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Functionally relevant network patterns form transiently in brain activity during rest,
where a given subset of brain areas exhibits temporally synchronized BOLD signals.
To adequately assess the biophysical mechanisms governing intrinsic brain activity,
a detailed characterization of the dynamical features of functional networks is needed
from the experimental side to constrain theoretical models. In this work, we use an
open-source fMRI dataset from 100 healthy participants from the Human Connectome
Project and analyze whole-brain activity using Leading Eigenvector Dynamics Analysis
(LEiDA), which serves to characterize brain activity at each time point by its whole-
brain BOLD phase-locking pattern. Clustering these BOLD phase-locking patterns
into a set of k states, we demonstrate that the cluster centroids closely overlap with
reference functional subsystems. Borrowing tools from dynamical systems theory, we
characterize spontaneous brain activity in the form of trajectories within the state space,
calculating the Fractional Occupancy and the Dwell Times of each state, as well as
the Transition Probabilities between states. Finally, we demonstrate that within-subject
reliability is maximized when including the high frequency components of the BOLD
signal (>0.1 Hz), indicating the existence of individual fingerprints in dynamical patterns
evolving at least as fast as the temporal resolution of acquisition (here TR = 0.72 s). Our
results reinforce the mechanistic scenario that resting-state networks are the expression
of erratic excursions from a baseline synchronous steady state into weakly-stable
partially-synchronized states - which we term ghost attractors. To better understand
the rules governing the transitions between ghost attractors, we use methods from
dynamical systems theory, giving insights into high-order mechanisms underlying
brain function.

Keywords: LEiDA, ghost attractors, dynamic functional connectivity, dynamical system theory, functional
networks, resting-state
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INTRODUCTION

For healthy human cognition, the brain needs to engage
in functionally meaningful activity through an integration of
information incoming from various segregated brain areas
(Tononi and Edelman, 1998; Sporns et al., 2000). At rest, brain
activity has been shown to reveal the spontaneous activation
of meaningful functional subsystems, sharing spatial features
with networks of brain areas typically activated during task
(Beckmann et al., 2005; Fox et al., 2005; Damoiseaux et al., 2006).
These spatially activated coalitions of brain regions, dubbed
resting-state networks (RSNs), have been remarkably consistent
across neuroimaging studies and utilized in describing functional
changes in disruptions to the healthy brain functioning (Greicius,
2008; Fox and Greicius, 2010; van den Heuvel and Hulshoff
Pol, 2010; Vargas et al., 2013; Kaiser et al., 2015). However,
while RSNs represent spatially meaningful information, in order
to further investigate the generative mechanisms of RSNs and
their functional role, it is important to further characterize
their behavior in the temporal domain (Preti et al., 2016;
Cabral et al., 2017b).

Indeed, recent advances have focused on how these spatially
coherent functional patterns can explain the complex brain
dynamics evolving in time (Chang and Glover, 2010; Hutchison
et al., 2013; Allen et al., 2014). However, the most appropriate
way to characterize network dynamics at the whole brain
level is still unclear. The most common approach to dynamic
functional connectivity (dFC) has been the sliding-window
method, which describes statistical relationship between brain
regions in successive intervals of time and generates recurrent
states of functional connectivity using unsupervised learning
(Hutchison et al., 2013; Allen et al., 2014; Calhoun et al.,
2014). However, the choice of the “window” size introduces
limitations which hinders the temporal resolution as well
as statistical validation (Hindriks et al., 2016; Preti et al.,
2016). To overcome these caveats, recent development has
focused on describing single frame functional connectivity
[FC(t)] either by considering BOLD co-activations (Karahanoğlu
and Van De Ville, 2015; Tagliazucchi et al., 2016) or BOLD
phase coherence (Glerean et al., 2012; Cabral et al., 2017b).
Framewise co-activation analysis considers the brain regions
with BOLD signal above a certain threshold before clustering
into distinct FC patterns (Karahanoğlu and Van De Ville,
2015; Tagliazucchi et al., 2016). While it allows for higher
temporal resolution, it is still dependent on the choice of the
threshold as well as limited to describing simultaneous (in-phase)
activations. On the other hand, phase coherence techniques
represent the time instances as relative phase relationships
between brain regions and thus do not require thresholding
and are sensitive to phase-shifted patterns (Glerean et al., 2012;
Cabral et al., 2017b)

To overcome issues with high data dimensionality, Cabral
and colleagues have proposed to represent the instantaneous
relationships between brain regions using the largest magnitude
eigenvector of BOLD phases (a 1xN vector for each time
point) instead of the NxN phase synchronization matrix
(Cabral et al., 2017b). Notably, Leading Eigenvector Dynamic

