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Abstract

Recurrence in major depressive disorder (MDD) is common, but neurobiological models

capturing vulnerability for recurrences are scarce. Disturbances in multiple resting-state

networks have been linked to MDD, but most approaches focus on stable

(vs. dynamic) network characteristics. We investigated how the brain's dynamical rep-

ertoire changes after patients transition from remission to recurrence of a new depres-

sive episode. Sixty two drug-free, MDD-patients with ≥2 episodes underwent a

baseline resting-state fMRI scan when in remission. Over 30-months follow-up,

11 patients with a recurrence and 17 matched-remitted MDD-patients without a

recurrence underwent a second fMRI scan. Recurrent patterns of functional connectiv-

ity were characterized by applying Leading Eigenvector Dynamics Analysis (LEiDA).

Differences between baseline and follow-up were identified for the 11 non-remitted

patients, while data from the 17 matched-remitted patients was used as a validation

dataset. After the transition into a depressive state, basal ganglia-anterior cingulate

cortex (ACC) and visuo-attentional networks were detected significantly more often,

whereas default mode network activity was found to have a longer duration. Addition-

ally, the fMRI signal in the basal ganglia-ACC areas underlying the reward network,

were significantly less synchronized with the rest of the brain after recurrence (com-

pared to a state of remission). No significant changes were observed in the matched-

remitted patients who were scanned twice while in remission. These findings charac-

terize changes that may be associated with the transition from remission to recurrence

and provide initial evidence of altered dynamical exploration of the brain's repertoire

of functional networks when a recurrent depressive episode occurs.
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1 | INTRODUCTION

Major Depressive Disorder (MDD) is a severe and highly prevalent

disease affecting 5% of the global population (Institute of Health Met-

rics and Evaluation, 2019). An important factor in the high personal

and societal impact of MDD is the high risk of recurrence (Bockting

et al., 2009; Hardeveld et al., 2010). Nevertheless, neurobiological

investigations of the recurrence of depressive episodes remain scarce.

This study addresses the critical issue of how network dynamics

change when patients transition from a remitted to a recurrent

depressed state.

MDD has been associated with disturbances in multiple resting-

state networks, including the default mode network (DMN), salience

and frontal networks—regulating cognitive control and attention

(Kaiser et al., 2015; Menon, 2011; Mulders et al., 2015). Recent stud-

ies have further shown that MDD may be related to alterations in

large-scale functional connectivity (FC) between these networks (Li

et al., 2020; Liu et al., 2020). Specifically in remitted depressed

patients, functional hyper-connectivity in, for example, DMN and dor-

sal attention network, as well as within and between salience and

executive control networks have been reported (Liu et al., 2021).

The majority of research conducted in MDD has largely focused

on discerning differences between patients and healthy controls or

predicting vulnerability for relapse from baseline assessments. In this

respect, dominance of activity within the DMN has been associated

with MDD recurrence and related to rumination (Lythe et al., 2015;

Marchetti et al., 2012), whilst decreased within network FC of the

DMN has been shown to predict more depressive symptoms within a

2-year follow-up period (Blank et al., 2021). Another study points to

the neuro-progressive nature of MDD, with remitted depressed

patients (compared to first episode patients) showing hyper-

connectivity in a wide range of networks, including the DMN (Liu

et al., 2021). However, a within-subject investigation of changes in

large-scale FC during the transition into a depressive episode, to our

knowledge, has never been investigated.

A recent meta-analysis suggests limited convergence of findings

across resting-state measures (Gray et al., 2020), despite previous

reports to the contrary (Kaiser et al., 2015). One of the reasons for

heterogeneity in findings may be related to the fact that studies thus

far have primarily applied static resting state measures, which capture

only the stable dimensions of FC, without addressing processes by

which regions in the brain integrate in networks, which interact with

other networks and dissolve over time. Recent insights, however, sup-

port indices of the alteration of brain network connectivity over time

as potential markers for affective disorders, which might provide

insights into altered neural communication in MDD (Figueroa

et al., 2019; Kaiser et al., 2016). It is, therefore, crucial to use a

dynamic approach that assesses the integration and segregation

(Deco et al., 2015) of time-varying neurocognitive brain networks

(Barrett & Satpute, 2013; Bressler & Menon, 2010; Deco &

Kringelbach, 2014; Yarkoni et al., 2011) in order to adequately capture

the neural correlates of MDD and its recurrence.

A promising avenue in this regard is dynamic FC, based on grow-

ing evidence that neural activity at rest is not stable, but slowly fluctu-

ates through varying, but repeating states (Cabral et al., 2017). For

example, a recent study in MDD patients has shown disrupted organi-

zation of dynamic brain networks with respect to higher variability

and lower consistency in FC between time-points, as compared to

healthy controls (Long et al., 2020).

A novel method for investigating dynamic FC is Leading Eigen-

vector Dynamics Analysis (LEiDA), which identifies whole-brain

phase-locking (PL) patterns in fMRI signals at every time-point, that

are clustered into repeating FC states (Cabral et al., 2017). Each FC

state reveals synchronization within a specific set of brain areas and is

characterized by its probability of occurrence (fractional occupancy)

and duration (lifetime). In comparison to other analytical tools, LEiDA

extends from measures of connectivity or correlation by considering

also the phase-shifts between brain regions and describes discrete

instead of overlapping states in time (Kringelbach & Deco, 2020).

