (Schölvinck et al., 2010; Wong
et al., 2013; Chang et al., 2016; Wen and Liu, 2016; Liu et al., 2017; Turchi
et al., 2018).

Atrophy maps
MRI acquisition and preprocessing are reported following OHBM rec-
ommendations (Smith et al., 2013; Nichols et al., 2017; Poldrack et al.,
2017). Whole-brain T1-rapid anatomic three-dimensional gradient echo
volumes were acquired. For voxel-based morphometry (VBM) analysis,

Table 2. Demographics and cognitive performance for the ADNI cohort for out-
of-sample validation procedures

Out-of-sample
fMRI-ADNI HCs (N= 115)

AD patients
(N= 91) Statistics

Gender (F/M) 59/56 38/53 x 2 ¼ 1:85; p ¼ 0:17
Age (mean 6 SD) 72.75 6 8.51 73.62 6 7.95 F ¼ 0:56; p ¼ 0:4544
Education (mean years) 15.75 15.41 F ¼ 1:06; p ¼ 0:3039
MoCA (mean) 24.24 14.23 F ¼ 238:07; p ¼ 1:25e� 35

Categorical variables were analyzed using Pearson’s x 2 test, and continuous variables were assessed using
ANOVA with an a level of 0.05.
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data were processed on the DARTEL Toolbox following validated proce-
dures (Ashburner and Friston, 2000; García-Cordero et al., 2016; Sedeño
et al., 2017) via SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). T1-weighted images in native space were segmented using the
default parameters of the SPM12 (bias regularization, 0.001; bias
FWHM, 60 mm cutoff) into gray matter, white matter, and CSF. These
three tissues were used to estimate the total intracranial volume (TIV).
The DARTEL module was run using the gray matter-segmented and
white matter-segmented images to create a template from the complete
dataset (increasing the intersubject alignment accuracy; Ashburner,
2007). Next, the DARTEL Tool “Normalize to MNI Space” was used to
register the last template from the previous step in MNI space. This
transformation was applied to bring all the gray matter-segmented scans
to standard space. Subsequently, all images were modulated to correct
volume changes by Jacobian determinants and to avoid bias in the inten-
sity of an area because of its expansion during warping. Finally, data
were smoothed using a 10 mm FWHM isotropic Gaussian kernel to
accommodate anatomic intersubject variability. The size of the kernel
was selected based on previous recommendations (Ashburner and
Friston, 2000; Burton et al., 2004). To analyze all images together, avoid-
ing a scanner effect, the normalized and smoothed DARTEL images
were transformed into w-score (Jack et al., 1997; La Joie et al., 2012;
Ossenkoppele et al., 2015; Chung et al., 2017; van Loenhoud et al., 2017).
w-Scores represent the degree to which the observed gray matter volume
in each voxel is higher or lower than expected, based on an individual’s
global composite score adjusted for specific covariates (age, TIV, and
scanner type). w-Scores were calculated by dividing each participant’s
observed and predicted gray matter volume (residuals) by their SD. The
resulting w-score maps of each subject were used for further analyses.

Method for determining levels of irreversibility/nonequilibrium
The level of irreversibility relies on the key idea of detecting the
arrow of time through the degree of asymmetry obtained by com-
paring the lagged correlation between pairwise time series (i.e., the
forward and the artificially generated reversed backward version).
Figure 1 presents the general framework used to estimate the arrow
of time and to provide a distinctive signature of health and disease
in human brain recordings.

The detection of the level of irreversibility (i.e., the arrow of time)
between two time series (t) and (t) requires creating the backward ver-
sion of the time series. The reversed backward version of [t or (t)], that
we call xrðtÞ [or yrðtÞ], is obtained by flipping the time ordering [i.e., by
ordering the time evolution of xrðtÞ (or yrðtÞ)] as the inverted sequence
determined the initial state and final states. The potential causal depend-
ency between the time series (t) and (t) is measured through the time-
shifted correlation (Deco et al., 2022). The extent to which the forward
and reversed time series are distinguishable determines the reversibility/
equilibrium level. Therefore, when the forward and reversed time series
are not distinguishable, the system is reversible and in equilibrium,
whereas when the level of distinguishability increases, the system becomes
more irreversible and closer to nonequilibrium.

