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Abstract—Evidence suggests that magnetoencephalo-
gram (MEG) data have characteristics with non-Gaussian
distribution, however, standard methods for source localisation
assume Gaussian behaviour. We present a new general method
for non-Gaussian source estimation of stationary signals for
localising brain activity in the MEG data. By providing a
Bayesian formulation for linearly constraint minimum variance
(LCMV) beamformer, we extend this approach and show that
how the source probability density function (pdf), which is not
necessarily Gaussian, can be estimated. The proposed non-
Gaussian beamformer is shown to give better spatial estimates
than the LCMV beamformer, in both simulations incorporating
non-Gaussian signal and in real MEG measurements.

Index Terms—Magnetoencephalography, source reconstruc-
tion, non-Gaussian, LCMV-beamformer.

I. INTRODUCTION

Magnetoencephalography (MEG) is a neuroimaging tech-
nique with excellent temporal resolution and reasonable spa-
tial resolution. Unlike functional magnetic resonance imaging
(fMRI) or positron emission tomography (PET), MEG pro-
vides a direct measurement of brain activity through recording
the magnetic induction over the scalp produced by electrical
activity in the neural cell assemblies [1]. What has been
missing, however, is a way to precisely localise the sources of
activity within the brain from the MEG measurements.

At the heart of this problem is the problem of finding
the optimal solution of the so-called inverse problem, which
can only be solved by introducing a priori assumptions on
the generation of the MEG signals. Some progress has been
made using a number of different methods. One of the most
successful and most common methods for localising brain
activity with MEG is the LCMV beamformers [2]. However,
as we show in this paper, its performance is optimal only
in the presence of measurement whose probability density
functions (pdfs) can be described using the first and second
order statistics (i.e., Gaussian distribution).

The LCMV beamformer originally proposed for vector
source localisation and later its important variation, scalar
beamformer, was employed. It has been shown that these two
types of beamformers are equivalent, in terms of output power
and output SNR, if the beamformers pointing directions are
optimised [3]. There are several other approaches that have
been proposed to improve or extend the beamformer. Amongst
them, we may refer to the graphical models for event-related

field denoising and localisation [4], [5], which are modifi-
cations of [6] by incorporating the lead-field matrices and
temporal information. In [5], in a Bayseian formulation, it has
been shown that if the prior is assumed to be flat, the maximum
a postriori (MAP) estimation is converted to the maximum
likelihood estimation which in turn is equivalent to the LCMV
beamformer. A Baysian paradigm has also been proposed to
derive several MEG source localisation approaches including
the LCMV beamformer [7]. We also later justify the LCMV
beamformer from a Bayesian perspective in a way to be able
to employ a non-Gaussian data distribution.

In this paper, we provide a framework to generalise the
beamformer for non-Gaussian MEG data. The main motivation
for this study is based on evidence which shows that MEG
data has a non-Gaussian distribution [8], [9]. It is supported in
[6], [10] which emphasise that evoked brain sources are often
characterised by spikes or by modulated harmonic functions,
leading to a non-Gaussian distribution. Moreover, there should
be elements of the non-Gaussianity in the MEG data to
be able to successfully employ the independent component
analysis (ICA), which exploits non-Gaussian measures such as
kurtosis [6], [10]. Therefore, a source localisation algorithm
that captures the non-Gaussianity should perform better than
the LCMV beamformer. The novel approach presented here
uses Bayesian formulation of the beamformer, which reveals
that the kernel density estimator [11], or any other multivariate
density estimator, can be used to model the measurement
pdf, and to develop a more accurate estimate of the source
distribution.

II. METHODS

1. Problem formulation

Let the vector yt ∈ RN be the measurement recorded at
time samples t ∈ {1, . . . , T} from N sensor sites. Suppose
that yt is composed of the magnetic fields due to active electric
dipoles plus noise:

yt = Fst + nt (1)

where F = [f1 . . . fq] ∈ RN×q is the matrix of the lead-fields
and st = [s1,t . . . sq,t]

T ∈ Rq is the vector of q sources.
Here, nt ∈ RN is the additive noise which is independent
from the sources.
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Suppose that yt, st and nt are zero-mean stationary pro-
cesse with pdfs gy(.), gs(.) and gn(.), respectively. Further-
more, assume that each source si,t ∈ R, i ∈ {1, . . . , q}, which
is a stationary process, has the pdf gsi(.), and that the lead-
field vector of each source fi ∈ RN is deterministic and known
using the Biot-Savart law [12].