Dynamic characteristics of FC states derived from LEiDA have been

related to cognitive performance (Cabral et al., 2017), emotionality

(Stark et al., 2020), depressive symptoms (Alonso Martínez

et al., 2020), trait self-reflectiveness (Larabi et al., 2020), body dys-

morphic disorder (Wong et al., 2021), schizophrenia (Farinha

et al., 2022), and distinct mood states in remitted MDD (rMDD)

patients (Figueroa et al., 2019), which reinforces its sensitivity to both

clinical and pre-clinical psychiatric symptoms.

The goal of this study was to investigate how dynamic FC states

change when patients shift from remission to recurrence of a new

depressive episode. We hypothesized that patients experiencing a

recurring depressive episode would show changes in fractional occu-

pancy and lifetime of FC states of DMN, attentional, and salience net-

works, compared to a remitted state.

2 | MATERIALS AND METHODS

2.1 | Participants

As part of a larger project investigating the neurobiology of recur-

rence of depressive episodes (Mocking et al., 2016), 62 drug-free

(>4 weeks), rMDD patients (age 35–65 years) with ≥2 episodes

(according to the Structured Clinical Interview for DSM-IV Disorders

[SCID]), underwent a baseline resting-state fMRI scan when in remis-

sion (Hamilton Depression Rating Scale [HDRS-17] score ≤7 for

≥8 weeks). Exclusion criteria were alcohol/drug dependency;
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psychotic or bipolar disorder; predominant anxiety disorder or severe

personality disorder; electroconvulsive therapy within 2 months

before scanning and current severe physical illness. MRI exclusion cri-

teria were: incompatible implants or tattoos, claustrophobia, history

of seizure or head injury, and neurological disorder. Participants were

recruited from primary care, secondary mental health-care institutes,

from previous studies, and through advertisements in online and

house-to-house newspapers and posters in public places.

Over a 30-month follow-up period, a second fMRI scan was

obtained from patients reporting a recurrence. Follow-up assessments

of the rMDD participants were conducted by phone at regular inter-

vals (every�4 months), during which the SCID and HDRS were admin-

istered. To maximize the detection rate of recurrences, participants

were also instructed to contact the study researchers if they subjec-

tively experienced a recurrence. Overall, 55% of patients had a recur-

rence (based on SCID criteria). Of these, in 11 patients, we were able

to capture the recurrent depressive episode in time and motivate the

patient for a second scan during the depressive episode. Seventeen

rMDD-patients without a recurrence; matched for age, sex, IQ, and

length of follow-up were also scanned a second time (Table 1). For

more information on the full sample and recurrence rates, see Figue-

roa et al. (2019) and Ruhe et al. (2019). Informed consent was

obtained prior to participation; the study was approved by the local

Medical Ethical Committee of Amsterdam UMC. Clinical registration

of the study was done in the Dutch National Trial Register (trial num-

ber: NTR3768).

2.2 | Image acquisition

A 3 Tesla Philips Achieva XT scanner (Philips Medical Systems, Best,

the Netherlands), with a 32-channel SENSE head coil, was used to

obtain the images. A high-resolution T1-weighted 3D structural image

was acquired using fast-field echo (FFE) for anatomical reference

(220 slices; TR: 8.3 ms; TE: 3.8 ms; FOV: 240 � 188; 240 � 240

matrix; voxel size: 1 � 1 � 1 mm). Functional images were acquired

with a T2*-weighted gradient echo-planar imaging (EPI) sequence.

Participants were instructed to close their eyes and stay awake. The

scan comprised 208 volumes of 37 axial-slices (TR: 2000 ms; TE:

27.6 ms; FOV: 240 � 240; 80 � 80 matrix; voxel size: 3 � 3 � 3 mm),

oriented parallel to the AC–PC transverse plane and acquired in

ascending order with a gap of 0.3 mm.

2.3 | Image preprocessing and analysis

2.3.1 | Image preprocessing

fMRI data were preprocessed using FSL version 6.0 (FMRIB, Oxford,

UK). To control for T2* equilibration effects, the first four volumes

were discarded. Images were aligned to the first scan using rigid body

transformations, spatially smoothed with a 5-mm FWHM Gaussian

kernel, grand-mean intensity normalization by a single multiplicative

factor, and denoised using a non-aggressive ICA-AROMA procedure

(Pruim et al., 2015). Model nuisance effects were regressed out from

the preprocessed images with a linear model. These included

24 head-motion parameters: 6 motion regressors, their derivatives,

and squared terms of each (Caballero-Gaudes & Reynolds, 2017;

Friston et al., 1996). Brain extraction of T1 images was performed

using the FSL anat preprocessing tool, resulting in bias-corrected

images, subsequently segmented into white matter and CSF.

