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Abstract—In this paper, we demonstrate a new approach for
the fusion of multichannel signals. We show how this method can
be used to combine signals from magnetometer and gradiometer
sensors used in magnetoencephalography (MEG). This approach
works by assuming that the lead-fields have multiplicative errors
which in turn leads to an under-determined problem. To solve
this problem, we impose two constraints that result in closed-
from solutions: i) one set of sensors is error-free, ii) the norm of
the multiplicative error is bounded. These prior assumptions to
estimate the error are used in the linearly constraint minimum
variance (LCMV) spatial filter to improve the optimisation.
Although we focus on the fusion of MEG sensors, this approach
can be employed for multimodal fusion of other multichannel
signals such as MEG and EEG signals.

Index Terms—LCMV beamformer, magnetoencephalography,
magnetometer, gradiometer, sensor fusion

I. INTRODUCTION

MEG is a non-invasive neuroimaging technique that is
showing great promise in increasing our understanding of
the functional activity of the human brain. It offers excellent
temporal resolution on the scale of milliseconds, however, it
suffers from poor spatial resolution.

There are two fundamental classes of MEG sensors known
as magnetometers and gradiometers. In the ideal situation,
the gradiometers and magnetometers measure simultaneously
the same activity and should reveal the same neural activity.
However, there are a number of studies that suggest the
multimodal data sets have incommensurate measurement unit
and suffer from different level of noise—magnetometers mea-
sure total flux (Tesla), while gradiometers measure a gradient
(Tesla/meter). This means that combining two sensor types
without any correction does not necessarily improve the spatial
resolution of reconstructed sources, and one modality would
dominate the other for example in the inverse of the covariance
matrix [1]–[4]. Therefore, multimodal inversion requires some
form of scaling that determines the relative contribution of
each modality to the estimates of source activity. This scaling
usually depends on the estimation of signal-to-noise ratio
(SNR), whereby all sensors or sensor group signals are scaled
according to their statistical significances. SNR can be esti-
mated based on the intrinsic factory noise measurement (Max-
Filter Users Guide, Version 2.0, Elekta Neuromag, Appendix
B2), or on empirical estimates; e.g., from empty-room data,
or pre-stimulus baseline periods. However, estimating the pure

sensor-level noise is sometimes intractable, and estimation of
SNR from real data, which often use pre-stimulus baseline
periods, may confuse sensor noise with endogenous neural
activity [5]. An accurate and robust method to fuse of magne-
tometer and gradiometer to improve their joint estimation is
therefore an important goal in improving MEG interpretation.

Amongst previous research in multimodal fusion of neu-
ronal data, simultaneous recording and simple combination of
MEG and EEG have been investigated [6]–[10]. In addition,
there is a wide range of intelligent approaches for the fusion
of MEG and EEG such as regularised linear inverse source
estimation [11], independent component analysis [12], lead-
field correction for dipolar sources [13], minimum l2 norm
estimation [4], mutual information [14], Bayesian estima-
tion [15] and the use of a neural mass model [16].

We propose a method, which is an extension of that we
recently presented in [18], for the multimodal fusion of MEG
sensors in the linearly constraint minimum variance (LCMV)
beamformer framework (the beamformer is a spatial filter
that minimises the power of the signal while passing the
activity from the location of interest [17]). Since the proposed
problem formulation is under-determined, prior assumptions
are necessarily to solve this problem. Here, we investigate two
different scenarios by which solutions that are closed form are
obtained: one based on assuming one set of sensors is more
accurate and the other based on joint normalisation of both
sensor types. As discussed in the final section, these models
are applicable under different imaging conditions.