For each participant, we extracted forward BOLD time series from
the AAL parcellation using sliding windows of 20 TRs, which were then
shifted 1 TR forward (2.6 s, according to the acquisition parameter). We
chose a time window of 20 TRs because it allows a good balance between
sensitivity and specificity in detecting dynamic changes in correlations
(Lindquist et al., 2014). However, we tested our approach with different
TRs (30, 40, and 50 TRs).

The same strategy was applied to the source-localized broad-
band-filtered (0.5–40 Hz) EEG data but shifted 2 TRs forward
(;4 ms). EEG time series were also filtered in the five canonical
frequency bands [i.e., d , 0.5–4 Hz; theta, 4–8 Hz; alpha, 8–12 Hz;
beta, 12–30 Hz; and gamma, 30–40 Hz), with the following time
shift length: Dt = 15, 7, 5, 3, and 2, respectively. The time shift
lengths were defined as a function of the decay of the signal auto-
correlation. Then, we generated the backward version of each slid-
ing window by reversing them in time. For the forward evolution,
the time-shifted correlation is given by the following:

CforwardðDtÞ ¼ , xðtÞ; yðt1DtÞ.:

And for the reversed backward evolution, the time-shifted correla-
tion is given by the following:

CreversalðDtÞ ¼ , xðrÞðtÞ; yðrÞðt1DtÞ.:

The pairwise level of irreversibility (i.e., the degree of temporal asymme-
try capturing the arrow of time) is given consequently by the absolute differ-
ence between these two time series in the forward and reversed backward
evolution, at a given shift Dt = T, as follows:

IxyðTÞ ¼ jcforwardðTÞ � creversalðTÞj

The level of irreversibility/nonequilibrium for the global/multidimen-
sional case can be generalized by defining the forward and reversal matri-
ces of time-shifted correlations. Let xiðtÞ indicate the forward version of a
multidimensional time series reflecting the dynamic evolution of the vari-
able describing the system. In this case, the subindex i denotes the differ-
ent dimensions of the dynamic system (i.e., the brain regions). Let us
denote with xðrÞi ðtÞ the corresponding reversed backward version. Then, xi
and xj refer to the forward time series in regions i and j, and xðrÞi ðtÞ and
xðrÞj ðtÞ to the reversed backward time series, both time shifted. The for-
ward and reversal matrices expressing the causal dependencies between
the different variables for the forward and artificially generated reversed
backward version of the multidimensional system are given by the
following:

FSforward;ijðDtÞ ¼ � 1
2
logð1�, xiðtÞ; xjðt1DtÞ.2Þ

FSreversal;ijðDtÞ ¼ � 1
2
logð1�, xðrÞi ðtÞ; xðrÞj ðt1DtÞ.2Þ

The FS functional dependency matrices are expressed as the mutual in-
formation based on the respective time-shifted correlations. The level of
irreversibility is given by the quadratic distance between the forward and
reversal time-shifted matrices at a given shift Dt ¼ T. In other words,
the level of irreversibility in the multidimensional case is given by the
following:

I ¼ FSforwardðTÞ � FSreversalðTÞ2

Where the notation Q2 is defined as the mean value of the absolute
squares of the elements of the matrix Q. In other words, if we define a
difference matrix FSdiff in the following way:

FSdiff ij ¼ ðFSforward; ijðTÞ � FSreversal;ijðTÞÞ2

Then, the elements of the matrix FSdiff are the square of the elements of the
matrix

�
FSforwardðTÞ � FSreversalðTÞ

�
; where for each pair, the level of irre-

versibility is measured by the squared difference. Thus, I is simply the mean
value of the elements of FSdiff . We also computed the SD of the elements of
the matrix FSdiff . The level of irreversibility for the local (nodal) case was
estimated as the following:

Ii ¼ 1
n

X
j

ðFSforwardijðTÞ � FSreversalijðTÞÞ2:

fMRI functional connectivity
The functional connectivity are matrices of Pearson correlation coeffi-
cients across the entire duration of the BOLD time series of the 90 AAL
brain regions (Friston, 1994).

EEG functional connectivity
Functional interaction between brain regions within a set frequency
band was estimated using EEG coherence analysis. Coherence estimates
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relative amplitude and phase consistency among all pairs of data chan-
nels (Srinivasan et al., 2007).