2. LCMV-beamformer and its Bayesian Derivation

To set the scene and better clarify the method proposed, we
first present the LCMV beamformer and its justification within
a Bayesian framework.

To locate the source sk,t at a particular location k and
time sample t, the LCMV beamformer is often used for MEG
source analysis. It is a linear filter that constrains the lead-field
vector fk to pass the signal at the location of interest, whilst
minimising the covariance of the measurement Ry:

argmin
w

wTRyw, subject to : wT fk = 1 (2)

Here, w is a vector of weights and its closed-form solu-
tion using Lagrange multiplier method is given by wT =
(fTk R−1y fk)

−1fTR−1y . The estimated time-series ŝk,t at time
t and the estimated power Psk are then given by:

ŝk,t = (fTk R−1y fk)
−1fTR−1y yt (3)

Psk = (fTk R−1y fk)
−1 (4)

Now we examine equations (3) and (4) from a Bayesian
perspective. One may rewrite equation (1) as:

yt = fksk,t + ηt (5)

where ηt =
∑
i 6=k fisi,t + nt is the interference coming from

other sources plus noise. We then assume that the pdf for
ηt, gη(.), can be approximated with a Gaussian function, i.e.
ηt ∼ N (0,Rη). In the Bayes framework, the posterior pdf of
the source of interest p(sk|yt) is estimated and its expected
value is considered as the estimation of the time-series ŝk,t.
This is accomplished via Bayes’ rule given by:

p(sk|yt) ∝ p(yt|sk)p(sk) (6)

In equation (5), since we supposed that the interference plus
noise distribution gη(.) is Gaussian, the likelihood p(yt|sk)
is also Gaussian. By assuming further that the prior p(sk) is
uniform (absolutely no knowledge about the source pdf), it
can be shown that the posterior pdf is expressed as (see e.g.,
[13]):

p(sk|yt) ∝ exp
[
− (yt − fksk)

TR−1η (yt − fksk)
]

∝ exp
[
−
(
sk − (fTk R−1η fk)

−1fTk R−1η yt
)T

(fTk R−1η fk)
−1(sk − (fTk R−1η fk)

−1fTk R−1η yt
)] (7)

Therefore, the estimated power and the estimated time-series
are given by:

ŝk,t = (fTk R−1η fk)
−1fTk R−1η yt (8)

Psk = (fTk R−1η fk)
−1 (9)

Equations (8) and (9) are equivalent to equations (3) and (4),
expect for the fact that in the former Rη has been used instead
of Ry. If we assume that the power of the source of interest
is considerably smaller than the power of other sources plus
noise, we can approximate Rη ≈ Ry, making the beamformer
and Bayesian solutions equivalent.

The minimisation of the noise plus interference Rη in equa-
tion (2) is better known as the minimum variance distortion-
less response (MVDR) beamformer. This should theoretically
perform better than minimising the measurement power Ry

(LCMV beamformer) [14], [15]. However, the difficulty for
estimating the noise power in most applications means that
the LCMV beamformer is generally preferred [16].

It is notable that if one uses Rη + αfkf
T
k (where α is

an arbitrary number) instead of Rη in equations (8) and
(9), the result does not change. This means that if signal
and noise are independent, we have Ry = Rη + αfkf

T
k ,

and therefore the LCMV-beamformer and Bayesian solutions
(MVDR beamformer) are the same.

3. The Non-Gaussian Probability Distribution Beamformer

The LCMV beamformer assumes that the data is zero-mean.
It minimises only the second order statistics and ignores the
higher orders. Our aim is to estimate the posteriori using an
arbitrary pdf, and not necessarily a Gaussian one.

We start by assuming that the distribution over η, gη(.), is
known. Using this with equation (5), gives p(yt|sk) = gη(yt−
fksk). By inserting this into equation (6) and assuming that
the prior is uniform, we have:

p(sk|yt) ∝ gη(yt − fksk) (10)

As with the classic Gaussian LCMV beamformer, which
replaces the interference plus noise power with the total power,
we assume that the pdf of η can be approximated by the pdf of
y; i.e., gη(.) ≈ gy(.). This is equivalent to implicitly assume
that the power of one voxel is considerably smaller than the
power of all other voxels within the brain plus noise, which is
true in the most application of the MEG source localisation.
This assumption therefore gives equation (10) as:

p(sk|yt) ∝ gy(yt − fksk) (11)

Here, gy(.) is obtained using the mechanism that is explained
in Section II.4. We may then use the expected value of the
posteriori as the estimation of the time-series ŝk,t:

ŝk,t =

∫
skp(sk|yt)dsk (12)

Note that other values including the mode of p(sk|yt) could
be used instead.