II. PROBLEM FORMULATION AND ITS TWO SOLUTIONS

Consider the following problem formulation:

yg = FgEgs + ng

ym = FmEms + nm

(1)

where yg ∈ RNg×T and ym ∈ RNm×T are measurements
acquired using gradiometer and magnetometer sensors with
the associated and known lead-fields Fg ∈ RNg×D and Fm ∈
RNm×D, respectively. In this formulation, Eg, Em ∈ RD×D

are the multiplicative errors varying from location to location.
Let also s ∈ RD×T be the time course of the desired source,
and ng ∈ RNg×T and nm ∈ RNm×T be the additive zero-
mean Gaussian white noises.
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Note that (1) can be rewritten as:

y = FgmEgms + n (2)

where y =

[
yg
ym

]
, Fgm =

[
Fg 0
0 Fm

]
, Egm =

[
Eg

Em

]
and n =

[
ng

nm

]
. It is assumed that y is a stationary zero-

mean process with covariance matrix Ry , which is symmetric
and positive definite. Our aim is to provide an accurate
estimation of the multiplicative error Egm.

Egm cannot be uniquely identified, because for a particular
solution of s, all its linear transformations are also solutions.
Here, therefore, we consider two different constraints to be
able to solve this problem:

i. One of Eg or Em is known
ii. ET

gmEgm = I , where I is the identity matrix

These assumptions lead to computationally tractable, fast and
closed-form solutions. We will explore the impact of these
assumptions in Section III.

The estimation of the multiplicative error Egm can be found
by considering the following modified LCMV beamformer (for
details of the LCMV beamformer please refer to [17]):

arg min
W

arg max
Egm

Tr{WTRyW}

subject to : WTFgmEgm = I
(3)

where Ry is the covaraince matrix, and Tr{.} and (.)T are
trace and transpose operators, respectively. The solution is
a linear filter WT that minimises the output power when it
has been maximised by the multiplicative error Egm. This
optimisation problem ensures the output power is minimised
when the error has the worst effect, and thus guarantees the
performance of the beamformer in all range of the errors.

To find the solution, first suppose that Egm is known.
Following methods used in [17], W can be estimated using
the Lagrange multiplier method as:

WT = (ET
gmFT

gmR−1
y FgmEgm)−1FT

gmET
gmR−1

y (4)

By putting (4) into the constraint in (3), it is clear that this
estimate of WT always satisfies the constraint for any choice
of Egm. As a result, Egm can be estimated by only maximising
the power P = Tr{WTRyW}. Using (4), and some algebraic
manipulation, the power is expressed as:

P = Tr{(ET
gmFT

gmR−1
y FgmEgm)−1} (5)

Now we continue under constraint i. Without loss of gener-
ality we assume that Eg is known and suppose that Eg = I for
simplification of notation. By partitioning the inverse of joint

covariance matrix into R−1
y =

[
R−

gg R−
gm

R−
mg R−

mm

]
, equation (3)

using (5) is expressed as:

arg max
Em

P = arg max
Em

Tr{
(
ET

mFT
mR−

mmFmEm+

ET
mFT

mR−
mgFg + FT

g R−
gmFmEm + FT

g R−
ggFg

)−1

}
(6)

The derivative of the above expression with respect to Em is
equal to:

∂P
∂Em

=−
(
ETFT

mR−
mmFmEm + ET

mFT
mR−

mgFg+

FT
g R−

gmFmEm + FT
g R−

ggFg

)−2

(
2ET

mFT
mR−

mmFm + (FT
mR−

mgFg)T + FT
g R−

gmFm

)
(7)

Since the expression inside the first bracket is invertible, its
inverse is full rank and the above expression is only zero if
the expression inside the second bracket is zero. Hence, the
problem in (6) is convex and the global maximum, using the
fact that FT

mR−
mgFg = (FT

g R−
gmFm)T , is given by:

Em = −(FT
mR−

mmFm)−1(FT
mR−

mgFg) (8)

Equation (8) also can be rewritten as:

Em = −(FT
omR−1

y Fom)−1(FT
omR−1

y Fgo) (9)

where Fom =

[
0
Fm

]
and Fgo =

[
Fg

0

]
. Therefore the

above equation is the solution under constraint i.
Now we continue under constraint ii. By defining Cgm =

FT
gmR−1Fgm and using equation (5), we have the following

optimisation problem:

arg max
Egm

Tr{(ET
gmC−1

gmEgm)−1}

subject to : ET
gmEgm = I

(10)

This is solved using its Lagrangian which is:

L(Egm,Γ) = Tr{(ET
gmC−1

gmEgm)−1+ET
gmEgmΓ−Γ} (11)

where Γ is the Lagrange multiplier. Then, the derivative of
(11) is expressed as:

∂L(Egm,Γ)

∂Egm
= 2(ET

gmCgmEgm)−2ET
gmCgm−2ΓET

gm (12)

By equalling the above equation to zero and defining Γ̃ =
(ET

gmC−1
gmEgm)2Γ, we have:

ET
gmC−1

gm = Γ̃ET
gm (13)

Note that because ET
gmC−1

gmEgm is invertible which means for
any Γ there is a unique Γ̃. Therefore, the above equation results
in ET

gm = US, where U is an arbitrary orthonormal matrix
and S is the eigenvector matrix of C−1

gm or equivalently Cgm.
Since this Egm should maximise the first expression in (10),
it can be inferred that the solution for Egm under contraint
ii. is constructed by the eigenvectors of Cgm corresponding
to the D smallest eigenvalues. It is clear that any linear
transformation of this Egm under an orthonormal matrix is
a solution as well.

III. SIMULATION EXPERIMENT

To investigate the advantages and disadvantages of each
method, MEG data with Gaussian sources were simulated. The
number of sources were set to 15 and the number of sensors for
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each sensor type to 102. The sources were non-correlated and
their lead-fields were chosen randomly in a Monte Carlo like
simulation; i.e. the location of sensors and sources were chosen
randomly. We set D = 2, and elements of the multiplicative
errors Eg and Em, were chosen independently in each Monte
Carlo simulation according to a uniform random distribution
in the range of 0 to 1. Gaussian white noise was added
to the signal after applying the lead-field to the time series
of the sources. The following results were produced as the
average of 1000 Monte Carlo simulations. MSE is the mean
squared error between original and estimated time course
which were normalised by their power. This normalisation
effectively means that the amplitude of time series can be
ignored.

Fig. 1 and 2 show the MSE of the methods versus SNR
which is defined in the sensor space as the ratio of the mean
power of the signal of interest across the sensors (applying the
lead-field only to the source of interest) to the mean power of
the added noise also across the sensors. In these figures, the
label ‘fuse’ indicates when the constraint ET

gmEgm = I were
used to fuse the sensors. The results labelled ‘fuse-grad’ and
‘fuse-mag’ correspond to the fusion methods with a correct
lead-field assumed for gradiometer (Eg = I) and magnetome-
ter (Em = I), respectively. The results labelled ‘grad’ and
‘mag’ show the results from using only the gradiometer sensor
or the magnetometer sensor, respectively.

Fig. 1 shows the MSE versus SNR of the Monte Carlo
simulation using Eg = I (i.e. when the gradiometer is error-
free) and the multiplicative error of the magnetometer Em

is randomly varying from simulation to simulation. These
assumptions are comparable to the ‘fuse-grad’ method and
as expected, it shows smaller MSE compared to others.
Similarly, the ‘grad’ method shows better performance than
‘fuse-grad’ for the obvious reason that the gradiometer is error-
free. The ‘fuse’ method, which uses the modified lead-fields,
outperforms both ‘mag’ and ‘fuse-mag’ methods, since the
assumption that is used to simulate the data is against their
underlying assumption.

Fig. 2 demonstrates the results when both sensor types
have the multiplicative errors. The ‘fuse’ method has the best
performance since its assumptions better match the assump-
tions used in the simulation. The ‘fuse-grad’ and ‘fuse-mag’
outperform the single modality approaches because they use
a larger number of sensors to reconstruct the same number of
sources.

IV. REAL DATA RESULTS

Some studies suggest that a specific region of the brain,
the fusiform face area (FFA), is the primary face processing
region in the human brain [19]–[21]. The FFA is a part of
the human visual system and located within the fusiform
cortex above the cerebellum. Various studies using MEG and
EEG have demonstrated that face-specific components in the
brain signals peak at approximately 170ms after presentation
of the face [22], [23]. This face-specific components have
become known as the M170 in MEG studies and appear to
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Fig. 1: Comparing signal-to-noise (SNR) and MSE (mean
squared error) when Eg = I and the elements of Em are
randomly chosen according to a uniform distribution.
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Fig. 2: Comparing signal-to-noise (SNR) and MSE (mean
squared error) when the elements of Eg and Em are randomly
chosen according to a uniform distribution.

be significantly earlier and larger for faces than other objects
in the FFA.

