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Abstract

Novel neuroimaging techniques have provided unprecedented information on the structure and func-

tion of the living human brain. Multimodal fusion of data from different sensors promises to radically

improve this understanding, yet optimal methods have not yet been developed. Here, we demonstrate a

novel method for combining multichannel signals. We show how this method can be used to fuse signals

from the magnetometer and gradiometer sensors used in magnetoencephalography (MEG) and, through

extensive experiments using simulation, head phantom and real MEG data, show that it is both robust

and accurate. This new approach works by assuming that the lead-fields have multiplicative error. The

criterion to estimate the error is given within the beamforming framework such that the estimated power

is minimised in the worst case scenario. The method is compared to, and found better than, existing

approaches. The closed-form solution and the conditions under which the multiplicative error can be

optimally estimated are provided. This novel approach can also be employed for multimodal fusion of

other multichannel signals such as MEG and EEG.

Index Terms

Magnetoencephalography, magnetometer, gradiometer, beamforming, multiplicative error.

I. INTRODUCTION

Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that is showing great

promise in increasing our understanding of the functional activity of the human brain. It offers excellent
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temporal resolution on the scale of milliseconds. However, the spatial resolution of MEG is lower than

other prominent neuroimaging methods such as functional magnetic resonance imaging (fMRI), typically

on the scale of around 5 mm3, depending on both the location and the number of the MEG sensors.

The two fundamental classes of MEG sensors are magnetometers and gradiometers. Magnetometers

measure the magnetic field component along the direction perpendicular to the surface of the sensor.

While being very sensitive to nearby sources, the magnetometer is also sensitive to distant sources. The

gradiometer is a more complex sensor which measures the spatial gradient rather than the magnitude

of the field. This sensor type is less sensitive to interference located distant from the sensor, since the

interference manifests itself as a homogeneous magnetic field with zero gradient, and hence also less

sensitive to sources of interest located further away.

Gradiometer sensors can be arranged in two different ways to obtain different spatial derivatives of

the field. One configuration, the axial-gradiometer arranges the sensor coils along the same radial axis.

The other configuration, the planar-gradiometer, arranges the coils side-by-side in the same plane. The

axial-gradiometer measures the sources around the sensors while the planar-gradiometer measures the

sources right underneath the sensors (for more details of MEG and its sensor types, please refer to [1]).

The majority of available MEG scanners have one of these sensor types, while both sensors are included

in some newer MEG scanners such as the Elekta-Neuromag MEG scanner, which is becoming the industry

standard.

In the ideal situation, the gradiometers and magnetometers are measuring the same activity at the same

time and should reveal the same neural activity. However, it is easy to show empirically that if the two

sensor types are combined without any correction, the spatial resolution and specificity are not necessarily

improved from measurements from just one type of sensor. An accurate and robust method for the fusion

of magnetometer and gradiometer to improve their joint estimation is therefore an important goal in

improving MEG data.

Previous research in multimodal fusion has concentrated primarily on combining one of the MEG

sensor types with electroencephalography (EEG). Among these, simultaneous recording and simple

combination of MEG and EEG have been well investigated [2]–[6]. In addition, there is a wide range

of intelligent approaches for the fusion of MEG and EEG including using regularised linear inverse

source estimation [7], independent component analysis [8], lead-field correction for dipolar sources [9],

minimum l2 norm estimation [10], mutual information [11], Bayesian estimation [12] and use of neural

mass model [13]. In addition to these methods, a method was recently proposed for the fusion of EEG and

two MEG sensors based on the normalisation of lead-fields and measurements [14]. This normalisation
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method normalises the data and the lead-fields based on their power before the source reconstruction

algorithm. We compare the results from the proposed method with this previous method using data from

real and phantom experiments in Section III.

Our novel method for the multimodal fusion of MEG sensors uses beamforming, a spatial filter that

minimises the power of the signal while passing the activity from the location of interest [15]. We propose

a beamformer based on a model in which there is a multiplicative error for one of the lead-fields. The

closed-form solution of the problem is given using a Lagrange multiplier technique. Furthermore we

show that if 1) the noise power tends toward zero, 2) the time courses of sources are independent, and

3) the columns of each lead-fields are mutually linearly independent, then the multiplicative error and

the source covariance matrix can be exactly estimated. In this paper, the multiplicative error is estimated

using a beamforming framework, but other methods for source analysis can equally be used after the

lead-field modification.

The organisation of the paper is as follows. The first section states the problem formulation and the

solution is presented using partitioning of the inverse of the joint covariance matrix of the magnetometer

and gradiometer. A theorem is then presented revealing the assumptions for perfect estimation of the

multiplicative error and covariance matrix of the source. This is followed by further theoretical discussions.

Section III shows the results of simulation, phantom and real data experiments and compares these results

with that of the previously published normalisation method. Finally, conclusions and future avenues for

research are presented.