Subject-specific white matter and CSF masks were thresholded at

95% probability and coregistered to the functional images. Mean sig-

nal intensities were extracted per volume and regressed from the pre-

processed fMRI images along with the motion regressors. High pass

filtering with a cut-off of 100 s was performed on the residual images

from the linear model. Images were normalized to the Montreal Neu-

rological Institute template (MNI152) using linear (FLIRT; Jenkinson

TABLE 1 Sample characteristics.

Non-recurrent (n = 17) Recurrent (n = 11)

Sex

Women 13 9 p = 1a

Men 4 2

Age 53.5 (6.9) 50.5 (5.75) t(26) = 1.23

IQ 107 (9.21)b 108 (8.04)c t(23) = .084

Episodes in the past (number) 6.76 (11.8) 11.40 (18)c U = 108

Months since baseline 11.6 (5.86) 10.2 (6.27) t(26) = .601

Completed FU time-point at second MRI 2.18 (1.38) 2.45 (1.57) U = 106

HDRS baseline 3.69 (2.85) 6.11 (5.49) U = 117

HDRS at second MRI 3.73 (3.64) 20.4 (5.38) U = 185**

Note: Values indicate the mean and standard deviation.

Abbreviations: FU, follow-up; HDRS, Hamilton Depression Rating Scale.
aFisher's exact test.
bn = 15.
cn = 10.

**p < .001.
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et al., 2002; Jenkinson & Smith, 2001) and nonlinear (FNIRT;

Andersson et al., 2007) transformations via boundary-based registra-

tion (BBR; Greve & Fischl, 2009).

Time series were extracted using an 80-region Mindboggle-

modified parcellation, following Deco et al. (2021). The Desikan–Kill-

iany–Tourville (DKT) labeling protocol (Desikan et al., 2006) was used

to parcellate each cortical hemisphere into 31 anatomical regions.

Additionally, nine subcortical regions were added for each hemi-

sphere: hippocampus, amygdala, subthalamic nucleus, globus pallidus

internal segment, globus pallidus external segment, putamen, caudate,

nucleus accumbens, and thalamus. The FSL function, fslmeants, was

used to calculate an average over voxels within each ROI to get the

representative time courses. Finally, temporal band-pass filtering was

applied to detrend the time course signal and to retain frequencies

between 0.01 and 0.1 Hz.

2.3.2 | Leading Eigenvector Dynamics Analysis

We applied LEiDA to characterize recurrent PL patterns in fMRI sig-

nals. This data-driven approach relies on the leading eigenvector of

the phase coherence matrix at each single TR (Cabral et al., 2017).

First, participant-specific sets of 80 ROI time courses were demeaned

and Hilbert transformed to estimate the phase of the ROI signals

(Figure 1a). The Hilbert transform expresses any given signal x in polar

coordinates, that is, x = A cos θ, where A is the instantaneous ampli-

tude, and θ the instantaneous phase at a given time point. Then, at

each time point, the phase coherence between two regions, n and p,

can be calculated as the cosine of the phase differences as in the fol-

lowing equation:

PL n,pð Þ¼ cos θ nð Þ�θ pð Þð Þ

where PL takes values from 1 to �1, for signals changing in the same

or opposite direction, respectively (Figure 1b). This process results in a

time-resolved dynamic phase-locking (dPL) matrix with size

N � N � T, where N (=80) is the number of brain regions and

T (=204) is the number of recording frames in each scan (Figure 1c).

The first and last volumes of each scan were removed to account for

boundary distortions associated with the Hilbert transform. Next, the

Leading eigenvector, V1, of each PL matrix was calculated (Figure 1d).

The leading eigenvector captures the dominant instantaneous connec-

tivity pattern, which substantially reduces data dimensionality from

N � N to N � 1.

2.3.3 | Detection and characterization of recurrent
PL-states

We employed a data mining approach that successively partitions the

data searching for the partitions that are able to detect changes asso-

ciated with the recurrence of a new MDD episode. Although an open

question in dynamic FC research is the number of recurrent brain

states, here we do not aim to identify the optimal number of PL-states

explored during resting-state activity. Instead, we aimed to identify

and characterize the dynamics of recurrent FC patterns that could

V1 from all time 
points and 
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F IGURE 1 Detection of recurrent phase-locking (PL) patterns in fMRI signals. (a) The fMRI signal is band-pass filtered between 0.01 and
0.1 Hz (blue) and Hilbert transformed into an analytic signal, whose phase can be represented over time (eiθ black arrow) and at each TR (red
arrows). (b) The phases in all N = 80 regions at a single TR are represented in the complex plane (right) and cortical space (left; arrows are placed
at the center of gravity of each region n; the direction and color of the arrows indicate the sign of the corresponding element in the leading
eigenvector V1(n,t) (red for positive and blue for negative). (c) The PL matrix captures the phase alignment between each pair of regions. (d) The
leading eigenvector of the PL matrix at time t, V1(t) captures the main orientation of all phases. (e) The leading eigenvectors obtained for each
time point are concatenated over scans and subjects, and fed into a k-means clustering algorithm which divides the pool of data points into a
predefined number of clusters k. (f) Cortical representation of the PL-states (clusters). PL = phase-locking (right).
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potentially explain changes associated with the experience of a new

depressive episode. As brain signatures related to MDD recurrence

may arise at different levels of granularity, we used a k-means cluster-

ing algorithm, which was run for 19 partition models by varying the

number of clusters k from 2 to 20, with higher k resulting in more

fine-grained configurations. For each k, the 4488 leading eigenvectors

(resulting from 11 subjects, 2 scans, 204 volumes each) were parti-

tioned into k clusters (Figure 1e), resulting in k cluster centroids of

N � 1 dimensions, each representing a recurrent PL-state (Figure 1f).