Statistical analyses
Categorical variables (i.e., gender) were analyzed using Pearson’s x 2 test,
and continuous variables (i.e., age, years of education, and cognitive per-
formance) were assessed using ANOVA. Demographic differences were
controlled by performing a multivariate linear regression analysis on
irreversibility at the global level. Differences between conditions in irre-
versibility were statistically assessed across subjects and across brain
regions using the Wilcoxon rank-sum method. Additionally, we used
the false discovery rate (FDR) at the 0.05 significance level to correct
multiple comparisons (Hochberg and Benjamini, 1990). Changes in irre-
versibility at the network and local level were also assessed using
Cohen’s d effect size, which measures the effect size in terms of the dif-
ference between the means of two populations (m1, m2) and the pooled

SDs (s) as follows: d ¼ m1�m2
s

. Following a standard criterion to relate

Cohen’s d values to the effect size, d, 0.2 is considered a very low effect
size, while d . 0.8 represents a very high effect size (Sawilowsky, 2009).
Correlations between the irreversibility measurements with atrophy, cogni-
tive performance, and functional connectivity were tested with Pearson’s R
test and the associated p-values (with Benjamini–Hochberg correction).
Subjects with irreversibility values that were more than three scaled median
absolute deviations from the median were excluded from the analysis.

Random forest classifier
The fitcensembleMATLAB function was used with default parameters to
train a random forest classifier with the purpose of distinguishing
between the groups of participants. To perform cross-validation, the
dataset was randomly partitioned with stratification of k=5. Then, the
model was fitted using four of these groups (training/test = 80/20), and
its performance was tested using the group that remained. This proce-
dure was repeated 50 times to obtain distributions and average measures
of performance. The features used were the following: EEG irreversibility
(NR); fMRI NR, fMRI, and hdEEG NR (combined); mean FC, atrophy,
cognitive performance (MoCA results); all brain functional measurements
(EEG/fMRI NR, FC); and multimodal measurements (EEG/fMRI NR, FC,
atrophy, and cognitive performance). Missing data were estimated using
the weighted K-nearest neighbors (KNNimpute; Troyanskaya et al., 2001),
with k=5. KNNimpute is a weighting procedure that exploits the correla-
tion between a missing value and the available data, quantified using the
support vector regression method. Classification performance was esti-
mated using the receiver operating characteristic (ROC) area under the
curve (AUC), precision, sensitivity, specificity, accuracy, and F-score met-
rics (Fawcett, 2006).

Results
Alzheimer’s disease is associated with significant changes in
the level of irreversibility/nonequilibrium in multimodal
spatiotemporal dynamics
First, we explored whether the arrow of time estimated from
fMRI was compromised in AD at a global level and whether the
level of irreversibility/nonequilibrium could distinguish between
HCs and AD patients. We found that the irreversibility in neural
dynamics differentiated HCs from AD patients (Fig. 2A, left pan-
els; p, 0.001, Wilcoxon rank-sum test, FDR corrected). In addi-
tion, we found that the variability of the global level of irreversibility
over time was also distinguished between conditions (Fig. 2A, right
panels; p, 0.001, Wilcoxon rank-sum test, FDR corrected). We fur-
ther complemented these results using the source-localized hdEEG
data filtered in the five canonical frequency bands (all p, 0.05,
Wilcoxon rank-sum test, FDR corrected: delta, 0.5–4Hz; theta, 4–
8Hz; alpha, 8–12Hz; beta, 12–30Hz; and gamma, 30–40Hz), with a
time shift length according to the frequency band (TR=15, 7, 5, 3,
and 2, respectively). We observed significant differences between

groups at all frequency bands (Fig. 2B). In addition, we calculated
the cross-modal correlation coefficient of the global irreversibility
level and found no relationship (HC 1 AD: R=0.04, p, 0.08.033;
HC: R=0.04, p, 0.8651; AD: R=0.04, p, 0.8637).

To rule out that our results depend on the length of the time
window of BOLD time series, we estimated the level of irreversi-
bility using three different TRs (30, 40, and 50) and replicated
previous results (Fig. 2C). We also ruled out the possible influ-
ence of age and education (Table 1) on the results; we applied a
multivariate linear regression analysis on irreversibility at the global
level. This procedure replicated previous global results for the fMRI
and EEG samples (p, 0.001, Wilcoxon rank-sum test; fMRI:
r=0.9877, p, 0.001; EEG: r=0.9993, p, 0.001), suggesting that
although temporal asymmetry in brain dynamics might be related
to demographic variables, such as age and education, the level of
irreversibility reflected changes mainly based on brain dynamics.