In addition to the posteriori distribution p(sk|yt), it is
necessarily to obtain the source pdf gsk(sk) in order to
estimate the source activity, which can be represented by the
variance (or fourth order moments) of gsk(sk). In this study,
we use gsk(sk) ≡ p(sk|E{y}) as estimation of the source
pdf, where E{.} is the expectation operator over gy(.). Using
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equation (11) and the fact that the measurement is zero mean,
we have

gsk(sk) ∝ gy(fksk) (13)

Here, we have replaced gy(−fksk) by gy(fksk), since the
minus sign does not have any impact on the estimated power.

Alternatively, one may use gsk(sk) ≡ p(sk|y1, . . .yn),
leading to the relationship gsk(sk) ∝

∏T
t=1 gy(yt − fksk)

(based on the independency of measurement samples). How-
ever, estimation of the source pdf using (13) is much faster
especially when it is required to estimate the power of a large
number of points inside the brain volume.

For the convenience of the reader, pseudo-code of the
method is presented in Algorithm 1. The algorithm provides
the expected value ŝk,t at time t and the power Psk , of a
source at a location with lead-field fk.

Algorithm 1 Implementation of the method for the non-
Gaussian Beamformer

% estimating the time-series ŝk,t
for t = 1 to T do

estimate gy(y)
set p(sk|yt) ∝ gy(yt − fksk)

normalise p(sk|yt) =
p(sk|yt)∫
p(sk|yt)dsk

set ŝk,t =
∫
skp(sk|yt)dsk

end for

% fast estimation of the power Psk at a location with lead-field fk
estimate gy(y)
set gsk (sk) ∝ gy(fksk)

normalise gsk (sk) =
gsk (sk)∫
gsk (sk)dsk

set Psk =
∫
sk

2gsk (sk)dsk

4. A Kernel Based Estimation of the Measurement pdf

We have shown that how the source pdf can be estimated
from the data pdf. To implement the method, the measurement
pdf gy(.) must be estimated from the set of discrete observa-
tions yt, t ∈ {1, . . . , T}. The success of the method depends
on the quality of this estimation.

Since the dimension of yt is large (on the order of
hundreds), we employ kernel based methods requiring no
optimisation procedure. Kernel based estimation, which is
one of the most common methods in the multivariate density
estimation techniques, assumes that the pdf is the sum of T
kernels. In other words, we place the centre of each kernel at
a single observation [17]; hence T is equal to the number of
observations.

From equation (13), the pdf at a location with lead-field
matrix fk is given as follows:

gs(s) =

∑T
t=1

1
hNK(yt−fks

h )∫ ∑T
t=1

1
hNK(yt−fks

h )ds
(14)

where K : RN → R is the kernel and h is a scaling factor
known as the bandwidth. The most common kernel in the pdf
estimation is given by [17]:

K(x) ∝ exp(−1

2
xTR−1kerx) (15)

where Rker is the covariance of the kernel. The simplest
choice for the covariance of the kernel is the identity matrix
Rker = I, leading to a homogeneous kernel.

An alternative covariance matrix of the kernel can be made
with the eigenvectors associated with the largest eigenvalues
of the measurement covariance matrix. To construct this kernel
suppose that Ry = UΣVT is the singular value decomposi-
tion of the estimated measurement covariance matrix, and set
Rker = UmaxU

T
max+σI. Here, σ is a small number used to

stabilise the calculation of the inverse, because UmaxU
T
max

is rank deficient. This choice may give better performance
than choosing of Rker = I, for instance when some of the
eigenvalues of Ry are much smaller than the others.

III. EXPERIMENTAL RESULTS

1. Simulation Experiments

In the first simulation experiment, the method was demon-
strated using the reconstruction of a source with three different
pdfs which have been shown in Fig. 1. It was assumed that in
addition to the source of interest, there were 15 uncorrelated
Gaussian sources whose locations were randomly chosen
inside the brain volume. Zero-mean Gaussian white noise was
also added to the simulated MEG data (after multiplying the
lead-fields and simulated sources) to set SNR = 8dB. SNR
is defined in the sensor space as the ratio between the mean
power of the signal to the mean power of the noise across all
sensors. The pdf of the first source was estimated using both
Gaussian and non-Gaussian assumptions. Fig. 1 (left) shows
the result for the Gaussian source where both beamformers
give an accurate estimation. Fig. 1 (middle) and (right) show
the results for two non-Gaussian sources. It is clear that
the non-Gaussian beamformer increasingly outperforms the
LCMV beamformer as the source pdf deviates increasingly
from a Gaussian distribution.
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Fig. 1: Examples of the simulated source pdfs (black lines) and
their estimations using LCMV beamformer (blue lines) and the non-
Gaussian method (red lines).