With the PL-states derived from the data of the 11 recurring patients,

we applied these to the 17 matched nonrecurring, remitted patients

used for the validation step. In these 17 nonrecurring rMDD patients,

6936 leading eigenvectors were obtained (17 subjects, 2 scans,

204 volumes); a k-means clustering with a single iteration, using the

cluster centroids from the recurring group as “start vectors” defining

identical PL-states.

PL-states were characterized according to their fractional occu-

pancy and lifetime. Fractional occupancy is calculated as the temporal

proportion of epochs assigned to a given cluster centroid, that is, the

proportion of time in which a PL-state was active. The lifetime of each

PL-state is the mean number of consecutive epochs in the same state.

2.3.4 | Phase-shifted signals between brain regions

Previous studies show that LEiDA captures relevant phase-shifts

between brain regions (e.g., Cabral et al., 2017; Figueroa et al., 2019),

which is often missed with typical measures of correlation. Phase

locking is a measure of synchronization that preserves both in-phase

and anti-phase relationships in the data (Hancock et al., 2022). To fur-

ther investigate the relevance of signals that are shifted in phase, we

obtained a “decoupling metric”—calculated as a continuous metric to

estimate the phase shift of a given functional subsystem from the rest

of the brain. Since each PL-state is represented by a Nx1 vector with

positive and negative elements, we calculated the mean phase across

regions with a positive sign and the mean phase across regions with a

negative sign, and then calculated the angular difference between

these two phase signals over time—obtaining a temporal signature

capturing the degree of shift between the functional network

detected in each PL-state and the rest of the brain. We averaged the

angular difference over time for a metric of total phase shifting of a

given functional network that can be compared between scan-

sessions or subjects. The moments when segregation or “decoupling”
is observed can be considered the activation of the given functional

network—not in sync with the rest of the brain.

2.4 | Statistical analysis

Given the moderate number of patients involved, a repeated mea-

sures ANOVA investigating the group-by-time interaction was not

justified. Therefore, differences in fractional occupancy and lifetime

were statistically assessed between scans in the recurring group

separately, using a nonparametric permutation-based paired t-test

(5000 permutations). In line with Figueroa et al. (2019), p-values were

adjusted for each of the 19 partition models obtained by k-means

clustering by controlling the false discovery rate (FDR) as proposed by

Benjamini and Hochberg (1995).

As indicated above, with the PL-states identified in recurring

patients, we repeated the analyses in the matched nonrecurring

rMDD patients, as a validation of the specificity of findings. Moreover,

in a sensitivity analysis, we determined the re-occurrence of PL-states

in the nonrecurring rMDD patients separately. Therefore, the

k-means clustering was applied directly on the 6936 leading eigenvec-

tors from the nonrecurrent patients (from 17-subjects, 2-scans,

204-volumes), and the two sessions were compared using a nonpara-

metric permutation-based paired t-test (5000 permutations) for frac-

tional occupancy and lifetime.

In the identified PL-states, post-hoc, we compared the decoupling

metric between the two sessions. Again, we used permutation paired

t-tests in the recurring and nonrecurring group separately.

In a post-hoc analysis, we used Bayesian paired t-tests to quantify

evidence in favor of the alternative hypothesis (recurring patients) and

in favor of the null hypothesis (nonrecurring patients) in the states

identified with the above-described frequentist approach.

3 | RESULTS

Recurring and nonrecurring patients did not differ with respect to

number of men/women, age, IQ, number of depressive episodes,

months since baseline assessment, and follow-up time-point of the

second MRI session. The groups were matched on HDRS scores at

baseline, but as expected, differed on their HDRS scores during the

follow-up scan, with recurrent patients having a significantly higher

symptom score. See Table 1 for sample characteristics and statistics.

Patients who were scanned did not differ from the overall sample that

had a recurrence during the follow-up period (Supplementary Material

Table S3).