To capture the irreversibility/nonequilibrium changes at the
node level, we applied the framework at each BOLD time series
extracted from the AAL parcellation. We observed that the dif-
ference in irreversibility was significantly higher in bilateral fron-
tal and temporoparietal regions in HCs than in AD patients.
Figure 2D shows the magnitude of this difference, and Figure 2E
highlights the areas presenting significant differences between
conditions (p, 0.01, Wilcoxon rank-sum test, FDR corrected).
Finally, to explore whether the size of the ROIs explains their
level of irreversibility, we correlated the irreversibility at the local
level with the size of each ROI (estimated as the number of voxels)
and found that there is no relationship between them for any of
the two conditions or techniques (HCs: fMRI, R = �0.00096047,
p, 0.41202; EEG, R=0.015287, p, 0.3658; AD patients: fMRI,
R =�0.0031627, p, 0.50 261; EEG, R=0.010345, p, 0.35 476).

Selective compromise of irreversibility across critical
networks involved in neurodegeneration
Beyond the global and local analyses, we investigated the differ-
ences in the level of irreversibility associated with seven RSNs.
To do so, we applied the same framework for the global level in
the BOLD time series but now restricted it to brain regions in
each of the seven RSNs.

The RSNs we considered involve some that are typically
impaired in AD (i.e., limbic, frontoparietal, DMN, and salience) as
well as other that act as control (i.e., somatosensory, visual, motor).
We found decreases in the irreversibility level in AD patients
compared with HCs only in networks known to be affected by
AD: limbic, frontoparietal, DMN, and salience networks, which
are also more endogenous networks (less driven by the external
environment). Conversely, no significant differences were found
in primary sensorimotor networks (visual, somatosensory, and
motor networks). This result suggests that the impairment in
sustaining the nonequilibrium is evident in the selective physio-
pathology of ADs, indexing different signatures in the balance of
intrinsic and extrinsic brain dynamics. Figure 3A shows the dif-
ferential responses between HCs and AD patients for the RSN
by presenting boxplots (p, 0.05, Wilcoxon rank-sum test, FDR
corrected). Figure 3B presents a combined radar plot illustrating
the effect size of the different levels of irreversibility for each rest-
ing-state network.

Associations of irreversibility with neurocognitive markers
of Alzheimer’s disease
Since AD is usually associated with specific patterns of atrophy,
cognitive deficits, and alterations in functional connectivity, we
explored whether the extent of irreversibility in the dynamics—
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estimated from both fMRI and EEG—was related to these varia-
bles. First, we related the irreversibility at the node level to atro-
phy, estimated as gray matter volume. We found a significant
correlation between irreversibility and atrophy for HCs (fMRI:
R= 0.19, p, 0.001; EEG: R= 0.06, p, 0.0185; FDR corrected)
but not for AD patients (fMRI: R= 0.01, p, 0.6532; EEG:

R= 0.01, p, 0.7899; FDR corrected), suggesting that the emer-
gence of the arrow of time in brain dynamics is not primarily
linked to atrophy in AD (Fig. 4A). Then, we explored the associa-
tion with the mean functional connectivity, for which no signifi-
cant results were found for HCs (fMRI: R=0.06, p, 0.6546;
EEG: R= 0.19, p, 0.3724; FDR corrected) and for AD patients
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Figure 2. Irreversibility/nonequilibrium in large-scale brain signals as a signature of neurodegenerative diseases. A, Shows the global level of irreversibility and the variability of the global
level of irreversibility for HCs compared with AD patients estimated in fMRI (top left and top right, respectively) and source-localized hdEEG data, broadband filtered (0.5–40 Hz; bottom left
and bottom right, respectively). B, Comparison of the proximity to nonequilibrium brain dynamics between conditions for the source-localized hdEEG dataset filtered in frequency bands (delta,
theta, alpha, beta, and gamma). All p-values were estimated using the Wilcoxon rank-sum test and FDR corrected for multiple comparisons with an a level of 0.05; *p, 0.05, **p, 0.01,
and ***p, 0.001. C, Global irreversibility as a function of the window size (time length) in which the forward BOLD time series were extracted. D, Rendering of the effect size (estimated by
Cohen’s d) of the level of the irreversibility of brain activity at each node defined by the AAL atlas. Blue bars indicate brain regions showing significant differences (p, 0.01, Wilcoxon rank-
sum test, FDR corrected) between HCs and AD patients. E, As in C, the brain plots show the effect size (estimated by Cohen’s d) of the level of the irreversibility of brain activity at each node.
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(fMRI: R = �0.22, p, 0.1566; EEG: R = �0.16, p, 0.4101; FDR
corrected; Fig. 4B). We then investigated the correlation
between global irreversibility and cognitive performance
using the MoCA. The results showed a significant correla-
tion between the two measures in AD patients (fMRI:
R = 0.36, p, 0.0012; EEG: R = 0.19, p, 0.3724; FDR cor-
rected) but not in HCs (fMRI: R = 0.01, p, 0.9592; EEG:
R = �0.16, p, 0.4101; FDR corrected; Fig. 4C). Finally, we
restricted the association of irreversibility, atrophy, and FC
to each of the seven RSNs and found solely a correlation
between the irreversibility and atrophy in brain regions
belonging to the salience network (R = 0.24, p, 0.2806,
FDR corrected) in AD patients (Fig. 4D,E). No significant
associations were found between the other RSNs and atro-
phy or functional connectivity levels.

Comparing the selective and combined classification power
of irreversibility dynamics with standard neurocognitive
markers
Given the capacity of the irreversibility measure to distinguish
between AD and HCs, we focused on its predictive power for
classification accuracy. We tested the predictive power of the
irreversibility measure in each modality against and in conjunc-
tion with other structural, functional, behavioral, and demo-
graphic measurements. The results revealed that the reversibility
of the arrow of time estimated from fMRI and source-inverted
hdEEG time series outperformed hdEEG/fMRI FC and atrophy
measurements (Fig. 5A). Moreover, the highest classification was
obtained by combining multimodal features, which suggests that
irreversibility is a strong predictor of AD and brings information
not covered by classical neurocognitive measures. Figure 5B
presents the classification performance with multiple metrics.

Generalization and replication with an out-of-sample
validation
To test the generalization of our approach and rule out potential
classification sample size biases in the dataset, we tested the
arrow of time and the predictive power of the irreversibility mea-
sure on an independent dataset (i.e., the publicly available ADNI
cohort). As shown in Figure 5, C and D, we replicated previous
findings, further strengthening the results.

Discussion
We used a thermodynamics-inspired framework to gauge
the impact of AD on the temporal asymmetry of empirically
extracted brain signals (i.e., the level of irreversibility/none-
quilibrium in large-scale dynamics estimated from fMRI
and hdEEG). The results showed that resting brain activity
in AD is associated with a reduction in irreversibility at the
global level of the entire brain, local level of cortical regions
defined in the AAL parcellation, network level of the prototypical
RSNs, and at different oscillatory regimes. Complementarily, the
decrease in irreversibility was associated with cognitive decline in
AD patients and atrophy in HCs. In addition, we observed that
the irreversibility property of brain dynamics outperformed classi-
cal neurocognitive measures in predictive classification perform-
ance. In addition, multimodal features comprising irreversibility,
FC, atrophy, and cognitive performance reached the highest classi-
fication performance, surpassing 90% accuracy. On the one hand,
our findings offer novel multilevel evidence of reduced irreversi-
bility in AD brain dynamics, reinforcing the close pathophysiolog-
ical link between brain dynamics and the clinical presentation of
AD. On the other, our findings have the potential to open new
avenues for understating neurodegeneration in terms of entropic
asymmetry of brain dynamics.