II. METHODS

A. Problem Formulation and its Solution

Consider the following problem formulation:

yg = FgEgs+ Fgisi + ng

ym = FmEms+ Fmisi + nm

(1)

where yg ∈ RNg×T and ym ∈ RNm×T are the measurements using gradiometer and magnetometer

sensors, respectively, with the associated and known lead-fields Fg ∈ RNg×D and Fm ∈ RNm×D. Let

s ∈ RD×T be the time course of the desired source and si ∈ RDq×T be the time course of all other q

sources which we refer to as interference. Here, D is the dimension of the source, and Dq is the sum

of the dimensions of all interferences. Fgi ∈ RNg×Dq and Fmi ∈ RNm×Dq are the matrices that contain

all lead-fields except the lead-field of the desired source. In this formulation, Eg, Em ∈ RD×D are the
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multiplicative errors varying from location to location, and ng ∈ RNg×T and nm ∈ RNm×T are additive

zero-mean Gaussian white noises.

Throughout the paper, it is assumed that yg and ym are stationary zero-mean processes with spatial

covariance matrices Rgg and Rmm and joint covariance matrix Ry, which are symmetric and positive

definite. Furthermore, we assume that these covariance matrices can be estimated using the measured

data. Our aim is to provide an accurate estimation of the multiplicative errors. It is clear that the source

powers may then be estimated using beamforming or any other source reconstruction method.

Note that Eg and Em cannot be estimated simultaneously, because for a particular solution of s (or its

covariance matrix), all its linear transformations are also solutions. Here, therefore, we suppose that either

of Eg and Em is known and without loss of generality suppose that Eg = I and Em = E, where I is

the identity matrix. This approach leads to a computationally tractable, fast and closed-form solution. We

will explore the impact of this assumption and the other case when Eg = E and Em = I in Section III.

The estimation of the multiplicative error Ê can be found by considering the following modified linearly

constraint minimum variance (LCMV) beamformer (for details of the LCMV please refer to [15]):

arg min
W

arg max
Ê

Tr{W TRyW} subject to :

W T

 Fg

FmÊ

 = I

(2)

where Tr{.} and (.)T are trace and transpose operators, respectively. The solution is a linear filter

W T that minimises the output power when it has been maximised by the multiplicative error Ê. This

optimisation problem ensures the output power is minimised when the error has the worst effect on it,

and thus guarantees the performance of the beamformer with all range of the errors.

To find the solution, first suppose that Ê is known. Following methods used in beamforming [15], W

can be estimated using the Lagrange multiplier method:

W T = (
[
F Tg ÊTF Tm

]
R−1y

 Fg

FmÊ

)−1
[
F Tg ÊTF Tm

]
R−1y (3)

By putting (3) into the constraints in (2), it is clear that this estimate of W T always satisfies the constraint

for any choice of Ê. As a result, Ê can be estimated by only maximising the power P = Tr{W TRyW}.
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Using (3), and some algebraic manipulation, the power is expressed as:

P = Tr{

[F Tg ÊTF Tm

]
R−1y

 Fg

FmÊ

−1} (4)

As an example, the behaviour of P with respect to Ê has been plotted in Fig. 1. In this figure, D = 1

and the lead-fields and the covariance matrices have been randomly selected. This figure shows that all

plots are convex and have one global maximum.

In equation 4, if Fg is full column rank, then it is straightforward to show that

 Fg

FmÊ

 is also

full column rank regardless of Ê and Fm. As we already assumed that Ry is positive definite and thus

invertible, the expression inside of the above bracket is also invertible and therefore exists.

By partitioning the inverse of joint covariance matrix into R−1y =

 R−gg R−gm

R−mg R−mm

, the first line of

(2) using (4) is expressed as:

arg max
Ê
P = arg max

Ê
Tr{

(
ÊTF TmR

−
mmFmÊ + ÊTF TmR

−
mgFg + F Tg R

−
gmFmÊ + F Tg R

−
ggFg

)−1
} (5)

The derivative of the above expression with respect to Ê is equal to (see Appendix A):

∂P
∂Ê

=−
(

2ÊTF TmR
−
mmFm + (F TmR

−
mgFg)

T + F Tg R
−
gmFm

)
(
ÊTF TmR

−
mmFmÊ + ÊTF TmR

−
mgFg + F Tg R

−
gmFmÊ + F Tg R

−
ggFg

)−2 (6)

where X−2 = X−1X−1. Since the expression inside the second bracket is invertible, its inverse is full

rank and the above expression is only zero if the expression inside the first bracket is zero. Hence, the

problem in (4) is convex and the global maximum, using the fact that F TmR
−
mgFg = (F Tg R

−
gmFm)T , is

given by:

Ê = −(F TmR
−
mmFm)−1(F TmR

−
mgFg) (7)

Finally, using block matrix inversion [16], R−mm and R−mg are given by:

R−mm = (Rmm −RmgR−1gg Rgm)−1

R−mg = −R−1mmRmg(Rgg −RgmR−1mmRmg)−1
(8)

where Rmm is the covariance matrix of the magnetometer and Rmg = RTgm is the cross-covariance matrix
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between magnetometer and gradiometer. Equation (7) also can be rewritten as:

Ê = −(F TomR
−1
y Fom)−1(F TomR

−1
y Fgo) (9)

where Fom =

 0

Fm

 and Fgo =

 Fg

0

. In the beamformer, the inverse of the joint covariance matrix

R−1y is required and should be estimated, thus Ê can be calculated faster using (9) than (7). In other

applications, if there is no estimation of the joint covariance matrix R−1y , estimation of Ê equation (7)

using (8) is faster than (9).