3.1 | Recurrence-related changes in PL-state
fractional occupancy

Significant differences in fractional occupancy between baseline and

follow-up occured in states characterized by fine-grained network

configurations (Figure 2). Partition k = 18 was the first partition

model to return significant changes associated with the recurrence

of a new MDD episode. Specifically, the average fractional occu-

pancy of two states increased from remission to recurrence: PL-state

k18c10 (t(10) = 2.91; p-FDR = .039, d = .88), which comprises areas

of the reward system, namely, basal ganglia and anterior cingulate

cortex (ACC), and k18c15, (t(10) = 3.14; p = .004; p-FDR = .039,

d = .95), which includes connections of the visual and dorsal atten-

tion network (Figure 2c). These two PL-states (i.e., clusters c10 and

c15 for k = 18) are represented in Figure 2b as vectors, where each
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F IGURE 2 Significant increases in the fractional occupancy of two PL-states during the experience of a new MDD episode. (a) Statistical
significance associated with changes in fractional occupancy from remission to recurrence, in the entire repertoire of PL-states returned by
each of the 19 partition models (k2–k20). While most PL-states do not show significant changes (black dots) between baseline (remission) and
follow-up (recurrence), for all k > 17, two PL-states repeatedly survive FDR corrections (indicated with numbers). PL-states failing to reach the
FDR-corrected significance threshold but with puncorrected <0.05 are indicated with gray dots. PL-states are labeled from 1 to k number of
clusters considered in each partition model; as a result, variant forms of the same underlying PL-state do not necessarily have the same label in
every partition. (b) Vector representation of the PL-states with a significant (p-FDR < .05) change in their fractional occupancy from baseline
(remission) to follow-up (recurrence). Each bar plot shows the elements in V1, representing fMRI signals of brain regions that become coherent
and phase-shifted by more than 90� with respect to the signals in the rest of the brain. States are color-coded according to their similarities;
similar forms of these two states also appear in partition k19 and k20 (and also in higher partitions see Supplementary Material Figure S1 for
partitions up to k30). (c) Cortical space representation of the two PL-states, only rendering regions where the phase is shifted more than 90�

with respect to the main phase orientation. Underneath each brain plot, graphical representation of the changes in fractional occupancy
between baseline and follow-up for the recurring rrMDD patients (i.e., recurrence at follow-up) and the nonrecurring rrMDD patients
(i.e., maintaining remission at follow-up). Gray lines represent patient-specific scores, and error-bars represent the mean ± standard error of
the mean across subjects. PL = phase-locking.
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element represents a brain area, and whose value indicates the

degree to which the signal in these areas shifts from the main phase

direction.

Significance and effect-sizes were comparable for the k = 19 and

20 clustering solutions. Validating the specificity of our findings in

recurring rMDD-patients, we verified that the fractional occupancy of

these two states did not significantly change in nonrecurring rMDD-

patients. Supplementary Material Table S1 shows the fractional occu-

pancy scores and statistics for all PL-states in partition k = 18.

Finally, post-hoc Bayesian paired t-tests showed moderate evi-

dence for the alternative hypothesis (baseline < follow-up) in the

reward network (basal ganglia, ACC; Bayes Factor = 8.34) and

strong evidence in the visual-attention network (Bayes

Factor = 11.45) in recurring patients. In nonrecurring patients, there

was moderate evidence in favor of the null hypotheses

(no difference between baseline and follow-up) in the reward net-

work (basal ganglia, ACC; Bayes Factor = 3.21) and visual-attention

network (Bayes Factor = 4.01).

3.2 | Recurrence-related changes in state lifetime

We also explored within-subject differences regarding state lifetime,

which is the duration (in seconds) that a given state occurs. We found

two distinct states that significantly changed from baseline to follow-

up for several partition models (Figure 3a). At lower numbers of PL-

state partitions (k = 3, 4, 6), a PL-state (k3c3) that consisted of the

DMN showed significantly longer lifetimes (shown in gray in

Figure 3b). Partitioning the data into a high number of clusters (k > 8)

returned a state characterized by connections within the reward net-

work (shown in brown in Figure 3b; k8c4, k10c5, k11c5, k14c7,

k17c8, k19c11, k20c10); a variant form of this state was also found to

be significantly different from remission to recurrence in terms of

fractional occupancy.

The lifetime of a state is calculated as the average number of con-

secutive frames in that state. The higher the number of clusters

considered in a partition model, the shorter the state lifetimes. Given

the relatively short length of the recording session (204 volumes) with

a TR of 2 s, the states resulting from partitions with higher cluster

numbers should be interpreted with caution. Therefore, here, we

focused on the state returned by the lowest partition: PL-state

3 (k3c3). As Figure 3c shows, the mean lifetime of PL-state k3c3 sig-

nificantly increased from remission to recurrence (t(10) = 2.44; p-

FDR = .038, d = .74). Significance and effect-sizes were comparable

for the k = 4 and 6 clustering solutions.

Validating the specificity of our findings in recurring

rMDD-patients, we did not find a significant difference in the lifetime

of PL-state k3c3 for patients who were not experiencing a recurrent

episode at follow-up (t(16) = .96; p = .172). Supplementary Material

Table S2 shows the lifetime scores and statistics for the states in par-

tition k = 3.

Post-hoc Bayesian paired t-tests showed moderate evidence for

the alternative hypothesis (baseline < follow-up) in lifetime duration

of the DMN (Bayes Factor = 4.39) in recurring patients. In nonrecur-

ring patients, there was relatively weak evidence in favor of the null

hypotheses (no difference between baseline and follow-up) in the

same network (Bayes Factor = 2.69).