These results allow for bridging the gap between large-scale
dynamics and AD in threefold ways. First, we show that AD
drives brain dynamics toward a different thermodynamic regime
(i.e., a state of equilibrium), making them less irreversible in time
as an indicator of brain disease. In classical thermodynamics,
irreversibility is associated with the production of entropy. A
drastic decrease in the entropy of spontaneous brain activity, as
in the case of AD (for review of multiple studies, see Sun et al.,
2020; for review of conflicting evidence, see Xue and Guo, 2018),
would render brain dynamics pathologically subcritical, reducing
the net fluxes between the underlying states and thus hampering
the integrity of the level of irreversibility—probably because
of the large amount of energy required. Therefore, it seems
unlikely that a system can sustain the dynamic nature of healthy
cognitive functions without substantial deviations from thermo-
dynamic equilibrium on some spatial and temporal scales.
Consistent with the entropy production interpretation, brain ac-
tivity requires a certain level of entropy to maintain its functional

BA

Figure 3. Level of irreversibility/nonequilibrium in fMRI resting-state networks. We followed the same procedure used in the global analysis but now in each subset of regions belonging to
each of the seven networks. A, Comparison of the level of irreversibility for each network between HCs and AD patients. p-values were estimated using the Wilcoxon rank-sum test and FDR cor-
rected for multiple comparisons with an a level of 0.05. **p, 0.01 and ***p, 0.001. B, Rendering of the effect size assessed by Cohen’s d. Names in red with an asterisk indicate networks
showing significant differences between conditions.
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flexibility; then, its reduction would lead to impairments in cog-
nitive functions and adaptive behavior (Tagliazucchi et al., 2012;
Grieder et al., 2018; Saxe et al., 2018; Wang, 2020). Second, to
our knowledge, this is the first report of irreversibility as a multi-
modal feature of neurodegeneration. We show that the extent to
which brain dynamics deviate from the state of equilibrium is a
powerful marker of AD. This feature proves more powerful than,
and complementary to, more classical neurocognitive measures
in distinguishing AD. And third, particularly noteworthy, our
neuroimaging research provides convergent evidence supporting
pathologic irreversibility in AD across different recording techni-
ques, spatial levels of analysis, and oscillatory regimes.

Irreversibility clearly distinguished AD patients from HCs, and
the metric is robust across all spatiotemporal scales. Specifically,
we found lower levels of irreversibility and variability of the irre-
versibility in the BOLD signal at the global level in AD patients
than in HCs. We corroborated the results in source-localized
hdEEG data-filtered broadband and in the five canonical fre-
quency bands (delta, theta, alpha, beta, and gamma). We showed
that the irreversibility differences between HCs and AD patients

remain across a range of window sizes. Similarly, we found lower
levels of irreversibility at the local level of individual brain regions
in the distributed frontal and temporoparietal areas. This fact indi-
cates that the degree of temporal asymmetry is inherent to neural
dynamics regardless of the data modality and the temporal and
spatial scales of the analysis. Also, the fact that fMRI and EEG pro-
vide the same results points out the robustness of the method.
However, despite consistent results across modalities, these results
were not correlated. This could be because EEG and fMRI mea-
sure signals from different origins and timescales, and they show
different but complementary proxies of brain activity that do not
necessarily appear correlated—and even less so when they have
not been recorded simultaneously (Warbrick, 2022). This result
fuels the growing need in current neuroimaging research to
understand the functional links between quantitative measures
derived from EEG and the BOLD signal assessed with fMRI.

We further investigated the irreversibility at the network level
using the same framework applied to the global level but re-
stricted to brain regions in each of the seven RSNs estimated
using fMRI. We found that the more endogenous networks (i.e.,

E

D

CBA

Figure 4. Comparison between levels of irreversibility estimated from fMRI and source-localized hdEEG data and standard structural, functional, and behavioral measurements, as well as
with the local, global, and network levels. A, Correlation between irreversibility and gray matter volume (w-scores) at the node level in brain areas showing a significant difference in irreversi-
bility between HCs and AD patients, for HCs (left) and AD patients (right), and for fMRI (top) and hdEEG (bottom). B, Association between global irreversibility and mean FC. C, Correlation
between global irreversibility and cognitive performance estimated using the MoCA. D, Correlation between irreversibility and gray matter volume (w-scores) for each of the seven RSNs
between HCs and AD patients. E, Association between global irreversibility and mean functional connectivity. All metrics are reported in z scores. Pearson’s R and the associated p-values are
reported for each comparison and were FDR corrected for multiple comparisons with an a level of 0.05.
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limbic, frontoparietal, default mode, and salience) showed the
lowest levels of irreversibility in AD. These findings align with
previous neuroimaging studies that support AD as a disconnec-
tion syndrome in which these networks operate in significant
isolation (i.e., at greater connectivity distances from the rest of
the brain; Brier et al., 2014; Costumero et al., 2020). The results
also suggest that in AD, the high-order processing performed by
the more endogenous RSNs is less dependent on the interaction
between the system and its environment, reducing top-down
processing. From a functional perspective, this could translate
into deficiencies that may play a role in cognitive decline because
of, for example, poor information processing guided by experi-
ence and expectations or lack of allocation of attention to rele-
vant features.