B. Performance Analysis

In equation (7), (F TmR
−
mmFm)−1 can be considered as the covariance matrix of the source using just

the magnetometer data, and F TmR
−
mgFg can be considered as the spatiotemporal correlation between the

two sensor types. Hence, the method normalises the lead-field using the power of the source estimated

by the magnetometer only and its correlation with the source estimated by the gradiometer. It is also

clear from (7) and (8) that Ê is proportional to the cross-covariance matrix of the magnetometer and

gradiometer measurements Rmg. This implies that if there is no correlation between two sensor types

Rmg = 0, then Ê = 0 and the source reconstruction result is based only on the gradiometer which was

assumed to have the correct lead-field. This is reasonable based on the proposed model, because if the

two modalities show completely different reconstructions, one or none of them has to be selected as the

correct reconstruction based on some prior information.

In general, it may be useful to know the conditions for optimality of the method, which can help us

to evaluate if the method is suitable for a given data-set. The following theorem states when the error

E and the source covariance matrix Cs can be perfectly estimated. However, we shall see in the results

that, in practise, this choice of the correct modality is not critical.

Theorem 1: Suppose i) the column of Fg are linearly independent from column of Fgi as well as Fm

from Fmi, ii) the time course of source s is statistically independent from the interferences si, and iii)

the noises ng and nm are zero-mean white Gaussian and with power tending to zero.

Under the above conditions, we can infer that Ê = E using (7) or (9), and Ĉs = Cs using Ĉs =

W TRyW .

Proof: See Appendix B.

Remark 1: Not practically but theoretically important, any zero-mean noise with covariance matrix Cn,

where |Cn| → 0, can be used instead of white Gaussian noise in Theorem 1 (|Cn| is the Frobenius norm
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of Cn). This can be shown by modifying to the proof of Theorem 1.

Corollary 1: If in equation (1) Eg = E and Em = I (contrary to what we have assumed already), but

one uses equation (7) or (9) to estimate E, then under the conditions stated in Theorem 1, Ê = E−1 and

Cs = ÊT ĈsÊ.

Proof: Trivial from Theorem 1.

For a perfect reconstruction, conditions (i) and (ii) in Theorem 1 are necessary for any source analysis

method. In other words, if the sources are correlated or the source and the interference lead-field matrices

are dependent, no algorithm can perfectly estimate the multiplicative error and reconstruct the sources.

Furthermore, it can be concluded from Theorem 1 and Corollary 1 that for moderately noisy data, selecting

the modality which has the correct lead-field does not have much impact on the results and always s or

a linear transformation of s is estimated. However, in a noisy environment, selecting a modality which

has the correct lead-field is important for source estimation.

In some applications, we may need to fuse three or more sensor types. For instance, one may

consider magnetometer, planar- and axial-gradiometer as three different sensors. Fusion of EEG and MEG

gradiometer and magnetometer sensors would be another case—similar to the approach in [14]. For the

convenience of the reader, we have provided the solution of this generalised problem in Appendix C.

III. METHOD VALIDATION AND DISCUSSION

A. Computer Simulation Experiment

For the first experiment, MEG data with Gaussian sources were simulated. The number of sources

were set to 15 and the number of sensors for each sensor type to 102. The sources were non-correlated

and their lead-fields were chosen randomly in a Monte Carlo like simulation; i.e. the location of sensors

and sources were chosen randomly. The multiplicative error Em = E was also chosen randomly in each

simulation according to a uniform random distribution in the range of 0 to 1, and we set Eg = I . Gaussian

white noise was added to the signal after applying the lead-field to the time series of the sources. The

following results were produced as the average of 1000 Monte Carlo simulations. The error also is defined

as the mean squared error between original and estimated time course which were normalised by their

power.

Fig.2 (a) shows the error of the three methods versus signal to noise ratio (SNR). SNR is defined in

the sensor space as the ratio of the mean power of the signal of interest (applying the lead-field only to

the source of interest) to the mean power of the added noise across the sensors. In this figure, the ‘all’

method means when two sensors were used without any correction (assuming both Eg = I and Em = I),

June 23, 2011 DRAFT



8

‘grad’ means when only gradiometer was used, and ’fuse-grad’ means when the proposed method were

used with the gradiometer having the correct lead-field—Table I provides a reference to the different

methods used in the following experiments. We have not presented the results of the magnetometer, as

it clearly gives worse results compared to the gradiometer which has a perfect lead-field.

Fig.2 (a) demonstrates that the ’fuse-grad’ method has the best performance compared to other methods

in various ranges of SNRs. Note that the sensitivity of the three methods to the additive Gaussian noise

is almost similar.