In this experiment a series of animal and human faces were
presented to the participants. Each image were presented for
300ms and the time interval between images was 1500ms. The
sampling rate was 1kHz and after linearly filtering data in the
range of 1–40Hz the recorded data were epoched and averaged
for animal and human faces. MaxFilter, a filtering package to
remove spurious signals, were used to further denoise the data
(MaxFilter Users Guide, Version 2.0, ELEKTA neuromag).
The trials were visually inspected and few of them with
large variations were removed. The differences between MEG
signals for human and animal faces from 150ms to 190ms
after stimuli were used to estimate the covariance matrix.
The covariance matrix was diagonally regularised with 5%
of its trace. A single layer realistic head model was used
in which the brain was divided into a number of cells. The
distance between adjacent cells was 5mm. The power of the
beamformer at each cell was computed and normalised with
those of the noise estimated from the pre-stimulus trials.
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Fig. 3: Localising the face response by using the normalised
estimated output power of beamformer using (a) ‘mag’, (b)
‘grad’, (c) ‘fuse-mag’, (d) ‘fuse-grad’, (e) and ‘fuse’ methods.
The solid white volume is the extent of the fusiform cortex
within which there are regions of neurons with face specific
responses.

Fig. 3 shows the output power (trace of estimated covariance
matrix as in equation (5)) of the beamformer normalised by
norm of the associated lead-fields; i.e. normalised by the
power of projected Gaussian white noise (see [17]). The
reconstructed activity was thresholded using the normalised
threshold of 90%. The same anatomical plane is displayed
for each method. In all the figures the solid white volume is
the mask representing the full fusifom cortex region depicted
using the automated anatomical labelling (AAL) atlas, within
which the FFA can be found [24].

Fig. 3(a) shows the results using ‘mag’, where the peak
of the power spectrum is close to the FFA area, but it is
biased towards the mid-line. Fig. 3(b) shows the results using
‘grad’, where the peak of power spectrum is close to the
visual cortex and away from FFA. Figs. 3(c) and (d) show
the results from ‘fue-mag’ and ‘fuse-grad’, respectively. Both
methods show better performance than the results in Figs. 3(a)
and (b), as seen from the greater overlap between the source
and FFA. However, they show some difference in the source
activity detected in the visual cortex (Fig. 3(c) axial view). It
is notable that there is similarity between the results of ‘fuse-
grad’ and ‘grad’, and between ’fuse-mag’ and ‘mag’ method.
Fig. 3(e) shows the results from ‘fuse’ method. This method
also reconstructed the FFA correctly. The results are similar
to the ‘fuse-grad’ method with slightly larger activity in the
visual cortex.

V. DISCUSSION AN CONCLUSIONS

We proposed a novel method for the multimodal fusion
of magnetometer and gradiometer in MEG imaging. In this
method the LCMV spatial filter is modified, and its closed-
form solutions were obtained using two prior assumptions.

Based on the simulations and real data, we may conclude
that the fusion methods can improve the results of using
single modality methods. However in a real application a
choice between the methods must be determined. This may
be done as follows. First note that for the moderate noisy
signals, the choice does not have great impact on the final
results. Second, it is dependent on the available data set, for
example, employing ‘fuse-grad’ method generally seems more
appropriate than the others, since the gradiometer suffer from
less noise and have twice number of sensors compared to
the magnetometer. In addition, The ‘fuse-mag’ method might
be preferred for deep sources, since magnetometers are more
sensitive in this region. On the other hand, if there is no prior
information about wheter to choose one modality over another,
the ‘fuse’ method is likely to yield the best results.

Further work is needed in this area to find a reliable way
to determine the best way to select or combine the different
fusion methods.
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