Because of its excellent temporal resolution, EEG has long
been the hallmark tool for investigating the rapid dynamics of
brain electrical activity in healthy and diseased human brains,
enabling valuable scientific contributions to various research
fields. However, among the methodological disadvantages of this
technique is the limited spatial resolution and, thus, the difficulty
of obtaining precise source locations. For this reason, in this
work, we refrained from reporting EEG brain hubs and networks

similar to those detected by fMRI and instead preferred to exploit
and maximize their temporal strength by analyzing the five ca-
nonical frequency bands. Future studies may overcome this limi-
tation by using 256 hdEEG electrodes as the spatial resolution of
source reconstruction procedures improves localization accuracy
with more dense-array sampling (Song et al., 2015).

When evaluating the association of the level of irreversibility,
estimated from both fMRI and EEG data, with classical neuro-
cognitive markers of AD, we found a significant correlation
between node-level irreversibility and atrophy values in HCs, but
not in AD patients; and between global-level irreversibility and
cognitive performance in AD patients, but not in HCs. It is note-
worthy that the results were consistent across recording techni-
ques. In healthy brains, structural measures have an expected
association with irreversibility/nonequilibrium dynamics, but
these are abolished in AD. Likewise, cognitive performance—
potentially related to multiple processes in healthy control sub-
jects—is associated explicitly with core cognitive impairments in
AD, suggesting a specific role of disrupted irreversibility in neu-
rodegeneration and cognitive deficits. At the network level, an
association between irreversibility and atrophy was found only in
brain regions of the salience network in AD. The salience

DC

BA

Figure 5. Classification accuracy. A, ROC AUC obtained from a random forest classifier trained using eight different independent features and an additional multimodal feature comprising
cognitive performance, irreversibility estimated from EEG and fMRI data, atrophy, and functional connectivity, also estimated from EEG and fMRI data. B, The performance of the classifier was
assessed using the AUC, precision, specificity, sensitivity, accuracy, and F1-score, obtaining one average value for each feature. When incorporating the irreversibility values, the classification ac-
curacy score was .90%, surpassing the cognitive performance (assessed with MoCA). These tests were conducted using a normal train/test split and without much parameter tuning. C, D,
ROC AUC and the classification metrics, respectively, from an independent cohort for results validation. Green and pink show irreversibility features or multimodal features that comprise irrever-
sibility. Blue and red show other neurocognitive features of AD.
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network identifies salient stimuli and switches between the fron-
toparietal network and the default mode network, both of which
are impaired in AD (Agosta et al., 2012; Zhao et al., 2018, 2019).
Alterations in functional connectivity in the salience network
have also been related to AD (Balthazar et al., 2014; Lee et al.,
2020). Moreover, these results suggest that the structural mecha-
nisms related to dynamic switching between transient states are
associated with less irreversible dynamics in AD. No associations
were found between irreversibility and FC, suggesting that
irreversible dynamics have different/unrelated properties to
standard resting-state connectivity measurements—as sup-
ported by the higher classification performance of the former.
Although somewhat unexpected, this result also supports previ-
ous studies focused on linear correlations of resting-state data
that agree that this measure may not provide a complete
description of the temporal properties of the brain signal, as
it systematically underestimates the strength of the depend-
ence structure (LaConte et al., 2004; Hlinka et al., 2011).