Fig. 2(b) shows the error in the three methods versus signal to interference ratio (SIR). SIR is defined

as the ratio of the mean power of the desired source to the mean power of the other interfering sources

(after applying the lead-field to their time series). Interference has no impact on the accuracy of the

’fuse-grad’ method. The reason is that 102 sensors are enough to estimate the power of the desired

source as well as to cancel out the other sources. However, the ‘grad’ method is struggling to reject the

interference in the presence of the noise. Furthermore, because of the presence of multiplicative error,

the ‘all’ method shows worse performance compared to the others.

Next we investiagte the impact of the assumption that which modality has the correct lead-field. We set

Eg = 1 and assume that Em = E which is uniformly increasing. In this particular simulation to be able

to plot Eg, scalar beamformer was used (D = 1). The results from ‘fuse-grad’ and ‘fuse-mag’ (assume

that magnetometer has the correct lead-field while the contrary is true), ’mag’, ’grad’ and ’all’ methods

are presented in Fig. 3. As we mentioned before, in moderate noise environment this assumption has

not large impact on the results (ignoring the amplitude of the reconstructed time courses). Comparing

to when only one sensor type is used, the ‘fuse’ methods well outperform the other methods which are

using only one sensor types.

Fig. 4 presents the error versus the number of sensors. The ’fuse-grad’ method has a better performance

compared to the other methods. According to Theorem 1 the lead-field of the sources should be mutually

independent to perfectly reconstruct the sources. In other words, the number of sensors should be greater

than the total number of lead-fields columns, which means at least 45 sensors for 15 sources is needed.

When the number of sensors are greater than 100, both methods have similar and perfect performance.

This suggests that, for this example, approximately 100 sensors are enough to reconstruct one source

within 15 other interferences and more sensors may be needed if the data are noisier. Moreover, the error

of the ‘all’ method is larger than the other two methods since the multiplicative error has a big impact

on the results.

It may be concluded that if the number of sensors is sufficiently large compared to the number of
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sources, one modality would be enough to reconstruct the sources. In human brain imaging, however, the

number of sources are much larger than the number of sensors, and the proposed fusion method should

therefore improve source reconstruction.

B. Phantom Experiment

In addition to the simulated data, the Elekta-Neuromag phantom, designed to calibrate the MEG

scanner, was imaged to validate the method. The phantom contains 32 dipoles with fixed locations that

produce two cycles of a sine wave with frequency of 20Hz. The phantom is shown in Fig. 5(a) and its

dipole locations are plotted in Fig. 5(b). In this phantom, only one dipole can be active at a time. The

onset of the sine waves were recorded and the data were then low-pass filtered with cut-off frequency of

40Hz. MaxFilter which is a commercial software and recommended by the Elekta company were applied

to the continiuos data [17]. After epoching, the base-line was corrected using 100ms segment of the trial

before the onset of the sine wave.

We compared the results of the new ’fuse’ method with the ‘normalisation’ method for fusion of

MEG and EEG data proposed by Henson et al. [14]. In their method the lead-field of the matrix and

measurements for each modality was normalised by the quantities:
√

1
N Tr{F TF} and

√
1
T Tr{yT y},

respectively. This method places approximately the same weighing on each modality rather than weighting

them according to their multiplicative error.

Table I: Methods used in the phantom and real experiments:

‘mag’ only magnetometer were used

‘grad’ only gradiometer were used

’fuse-grad’ fusion method that assumes gradiometer has the correct lead-field

‘fuse-mag’ fusion method that assumes magnetometer has the correct lead-field

‘normalisation’ previous method proposed by Henson et al [14]

‘all’ both magnetometer and gradiometer without any correction were used

The phantom data has high SNR, and there was little difference in the source localisation between the

different methods. Therefore, the success of each method is judged by comparing the true time series at

the source with the estimation from the measurements. The results are presented in Fig. 6. The result

labelled ’fuse-grad’ and ‘fuse-mag’ are the results of the ’fuse’ methods with a correct lead field assumed

for gradiometer and magnetometer respectively. The results labelled ‘grad’ and ‘mag’ show the results

when only one sensor type was used: gradiometer and magnetometer, respectively. The result labelled

‘normalisation’ shows Henson’s method [14] and ‘all’ is when both sensors without any correction are

used.
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Figs. 6(a) and (b) indicate that the fusion methods have estimated more accurately the time series

in comparison to using only one sensor modality. Fig. 6(c) shows that the normalisation methods is

better than the ‘all’ method but none of them outperforms the ’fuse-grad’ and ‘fuse-mag’ methods. It is

also notable that mean (variance) of the trace of estimated Em in ‘fuse-grad‘ was 0.069 (0.0052) and

estimated Eg in ‘mag-grad’ was 0.234 (0.4506). This means that the gradiometer was assigned bigger

weight compared to the magnetometer.