3.3 | Phase shift of the reward system from the
rest of the brain

To further investigate the effects captured with LEiDA, we analyzed

how fMRI signals evolve over time in one of the subsystems found

to “shift in phase” or “decouple” from the rest of the brain, signifi-

cantly more often in rrMDD-patients experiencing a recurrence rela-

tive to baseline. When PL-state k18c10 is on, signals in the regions

with a positive sign in this PL-state (corresponding to the basal gang-

lia and ACC) align together and shift in phase with respect to regions

with a negative sign (Figure 4a). When comparing the average phase

shift between signals in the reward system (basal ganglia, ACC) and

the rest of the brain, a significant increase in phase shift is detected

when patients experienced a recurrence of MDD (t(10) = 2.65,

p = .008; Figure 4b). Instead, no significant change was observed for

patients who were still in remission at follow-up (t(16) = .14,

p = .446). Supplementary Material Figure S2 illustrates in more

detail the phase shift of the reward system from the rest of the

brain.

3.4 | Sensitivity analysis

Since baseline–follow-up differences were tested on the PL-states

that were defined solely from the two scan sessions of the recurring

patients (n = 11), we tested potential differences between baseline

and follow-up on the states derived from the two scan sessions of the

nonrecurring patients (n = 17). The PL-states derived from this model

resembled the PL-states as determined from the recurring patients

(Supplementary Material Figure S3A). No significant (p-FDR < .05) dif-

ferences were observed for any of the PL-states in any of the 19 parti-

tion models (k2–k20) between baseline (remission) and follow-up

(maintained remission) for the matched nonrecurring patients

(Supplementary Material Figure S3B).

4 | DISCUSSION

In the current study, we investigated dynamic FC changes that

occurred in rMDD patients after transitioning from remission to a

recurrence of a depressive episode. We found significant within-

subject changes in the fractional occupancy and lifetime duration of

three PL-states. Specifically, the basal ganglia–ACC circuit, part of the

reward network, and a widespread visual-attention network were

more likely to occur when suffering from a depressive episode as

compared to being in a state of remission. Additionally, the DMN was

activated for a longer duration during a recurrence of depression. As a
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validation, there were no statistically significant changes seen in a

separate sample of matched rMDD patients scanned twice when

remaining in remission with comparable follow-up times, age, sex, and

IQ. Finally, we showed post-hoc that the observed changes in the

basal ganglia–ACC circuit, were due to an increased phase shift, that

is “decoupling,” of this circuit from the rest of the brain.

+ phase projection into V1
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F IGURE 3 Significant increase in PL-state 3 lifetime during the experience of a new MDD episode. (a) Statistical significance associated with
changes in lifetime from remission to recurrence, in the entire repertoire of PL-states returned by each of the 19 partition models (k2–k20). While

most PL-states do not show significant changes between remission and recurrence (black dots), two PL-states repeatedly survive FDR corrections
(indicated with numbers). PL-states failing to reach the FDR-corrected significance threshold but with puncorrected < .05 are indicated with gray
dots. PL-states are labeled from 1 to k number of clusters considered in each partition model; as a result, variant forms of the same underlying PL-
state do not necessarily have the same label in every partition. (b) Vector representation of the PL-states with a significant (p-FDR < .05) change
in their lifetime from baseline (remission) to follow-up (recurrence). Each bar plot shows the elements in V1, representing fMRI signals of brain
regions that become coherent and phase-shifted by more than 90� with respect to the signals in the rest of the brain. States are color-coded
according to their similarities. (c) Cortical space representation of the centroids of PL-state 3. Rendering only of regions phase-shifted more than
90� with respect to the fMRI signals in the rest of the brain. Underneath the brain plot, graphical representation of change in state lifetime
between baseline and follow-up for the recurring rrMDD patients (i.e., recurrence at follow-up) and the nonrecurring rrMDD patients
(i.e., maintaining remission at follow-up). Gray lines represent patient-specific scores, and error-bars represent the mean ± standard error of the
mean across subjects. PL = phase-locking.
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The striatum (caudate, putamen, nucleus accumbens) and ACC

are main structures involved in different aspects of reward processing

(Haber & Knudson, 2010) and part of the mesolimbic reward-circuitry

underlying dopaminergic neurotransmission (Schott et al., 2008). Dys-

functions of prefrontal-basal ganglia/(para)limbic networks have been

linked to a dysfunctional reward system in depressed patients

(Martin-Soelch, 2009). In particular, hypo-activity of the striatum has

been reported in MDD in reinforcement learning and reward proces-

sing task paradigms (Gradin et al., 2011; Hall et al., 2014; Kumar

et al., 2008; Pizzagalli et al., 2009; Robinson et al., 2012; Smoski

et al., 2009). Also in the overall sample of the DELTA-neuroimaging

study, impaired learning signals in the ventral tegmental region differ-

entiated rMDD patients and controls (Geugies et al., 2019), similar to

Kumar et al. (2008).