In the next simulation experiment, the mean square error
(MSE) resulting from non-Gaussianity of one source was
quantified using a Monte Carlo simulation. This source was
generated using a mixture model consisting of two zero-mean
Gaussian components. The departure from Gaussianity of the
source was described using kurtosis k which is defined by
k = µ4

σ4 − 3, where µ4 is the fourth moment and σ is the
standard deviation. When the kurtosis is zero, the data is Gaus-
sian, while as it becomes larger, the pdf departs further from a
Gaussian profile. When the variances of two distributions are
identical, the mixture is also Gaussian. Fig. 2(a) presents the
result of the mean squared error (MSE) between the original
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and constructed pdf for different kurtosis. The average SNR
is −5dB and the results were obtained using 1000 Monte
Carlo simulations. It is clear that as the kurtosis increases, the
error in the LCMV beamformer increases rapidly. In contrast,
the new non-Gaussian beamformer exhibits a flat error which
means it is not sensitive to the shape of the pdf.

The next experiment investigated additive non-Gaussian
noise. In this case, all sources were Gaussian and the noise
was generated in a similar way to the previous example by
using a Gaussian mixture model with two zero-mean Gaussian
components. The covariance matrix of one of the Gaussian
components was the identity matrix I and the covariance
of the second Gaussian component was σI, where σ was
varied to gain different values of kurtosis. As demonstrated by
Fig. 2(b), the non-Gaussian method is insensitive to the shape
of the noise pdf whereas the MSE in the LCMV beamformer
increases with increasing kurtosis.
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Fig. 2: Comparison between LCMV beamformer and the non-
Gaussian methods in the simulated data when (a) one of the sources is
non-Gaussian and (b) the additive noise is non-Gaussian. The method
proposed is insensitive to the non-Gaussianity of the source plus
noise.

2. Experiments using MEG Data

In the following experiments, we compared the performance
of the methods for source reconstruction and investigated the
sensitivity of the results with regards to two key parameters,
the regularisation factor λ and the kernel bandwidth h.

In this experiment, we used a visual paradigm where a series
of human and animal faces were presented to the participant.
Each image was presented for 300ms and the time interval
between images was 1500ms. We were interested in localising
a significant peak which occurs around 100–150ms after the
stimulus onset. The origin of this peak is known to be located
in bilateral regions of the primary visual cortex.

Figs. 3(blue volumes) show the output power of the beam-
former (trace of estimated covariance matrix as in equation
(4)) normalised by the norm of the associated lead-fields; i.e.
normalised by the power of projected white Gaussian noise
(see [2]). Figs. 3(red volumes) show the estimated power using
the non-Gaussian beamformer, which was also normalised by
the norm of the associated lead-fields. In both methods, the
same anatomical plane is displayed and it includes the results
for different values of λ and h. For the LCMV beamformer,
we observe that if a small value for λ is chosen, the peak of the
spectrum is in a frontal part of visual cortex, whereas if a large

Fig. 3: Reconstruction of neural activity in the visual paradigm using
beamforming with λ = 0.01%, λ = 0.1% and λ = 1% (blue
volumes from top to bottom) of trace of data covariance matrix, and
using non-Gaussian method with h = 1, h = 5 and h = 10 (red
volumes from top to bottom).

value is chosen, the peak of the spectrum is located incorrectly
in the cerebellum rather than visual cortex. In contrast, the
non-Gaussian method reconstructs activity in both the right
and left primary visual cortex for moderate and small values
of h. It also has better spatial resolution.

IV. CONCLUSION

In this paper, we provided a framework for source re-
construction based on the observation distribution. We used
the kernel based density estimator to estimate the data dis-
tribution because of their simple implementations. Based on
Algorithm 1, any other multivariate density estimator such as
mixture of Gaussian or multivariate Edgeworth series can also
be employed. Analysis of the impact of these approaches on
the performance of the localisation is beyond this paper and
we consider it as a future work.

The implementation of the new method showed that it
outperforms existing LCMV beamforming method in terms of
spatial and temporal source estimation in data from simulation
and from real MEG experiments. In summary, this new class of
non-Gaussian beamformer shows great promise in enhancing
the source localisation with MEG, which in turn may enhance
our understanding of human brain function.
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