The range of errors for each modality was plotted in Fig. 7. The error of the fusion methods are

significantly smaller compared to those using only one sensor type (F = 17.3, p < 0.001)1. There is no

significant differences between the two methods of fusion (F = 1.2, p > 0.1). It is also clear that the

normalisation method did not significantly improved the results compared to the single sensor methods

(F = 3.08, p > 0.05) and that the ‘all’ method actually had a significantly larger error compared to other

methods (F = 134.23, p < 0.001). Hence, the phantom experiment confirms the advantages of the new

method in the cases where SNR is high.

In order to investigate the spatial resolution, we also calculate the Full Width Half Maximum (FWHM).

The FWHM is defined by fitting a Gaussian function to the 1-D profile (taken in the x-direction, i.e. left to

right, passing through the estimated dipole location) of the corresponding spatial map and setting FWHM

= 2.35σFWHM , where σFWHM is the standard deviation of the fitted Gaussian function. The results are

shown in Fig. 8 in which ’fuse-grad’ and ‘fuse-mag’ clearly show less FWHM in each individual trial

and therefore have better spatial resolutions at the same time as having increased temporal accuracy as

demonstrated in Fig. 7.

C. Real Data Experiment

In this section, we compare the results of the methods using MEG data obtained from a face recognition

experiment designed to locate deep sources in the brain. This is clearly a much more challenging

environment than the simulation, with potential for multiple sources and low SNR.

Lesion studies, single-unit recordings and neuroimaging techniques including positron emission to-

mography (PET), fMRI and MEG have implicated a distributed network of brain regions in decoding

face stimuli. Some studies suggest that a specific region of the brain, the fusiform face area (FFA), is

the primary face processing region in the human brain [18]–[20]. The FFA is a part of the human visual

system and located within the fusiform cortex, just above the cerebellum. Various studies using MEG

1F -statistic is the ratio of the mean squares for error, and the p value is derived from the cdf of F . MATLAB R2010b were
used to calculate this analysis using anova1 function.
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and EEG have demonstrated that face-specific components in the brain signals peaks at approximately

170ms after presentation the face [21], [22]. This face-specific components has become known as the

M170 in MEG studies and appears to be significantly earlier and larger for faces than other objects in

the FFA.

In this experiment a series of animal and human faces were presented to the participants. Each image

were presented for 300 ms and the time interval between images were 1500 ms. Intra-individual head

movement was kept to a minimum, and head position was localised immediately before the start of the

experiment. The sampling rate was 1Khz and after linearly filtering data in the range of 1–40Hz the

recorded data were epoched and averaged for animal and human faces. Same as the phantom experiment

the MaxFilter were used to further denoise the data. The trials were visually inspected and few of the

trials with large variations were removed. The difference between MEG signals for human and animal

faces from 150ms to 190ms after stimuli were used to estimate the covariance matrix. The covariance

matrix was diagonally regularised with 5% of its trace. A single layer realistic head model was used in

which the brain was divided into a number of cells. The distance between adjacent cells was 5mm. The

power of the beamformer at each cell were computed and normalised with those of the noise estimated

from the pre-stimulus trials.

Fig. 9 shows the output power of beamformer normalised by norm of the associated lead-fields

using different methods; i.e. normalised by the power of projected Gaussian white noise (see [15]).

The reconstructed activity was thresholded using the normalised threshold of 0.9. The same anatomical

plane is displayed for each method. In all the figures the solid white volume is the mask representing the

full fusifom cortex region depicted using the automated anatomical labelling (AAL) atlas, within which

the FFA can be found [23].

Fig. 9(a) shows the results using only the gradiometer measurements. The peak power spectrum is

close to the FFA area but it is biased towards the superficial source. Fig. 9(b) shows the results using

only magnetometers. The results were improved with larger overlap with the white volume, in line with

the magnetometer’s greater sensitivity to deep sources such as the FFA.

Figs. 9(c) and (d) show the results from the fusion methods with true lead-field in gradiometer and

magnetometer, respectively. Both methods show better performance compared to the results in Figs. 9(a)

and (b), seen from the greater overlap between the source and FFA, but show some difference in the source

activity detected in the visual cortex (Fig. 9(c) axial view). It is notable that there is similarity between

the results of ’fuse-grad’ and ‘grad’ only, and between ’mag-fuse’ and ‘mag’ method. The results suggest

that to reconstruct deep sources, a choice of magnetometer as the base would seem more appropriate,
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whereas for superficial sources the gradiometer is better. Another issue for choosing a modality as the

base is the amount of noise present. In a noisy environment, using the gradiometer as the base can be

expected to outperform the magnetometer.

Table II shows the coordinates in the standard MNI (Montreal Neurological Institute) space of the peak

of the power spectrum reconstructed using the various methods. In this table, the ’peak to peak error’

is the distance of the peak of each power spectrum from the coordinate of the FFA (x = 40, y = −55,

z = −10 [19]). It should be noted that the maximal peak of this activity is not the best indicator of the

localisation of face responses given that they can be found within a larger area in the fusiform cortex with

considerable variability between people. We therefore also include another measure, ’Correlation with the

fusiform mask’ which is the correlation of top 10 percentile of the power spectrum with the full fusiform

cortex mask [23]. Furthermore, this table included the mean (variance) of the estimated multiplicative

errors across the voxels. ‘Fusion’ methods have bigger variances compared to the ‘normalisation’ method

means they are adaptive method in terms of assigning weight to lead-field of different voxels.