Reward sensitivity has also been linked to differences in resting-

state activity in the mesocortical pathway (Adrián-Ventura et al.,

2019). Similar to task-based findings in MDD patients suggesting a

deactivation of the reward system, FC measures report reduced cou-

pling within prefrontal–basal ganglia circuits (caudate, putamen,

nucleus accumbens) and link this to attenuated connectivity of the

reward network (Li et al., 2018; Tol et al., 2013). This FC impairment

has been related to depression severity and MDD symptoms

(Satterthwaite et al., 2015; Zhu et al., 2017). In fact, this intrinsic FC

impairment appears to be progressive across the course of depression

(Liu et al., 2021). Of note, others have shown that within the reward

network, the ventral striatum exhibits both hyper- and hypo-

connectivity (with the DMN) in MDD (Leaver et al., 2016) and

increased information transfer between the OFC and subcortical (lim-

bic) regions in first-episode MDD-patients (Gao et al., 2016). In line

with these latter studies, we found increased fractional occupancy of

a state comprised of regions subserving the reward network, namely

the striatum/basal ganglia (caudate, putamen, nucleus accumbens)

and ACC, whilst experiencing a depressive episode.

The ACC is not only involved in reward processes but has a

broader role in the integration of attentional and affective informa-

tion necessary for evaluative and regulatory processes (Etkin

et al., 2011). Stemming from this, altered ACC functioning has been

proposed as a key neural correlate of MDD (Davey et al., 2012;

Hamilton et al., 2013; Kantrowitz et al., 2021). For example, a

review by Rive et al. (2013) found that the ACC was both hyper-

and hypo-active in MDD, depending on the type of task that was

assessed. Other studies have shown aberrant resting-state connec-

tivity of the ACC in MDD patients. For example, higher levels of

depression were correlated with decreased connectivity between

the ACC and precuneus in first-episode adolescents (Connolly

et al., 2013) and less flexibility (i.e., fewer dynamic connectivity

(a) (b)

F IGURE 4 Significant change in phase shift of the reward network from the rest of the brain during the recurrence of an MDD episode.
(a) For illustrative purposes we visualize the fMRI signals in all 80 brain areas during remission (top) and at follow-up, when having a recurrence
(bottom) in a single patient. Time-series of the positive community of k18c10 are shown in red, all the remaining brain regions are shown in blue.
The three-dimensional effect is obtained by plotting the Hilbert-transformed ROI signals over time, but the view is shown only from one side. The
signals have a real and an imaginary part, which can be perceived as a hidden dimension, on which they evolve while conserving angular
momentum. The darker green patches indicate when the state k18c10 was detected by the k-means clustering. The lighter green patches indicate
when the leading eigenvector V1(t) is relatively close to the centroid k18c10, to give a notion of when this state may be present, even if not

dominant. (b) Evaluating the average phase-shift between regions of different signs in each PL-state (i.e., the red vs. the blue time series in panel
(a)), we compare this measure across time points and conditions. The recurrent patients (i.e., recurrence at follow-up) are found to significantly
increase the phase shift (in degrees) from baseline to follow-up, whereas the nonrecurring rrMDD patients (i.e., maintaining remission at follow-
up) do not exhibit any significant change. Gray lines represent patient-specific scores, and error-bars represent the mean ± standard error of the
mean across subjects. PL = phase-locking.
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changes) of the ACC in patients with MDD (Zheng et al., 2018).

Changes in the fractional occupancy of the ACC (as part of a larger

network state) during a depressive episode fits with its purported

role in MDD neuropathology.

Note that the increased fractional occupancy of this state may

not directly translate to increased activity or connectivity of a net-

work. By introducing a new “decoupling metric,” we further demon-

strated that this state was characterized by a consistent de-phasing of

reward network areas from the rest of the brain, suggesting network

decoupling and segregation during recurrence. Similarly, other studies

have pointed to a desynchronization in striatal-frontal connectivity

(Leaver et al., 2016), synergistic functional decoupling in the reward

network correlated with anhedonia (Gong et al., 2018), and increased

FC fluctuations within thalamic and basal-ganglia networks (Long

et al., 2020).

A desynchronization or decoupling of neural networks may likely

be an indicator of the functional pathophysiology of MDD, extending

to other networks such as the DMN and the visual-attention network.

In fact Marchetti et al. (2012) initially proposed an imbalance between

task-positive and task-negative elements of the DMN as a risk factor

for depression recurrence. Later studies in MDD have pointed to

altered neural networks and connections with and within the DMN (Li

et al., 2020; Liu et al., 2017), as well as excessive fluctuations in FC in

DMN (Long et al., 2020). Others have shown a persistent reduction of

low-frequency fluctuations (representing intrinsic local neuronal activ-

ities) in the precuneus and posterior cingulate cortex, despite treat-

ment or achieved remission (Wang et al., 2020)—regions considered

the functional core of the DMN (Utevsky et al., 2014). Such a MDD-

related disruption in network communication in the DMN has also

recently been reported with respect to rich-club organization (the

basis for long-range, high-capacity signaling; Liu et al., 2020). Domi-

nance of DMN activity has been associated with MDD recurrence

and related to rumination (Hamilton et al., 2011; Lythe et al., 2015).