Analysis (LEiDA) has been shown not only to improve
clustering performance, but to consistently capture meaningful
BOLD phase-locking states (PL-states) that closely overlap with
previously-described functional subsystems (Cabral et al., 2017b;
Figueroa et al., 2019; Lord et al., 2019). By representing whole-
brain activity over time as a succession of discrete PL states, it
is possible to quantify the fractional occupancy, the probability
of transition as well as the Dwell Time of individual states.
Importantly, these measures have shown to be significantly
related with cognitive performance (Cabral et al., 2017b), to be
altered in clinical populations of patients suffering with major
depressive disorder (Figueroa et al., 2019), as well as to describe
the network-specific modulation of resting-state activity by the
psychoactive compound psilocybin (Lord et al., 2019). As such,
LEiDA opens up as a useful tool to quantitatively characterize
individual fingerprints in dynamic functional connectivity,
reinforcing a mechanistic scenario proposed by theoretical works
where RSNs are the expression of a repertoire of BOLD FC
configurations emerging from complex non-linear interactions in
the whole-brain network (Ghosh et al., 2008; Cabral et al., 2011;
Deco and Jirsa, 2012; Deco et al., 2013; Haimovici et al., 2013;
Hansen et al., 2015).

Here, we explore this mechanistic hypothesis using the
mathematical formalism from dynamical systems theory and
Markov chains in order to characterize the spatio-temporal
dynamics of spontaneous brain activity in terms of probabilistic
trajectories between recurrent BOLD phase-locking patterns. We
validate the functional role of the patterns obtained by comparing
them with known RSNs. Furthermore, we evaluate the stability of
BOLD phase locking states based on their Fractional Occupancy,
Dwell Times and Transition probabilities. While previous works
have applied LEiDA to condition-specific datasets, with reduced
sample sizes, here we make secondary use of a large open source
dataset of healthy participants, demonstrating the reliability
of the yielded metrics across subjects and consecutive fMRI
recording sessions.

MATERIALS AND METHODS

Data
All data used in this work comes from a publicly available
database – the Human Connectome Project, WU-Minn
Consortium (Principal Investigators: David Van Essene and
Kamil Ugurbil; 1U54MH091657) with funding from the sixteen
NIH Institutes and Centers supporting the NIH Blueprint for
Neuroscience Research; and by the McDonell Center for Systems
Neuroscience at Washington University.

Participants
100 unrelated subjects (mean age 29.5 years old, 55% females
(Glasser et al., 2013)).

Neuroimaging HCP Acquisition
Each participant underwent four resting-state fMRI sessions
lasting 14 min 30 s with a repetition time (TR) of 0.72 s, on a
3-T connectome Skyra scanner (Siemens) – two during the first
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day and two during the second day. The 2 fMRI sessions acquired
on the same day differ only in the oblique axial acquisition phase
encoding, one being from Left to Right (LR) and the other from
Right to Left (RL). The acquisition and pre-processing of the
data is fully described in detail at the HCP website https://www.
humanconnectome.org/. Here, we used the fMRI data acquired
on the first day of scanning. One subject was excluded because
one session was missing. In total, two same-day resting-state
fMRI sessions from 99 of the 100 unrelated subjects’ sessions were
used for the analysis.

Parcellation
To reduce the dimensionality of the voxel-based data
(Voxels × Time), the Anatomic Automatic Labeling (AAL)
atlas was used to define N = 90 anatomically distinct cortical
and sub-cortical regions covering the whole brain, excluding
the cerebellum. Data was reduced to size N × Time, with
Time = 1200 TR per session, by averaging the BOLD signals in
all the voxels associated to each brain region (Figure 1A).

Analysis
BOLD Phase Dynamics
To compute the phase relationship between brain regions, for
each region n with n = 1...N, a BOLD phase θ(n, t) varying
in time t, was calculated via Hilbert transform (Glerean et al.,
2012). The analytical signal expresses the regional signal x(t)
as x(t) = A(t) ∗ θ(t)) with A and θ representing the time-
varying amplitude and phase respectively (Figure 1C). The
first and last time points were removed from each time series,

to exclude the boundary artifacts induced by the Hilbert
transform. Subsequently, for every pair of brain regions n and
m at time t the phase coherence matrix dPC is calculated as
follows: dPC (n,m, t) = cos(θ (n, t)− θ(m, t)), where cos (0) =
1 represents the case when the two brain areas n and m are
aligned at time t (Figure 1E). Conversely cos (π) = −1 indicates
the two brain areas nandm to be anti-aligned at time t. Lastly,
cos (π/2) = 0 shows the two brain areas n and m at time
t to be orthogonal to each other and therefore their phase
relationship being 0.