Fig. 9(e) shows the results using the ‘normalisation’ method, which weights both measurement sets

such that to have a same lead-field power. It can be seen that although the reconstructed activity has

overlap with the FFA, it has a lower resolution than the other methods and the peak is displaced to the

visual cortex away from the FFA. Finally, Fig. 9(f) shows the results when using the two sensors with

no correction. This method is the worst, showing no activity within FFA and is thus the worst result. As

in the other experiments, the new fusion methods are seen to outperform the others.

To gain further insight, Fig. 10 shows the power of the beamformer weights for each sensor. By

partitioning the weight vector in equation (3) as W T = [W T
g W T

m], the power assigned to the gradiometer

and the magnetometer, Wg and Wm, can be determined. The left column of Fig. 10 is the weight power

of the gradiometer and the right column is the weight power of the magnetometer.

Fig. 10(a) and (b) show the results from ‘grad’ and ‘mag’, respectively. The results are similar to the

reconstructed powers. Fig. 10(c) and (d) show the results from the ’fuse-grad’ method. Since it is assumed

that the gradiometer has the correct lead-field, it generally assigns larger weights to the gradiometer

compared to the magnetometer. Similar results are seen for the ’mag-fuse’ method in Figs. 10(e) and

(f), in which larger weights are assigned to the magnetometer. Figs. 10(g) and (h) show the contribution

of magnetometers and gradiometers using the ‘normalisation’ method. This figure demonstrates that the

gradiometers have the same weights for all locations, but the magnetometers have greater weights around

the FFA for which their measurements are relatively larger. Figs. 10(i) and (j) show the results for the ‘all’

method showing that the gradiometer generally have very small weights compared to the magnetometer,
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and hence a small contribution to the final results. Roughly speaking, these figures show the contribution

of each sensor type in the final results which depends simply on magnitude in the ‘all’ method, on the

average magnitude in the ’normalisation method’ and on the explicit estimation of multiplicative errors

in the new fusion method.

Table II: Coordinates and errors (in mm) of the reconstructed FFA

MNI coordinates peak to peak correlation with
method x y z error the fusiform mask estimated Eg and Em

‘grad’ 20 -48 -20 23.4 0.22 Eg = 1, Em = 0

‘mag’ 32 -86 -14 32.3 0.40 Eg = 0, Em = 1

’fuse-grad’ 34 -40 -6 16.6 0.56 Eg = 1, Em = −0.0439(0.001)
‘fuse-mag’ 40 -42 -2 15.3 0.65 Eg = −0.2316(0.040), Em = 1

‘normalisation’ 2 -90 2 53.0 0.12 Eg = 0.0159(1.2e− 4), Em = 0.0459(4.6e− 4)

‘all’ -2 -100 2 62.7 0 Eg = 1, Em = 1

IV. CONCLUSIONS

We have proposed a novel method for the multimodal fusion of magnetometer and gradiometer in MEG

imaging. The method is formulated within the beamforming framework, and its closed-form solution is

presented through partitioning the inverse of the joint covariance matrix. The conditions for optimality

of the method have also been presented, and illustrate that the method does not introduce any new

assumptions to those underlying the beamformer framework. Simulation, phantom and real experiments

show that combining the novel method with beamforming increases the reliability of source localisation

compared to other methods. The implementation of the proposed method is straightforward, and with the

beamforming source reconstruction does improve the results.

In forthcoming studies, we will further validate the method in other basic experiments such as sensory-

motor and auditory paradigms in a group of participants. The method, therefore, promises to be useful

when employed for psychology and neuroscience experiments investigating the spatial and temporal

sources of brain activity in different paradigms.

We are also interested in the estimation of the multiplicative error for correction of the lead-field within

other source reconstruction techniques (e.g. minimum norm estimation). Moreover, the method can be

used for optimally combining information from simultaneous EEG and MEG signals and thus become a

viable strategy for further enhancing our understanding of human brain activity.
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APPENDIX A

Here, we show that

d

dX
Tr{(XTAX +BX + C)−1} = −(2XTA+B)(XTAX +BX + C)−2 (10)

suppose xij is the entry of matrix X that lies in the ith row and the jth column, and ei and ej are

the ith and jth standard bases. Then, using the facts that d(Tr{X}) = Tr{dX}, dX/dxij = eie
T
j and

d(X−1) = X−1(dX)X−1 (see [16]), we have

d

dxij
Tr{(XTAX +BX + C)−1}

= −Tr{(XTAX +BX + C)−1(2XTAeie
T
j +Beie

T
j )(XTAX +BX + C)−1}

= −Tr{eTj (2XTA+B)(XTAX +BX + C)−2eTi } = −[(2XTA+B)(XTAX +BX + C)−2]ij

(11)

which results equation (10).