Similarly, in this study, we found increased recruitment (lifetime) of

the DMN during a depressive state versus previous remission, reflect-

ing perhaps the incremental nature of DMN dominance and a particu-

lar failure to control internally focused thoughts in recurrence.

Other studies also point to disrupted communication in or with

visual-attention circuits. For example, stronger connectivity of atten-

tion regulation circuits to DMN has been implied to relate to better

responsivity to internally generated self-relevant thoughts rather than

outside stimuli (Knyazev et al., 2018). Stability of FC (vs. more fre-

quent and rapid shifts) in visual-attention regions, such as the ACC,

calcarine sulcus, and middle occipital gyrus has been shown to predict

improvement in depressive symptoms in MDD (Li et al., 2021). Here,

we also found that the visual-attention circuit was more likely to

occur during a recurrence, compared to remission, which could repre-

sent attempts to regulate and overcome depressive phenomena in

patients experiencing a recurrence.

Importantly, what we show with the results of the current study

is that network reconfiguration takes place within individuals when

they transition from a state of remission to a depressive episode. As

such, implementing dynamic connectivity approaches in clinical popu-

lations could give insight into changes that occur across time in indi-

viduals, especially during vulnerable periods (e.g., recurrence of a

depressive episode). Future work should investigate how these neural

measures could be used to improve recurrence prevention and what

would be the optimal time to administer treatment. The finding of

increased segregation of certain brain networks during a depressive

episode might help to identify ways of improving flexibility and inte-

gration of the implicated networks. For example, electroconvulsive

therapy has been shown to impact ventral striatum connectivity—a

region deemed to be a key structure contributing to network desyn-

chronization in MDD (Leaver et al., 2016). Identifying the source of

the transition from integrated to more segregated neural states could,

therefore, be used in the future as a target for tailoring interventions

based on individualized risk assessments.

4.1 | Interpretational issues

Several limitations should be considered with respect to the results of

this study. Arguably, the reliability and generalizability of the pre-

sented inferences is limited by the low sample size (overall n = 28;

recurrent n = 11). However, this should be weighed against the

uniqueness and specificity of the sample—antidepressant-free

patients with at least two past episodes of MDD, scanned during

remission, followed-up, and then scanned again while in a depressive

episode, as well as a matched comparison group of MDD participants

without a recurrence when scanned again. While these findings

should be taken tentatively and replicated in future longitudinal stud-

ies, they provide an initial insight into the neural biomarkers changing

in the perspective of recurrence.

Although the nonrecurring patients were in remission during the

follow-up scan, a possibility remains that they had a depressive epi-

sode at a later time. The fact that we find differences in PL-state pro-

files in the recurring, but not in the nonrecurring group, is associated

with the present experience of acute depressive symptoms. A full fac-

torial comparison of recurrent and non-recurrent patients at baseline

(and changes over time) was not possible given the group sample

sizes. It is, therefore, not possible to draw direct conclusions with

respect to differences between the two groups. Especially changes in

DMN should be treated with caution and replicated in future studies

given weak Bayesian evidence supporting null effects in this network

in the nonrecurring group. Additionally, future investigations may

identify how specific symptomatology, such as anhedonia (Servaas

et al., 2017) relates to changes in these FC dynamics.

It could be argued that the networks we identified could be

restricted due to the number of states (k) that best represents FC

dynamics. Here, we assessed our results for a wide range of k (from

2 to 20), and further demonstrated the consistency and significance

of our findings across several choices of k. Although it can be argued

that the networks were constrained by the parcellation atlas that was

used - in contrast to Figueroa et al. (2019) who used the Anatomical
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Automated Labeling atlas - we used a clinically relevant, custom-made

“DBS80” parcellation, designed specifically for DBS studies.

Although the new “decoupling metric” was implemented based

on results obtained from LEiDA, these two approaches provide novel

insights regarding underlying differences in fractional occupancy of

the reward network. As such, the decoupling metric is not only a con-

firmation, but also an extension of the results obtained using LEiDA.

With LEiDA, only the epochs when a particular pattern is dominant

(“represented by the leading” eigenvector) are taken into account,

whereas decoupling is computed over the entire time series. This

approach relies on the hypothesis that phase relationships between

areas are critical. For example, one area consistently activates a bit

later than the other—as such these areas would be coupled, but not

in-phase, as typically captured by co-activation measures. Using this

new metric, we can quantify the mean phase shift (or angular differ-

ence) between baseline and follow-up and, therefore, investigate

whether depression recurrence is associated with a consistent de-

phasing of one network from the rest of the brain.

5 | CONCLUSION

With a unique repeated measures design of remitted depressed

patients followed-up for 2.5 years while scanned in remission and in a

recurrence episode, this study provides initial evidence of alterations

in the brain's dynamical repertoire that may be associated with the

transition from remission to recurrence of a depressive episode. These

results highlight the potential role of widespread reconfiguration of

networks known to be implicated in MDD, such as the DMN, reward,

and attention circuits. Crucially, we show that these changes occur

within individuals and as such provide a promising avenue for emerg-

ing personalized treatment.
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