Using a recently developed multifeature approach (Moguilner
et al., 2022) and after exploring the arrow of time in the empirical
data, we focused on the predictive power for classification accu-
racy aiming to compare the results of standard measurements
used in dementia research with the irreversibility metrics on the
same population and two independent samples, as a way to further
assess the generalizability of our findings via the process of cross-
validation. Our results were bolstered by the high discriminative
performance obtained using multimodal irreversibility features
(fMRI and EEG) in contrast to standard neurocognitive markers
of AD, including brain atrophy (Moradi et al., 2015; Lebedeva et
al., 2017), functional connectivity (Chen et al., 2011; Challis et al.,
2015), and cognitive deficits (Ewers et al., 2012; Binaco et al.,
2020). Results show that irreversibility carries information not
covered by classical neurocognitive measures, suggesting that it is
a critical property of AD. Moreover, the combination of multimo-
dal measurements (FC, cognition, atrophy, irreversibility) further
increased the classification performance, suggesting that the irre-
versibility measure provides differential information not explained
by classical ADmarkers.

Regarding formulation of the irreversibility measure, our
analysis is based only on the effect size of the correlations (R2

coefficient) regardless of their statistical significance. Introducing
a threshold based on a statistical test could be problematic, given
the large number of tests applied for each temporal window and
thus the need to perform a strict correction for multiple compar-
isons, leading to potentially very sparse matrices. Since our anal-
ysis weights connections according to the correlation of the
corresponding BOLD time series, correlations that are not sig-
nificant will have small values that will fluctuate around zero,
overall making a small amount to the temporal irreversibility
estimate relative to the stronger connections. We believe there
are no reasons to suppose that the potential inclusion of some
spurious correlations will selectively affect one of the groups
more than the others (i.e., that they will confound the results
concerning differences between groups).

While similar to or larger than other studies, we acknowledge
that our small sample size is a potential methodological limita-
tion that might affect the reporting of our results. Still, it was
minimized by the large effect sizes observed, and the rigorous
control of clinical variables, diagnostic procedures, and assess-
ments (Piguet et al., 2011; Rascovsky et al., 2011; Gil et al., 2015;
Melloni et al., 2016). Although small sample sizes are common,
they can be particularly problematic for machine learning, as
overall accuracy might be higher in studies with smaller sample

sizes (Arbabshirani et al., 2017; Varoquaux, 2018). Since the fea-
tures of our study were derived from the same dataset, which
could lead to information leakage in machine learning, we con-
ducted an out-of-sample validation analysis using fMRI data
from the ADNI cohort. We successfully replicated the irre-
versibility findings and classification accuracy using this
unseen independent cohort. The combined results support
the potential generalization of our approach. The combined
results support the potential generalization capability of our
approach. Still, given that we are amid a replicability crisis,
in which many scientific findings are not replicated in new
datasets, one must proceed cautiously. Generalizability goes
hand in hand with replicability, and issues at all stages could
emerge (i.e., data collection, preprocessing pipeline, and data
analysis).

In addition, as a result of the sample size limitation, future
studies should involve the application of this framework in a
greater sample size and ideally consider different stages of
the disease to tackle the evolution of irreversibility in brain
dynamics. Indeed, our findings have the effects of the influ-
ential covariates of demographics. To rule out that the reduc-
tion in irreversibility was not because of them, we performed
a multivariate linear regression analysis on irreversibility at
the global level. The fact that we got the same results con-
firms the findings. In addition, the machine learning classi-
fication based on demography presented smaller effects
compared with all other cognitive, structural, functional, and
irreversibility markers. In addition, future studies should
further explore the association of this synergistic approach
with cognition (Ibanez, 2022) and with combined forms of
brain structural characterization, different functional connectivity
measurements, and other biomarkers, such as metabolic changes
acquired with PET or additional emerging plasma and CSF bio-
markers (Migeot et al., 2022). Finally, it would be of particular
importance to contrast these results with those of other neurode-
generative diseases to assess whether we are tackling a specific
AD signature or a general property of neurodegeneration.

The present work provides a framework derived from the
perspective of thermodynamic equilibrium for assessing irrever-
sibility in time series at different spatiotemporal scales. We
showed that AD is associated with less irreversible brain dynam-
ics in spatial and temporal domains, spanning the global-level,
large-scale networks and local regions, and multiple oscillatory
regimes. This signature correlates with prototypical neuro-
cognitive markers of AD, such as cognitive decline, and it
provides higher classification accuracy than classical neuro-
cognitive markers of AD, especially when combined with
other features. Overall, the results suggest that the irreversi-
bility of the time series reflects a genuine hallmark of ineffi-
cient brain dynamics in AD and points to the link between
selective and relentlessly progressive pathologic changes and
entropic brain dynamics in AD.
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