APPENDIX B

PROOF OF Theorem 1

First note that the covariance and cross-covariance matrices are given using (1) by:

Rgg = FgCsF
T
g + FgiCiF

T
gi + σgI

Rmm = FmECsE
TF Tm + FmiCiF

T
mi + σmI

Rgm = RTmg = FgCsE
TF Tm + FgiCiE

TF Tmi

(12)

Lemma 1: (A General Singular Value Decomposition) If we have F and Fi, then there exist unitary

matrices U and V, and invertible X such that:

XFV =

 Γ

0


XFiU =

 0

Σ

 (13)

where Γ and S are diagonal matrices.

proof : This is a special case of the general singular value decomposition given in [24].
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Lemma 2: If the column vectors of F and Fi are independent and C ∈ RD×D is a full rank matrix,

then:

lim
σ→0

F T (FCF T + FiCiF
T
i + σI)−1F ≈ (C + σH)−1 (14)

lim
σ→0

F T (FCF T + FiCiF
T
i + σI)−1F ≈ F T (FCF T + σI)−1F (15)

lim
σ→0

F Ti (FCF T + σI)−1F = 0 (16)

where H is a square matrix independent from σ and C. Also, Γ and V are diagonal and unitary matrices,

respectively.

proof : Suppose F = X−1

 Γ

0

V T and Fi = X−1

 0

Σ

UT according to lemma 1, and let XXT = X2
11 X2

12

X2
21 X2

22

. Since F and Fi are independent, the left hand side of (14) is expressed as:

lim
σ→0

V [Γ 0](X−1)T (X−1

 ΓV CV TΓ + σX2
11 σX2

12

σX2
21 ΣUCiU

TΣ + σX2
22

 (X−1)T )−1X−1

 Γ

0

V T

= lim
σ→0

V [Γ 0]

 ΓV CV TΓ + σX2
11 σX2

12

σX2
21 ΣUCiU

TΣ + σX2
22

−1  Γ

0

V T

= lim
σ→0

V Γ(ΓV CV TΓ + σX2
11 − σ2X2

12(ΣUCiU
TΣ + σX2

22)
−1X2

21)
−1ΓV T

≈ lim
σ→0

V Γ(ΓV CV TΓ + σX2
11)
−1ΓV T = lim

σ→0
(C + σV TΓX2

11ΓV )−1

(17)

in which we used block matrix inversion to convert the second line into the third line of the above

equation. By defining H = V Γ−1X2
11Γ
−1V T and considering V and Γ are invertible, equation (14) is

obtained. Equations (15) and (16) can also be proved in a similar way.

To prove that Ê is equal E when the noise power tends to zero, first suppose E is invertible. We

express (7) using (12) as:

Ê = (F Tm(Rmm −RmgR−1gg Rgm)−1Fm)−1F TmR
−1
mmRmg(Rgg −RgmR−1mmR−1mg)Fg (18)
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The middle term F TmR
−1
mmRmg using (14)–(16) and σm → 0 can be rewritten as:

F TmR
−1
mmRmg = F Tm(FmECsE

TF Tm + FmiCiF
T
mi + σmI)−1(FmECsF

T
g + FmiECiF

T
gi)

= (ECsE
T )−1ECsF

T
g = (E−1)TF Tg

(19)

By putting (19) into (18), Ê is expressed as:

Ê = (F Tm(Rmm −RmgR−1gg Rgm)−1Fm)−1(E−1)TF Tg (Rgg −RgmR−1mmR−1mg)Fg (20)

The first term of the above equation using (14)–(16) is rewriten as:

(F Tm(Rmm −RmgR−1gg Rgm)−1Fm)−1 =
(
Fm{FmECsETF Tm + FmiCiF

T
mi + σmI

− (FmECsF
T
g + FmiCiF

T
gi)(FgCsF

T
g + FgiCiF

T
gi + σgI)−1(FgCsE

TF Tm + FgiCiF
T
mi)}Fm

)−1
=
(
Fm{FmECsETF Tm + σmI − FmECsF Tg (FgCsF

T
g + σgI)−1FgCsE

TF Tm}−1Fm
)−1 (21)

By approximating F Tg (FgCsF
T + σgI)−1Fg ≈ (Cs + σgHg)

−1 using (14), the above equation is equiv-

alent to:

(F Tm(Rmm −RmgR−1gg Rgm)−1Fm)−1

≈ (F Tm{FmECsETF Tm + σmI − FmECs(Cs + σgHg)
−1CsE

TF Tm}−1Fm)−1

= E{Cs − Cs(Cs + σgHg)
−1Cs + σmE

−1Hm(E−1)T }ET

(22)

The last line of the above equation was obtained by rearranging the second line and applying (14) (H

was replaced by Hm). Using Woodbury matrix identity (A+B)−1 = A−1−A−1(A−1 +B−1)A−1, (22)

is simplified and re-expressed as

E{(C−1s + (σgHg)
−1)−1 + σmE

−1Hm(E−1)T }ET

= E{σgHg − σ2gHg(Cs + σgHg)
−1Hg + σmE

−1Hm(E−1)T }ET
(23)

Using (22) and (23) for σg → 0, we have:

(F Tm(Rmm −RmgR−1gg Rgm)−1Fm)−1 ≈ E(σgHg + σmE
−1Hm(E−1)T )ET (24)

Similarly, for σm → 0, we can show that:

F Tg (Rgg −RgmR−1mmRgm)−1Fg ≈ (σgHg + σmE
−1Hm(E−1)T )−1 (25)

By putting (24) and (25) into (20), the desired result Ê = E is obtained. The case where E is not
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invertible one may consider E + δI , and after σg, σm → 0 tends δ to zero.

Showing the second part of the theorem stating that the covariance matrix of the source can be perfectly

estimated is straightforward. By using E instead of Ê and defining Fa =

 Fg

FmE

 and Fai =

 Fgi

Fmi

,

and using equation (1), Ry is given by:

Ry = FaCFa + FaiCiFai +

 σgI 0

0 σmI

 (26)

Using (4) the covariance matrix of the source is expressed as:

Ĉs = W TRyW = (F Ta (FaCF
T
a + FaiCiF

T
ai +

 σgI 0

0 σmI

)−1Fa)
−1 (27)

Similar to proof of (14), it is clear that Ĉs = C when σm, σg → 0.

APPENDIX C

In this appendix, we present the generalised solution of the problem in equation (1) which is stated

as:

yg = Fgs+ Fgisi + ng

ym = FmEms+ Fmisi + nm

ye = FeEes+ Feisi + ne

(28)

Here, Fe ∈ RNe×D is the forward matrix of the third sensor (e.g. EEG) and ne is the additive white

Gaussian noise. By writing the constraint of equation (2) for this problem as W T

 Fg

FmeÊme

 = I ,

where Fme =

 Fm 0

0 Fe

 ∈ RNm+Ne×2D and Ême =

 Êm

Êe

 ∈ R2D×D, the solution therefore is:

Ême = −(F TomeR
−1
y Fome)

−1(F TomeR
−1
y Fgoo) (29)

where Fome =


0 0

Fm 0

0 Fe

 ∈ R(Ng+Nm+Ne)×2D and Fgoo =


Fg

0

0

 ∈ R(Ng+Nm+Ne)×D.
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Figure 1: Examples of the power as a function of E (see equation (4)). All other parameters were selected
randomly to generate 10 graphs. This function is convex and therfore has only one maximum.

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

SNR [dB]

E
rr

o
r

 

 
all

grad

fuse-grad

(a)

-16 -14 -12 -10 -8 -6 -4 -2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SIR [dB]

E
rr

o
r

 

 

all

grad

fuse-grad

(b)

Figure 2: Average of 1000 Monte Carlo simulations for (a) SNR versus error while SIR is set to
approximately 5dB and (b) SIR versus error while SNR is set to approximately 5dB. Error is defined as the
norm of the difference between the normalised reconstructed and original time courses. The multiplicative
error Eg was set to the identity matrix and Em was randomly selected in each Monte Carlo simulation.
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Figure 3: The output error versus the true multiplicative error Em = E. Here Eg = 1 and scalar
beamformer was used while SNR and SBR were approximately fixed to 5dB. ‘Fusion’ methods
outperforms the other methods meaning that it can reconstruct the shape of the signal (ignoring the
amplitude) more accurately compared to other methods.

20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

Number of sensors

E
rr

o
r

 

 
all

grad

fuse-grad

(a)

Figure 4: Effect of the number of sensors on the output error. Number of sensors can have a large impact
on the results when it is small compared to the number of sources.
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Figure 5: (a) A schematic diagram of the phantom used in our experiment, (b) location of dipoles (green
stars) inside the phantom which was approximated by red the markers.
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Figure 6: An example of estimated time-courses for only one dipole and one trial. The real waveform
generated by phantom (green dotted) and its approximation using the methods explained in the text.
’Fuse’ methods show better performance compared to others.
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Figure 7: Box plot of the errors for different methods in phantom experiment. The central red mark is
the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the most
extreme data points.
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Figure 8: Box plot of the FWHM for different methods in phantom experiment. The fusion methods
clearly show less FWHM and thus higher spatial resolution.
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(e) (f)

Figure 9: Localising the face response showing by the normalised estimated output power of beamformer
using (a) ‘grad’, (b) ‘mag’, (c) ’fuse-grad’, (d) ‘fuse-mag’, (e) ‘normalisation’ and (f) ‘all’ method. The
solid white volume is the extent of the fusiform cortex within which face specific responses are found
and specifically the fusiform face area (FFA).
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Figure 10: Power of the beamformer weights which were applied to gradiometer (left column) and
magnetometer (right column) signals. (a) ‘grad’, (b) ‘mag’, (c and d) ’fuse-grad’, (e and f) ‘fuse-mag’,
(g and h) ‘normalisation’ and (i and j) ‘all’ method. ’Fuse’ methods assign adaptive weights to each
location according to the spatiotemporal correlation between magnetometer and gradiometer.
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