Phase Dynamics Leading Eigenvector
We used LEiDA, where only the 1xN leading eigenvector V1(t)
of the dPC is considered in the analysis, to describe the phase
coherence pattern of the (NxN) dPC(t) at every time-point t
with reduced dimensionality. In other words, we calculated
the eigendecomposition of dPC(t) at every time t [dPC(t) =
V(t)D(t)V−1(t), where columns of V(t) are the corresponding
eigenvectors of dPC(t) and D(t) is the diagonal matrix of the
eigenvalues of dPC(t), and we took the first (most dominant)
eigenvectorV1(t) to represent the BOLD PL pattern at each time
point with size 1xN. Since dPC(t) is symmetric, its eigenvectors
are orthogonal (V−1(t) = V(t)T) and the eigenvalues are real.
Each element in the eigenvector can be associated to a specific
brain area (i.e., in Figures 1B–D each brain area is colored
according to its sign in V1(t)). The NxN dominant connectivity
pattern at every time t captured by V1(t) can simply be retrieved
by calculating the matrix product of the eigenvector with its
transpose as V1(t) ∗ VT

1 (t) (Cabral et al., 2017b).

FIGURE 1 | Time-evolving patterns of BOLD Phase Dynamics. (A) BOLD signals from a representative fMRI scan of the HCP dataset averaged over all voxels within
each region of interest (ROI). ROIs were defined using an anatomically-based parcellation scheme (AAL) covering the entire brain (here excluding the cerebellum).
(B) To illustrate BOLD phase dynamics, we select a representative interval of TRs. At each TR, blue circles represent the brain areas whose BOLD phase projects
into the main BOLD phase direction (captured by the leading eigenvector, see (C), and red dots represent the brain areas whose BOLD phase project into the
opposite direction of the main BOLD phase orientation. It serves to illustrate that the phase-shifted signals (in red) do not directly correspond to supra-threshold
BOLD increases. (C) Phase portraits of the analytic BOLD signal at each TR, where the real and imaginary axis represent the cosines and sines of the Hilbert phase
at each TR. (D) Representation of the brain patterns captured by the signs of the leading eigenvector at each TR, illustrating how phase-locking patterns evolve
smoothly over several TRs, whereas the corresponding BOLD signals (shown in panel B) exhibit significantly different activation patterns over the same range of TRs.
(E) Representation of the instantaneous phase coherence matrices obtained at each TR as the cosine of the phase difference at each instant of time.
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FIGURE 2 | Partition of the N-dimensional phase space into a K-dimensional state-based space. (A) Representation of all BOLD PL patterns captured at each TR in
a reduced 3-dimensional perspective of the phase space. Since each observation is a 1xN vector - corresponding to the leading eigenvector of BOLD phases at
each TR - the full phase space is N-dimensional, where N = 90 is the number of ROIs used to parcellate the brain). Each dot corresponds to one fMRI volume
recorded over time (TR = Repetition Time = 0.72 s). Dots are placed according to their cosine distance with respect to the first three principal components (i.e., the
first 3 eigenvectors of the covariance matrix) of all observations. (B) Partition of the Phase Space using K-means clustering decomposes the space of observations
into k clusters, where each observation from an fMRI experiment is assigned to a cluster given its closest proximity to the corresponding centroid. The centroids
obtained for K = 5 are represented by coloring each brain area using the same color scheme as in Figure 1, representing distinct whole-brain BOLD phase-locking
patterns. (C) Illustration of the partition of a 2D plane into k Voronoi cells, where each point in a given cell is closer to its centroid than to any other centroid.

With the aforementioned reduction, whole-brain activity at
each time point t is represented by a 1xN vector, where N is
the number of brain regions defined by the applied parcellation.
Each vector V1(t) can be seen as an observation of the dynamical
system and can be represented as a point in a N-dimensional
space RN (in Figure 2A, represented in R3 for illustration).
Each fMRI experiment is thus characterized by a trajectory of
the leading eigenvector V1 in this N-dimensional space. To
get a graphical representation (Figures 2A,B), we project each
vector V1(t) on the space determined by the first three principal
components of all V1s, (i.e., the x, y, and z coordinates are
given by the cosine distance between each 1xN V1(t) and the
first 3 Nx1 eigenvectors of the NxN covariance matrix of all V1s
(with size NxT).

Partition of Phase Space
In order to achieve a state-based representation, the leading
eigenvectors obtained from all 99 participants in the Left-
Right (LR) fMRI scanning session - corresponding to a total
of T = 118602 observations (99 × 1198 TRs) with N = 90
dimensions each - are partitioned into a set of discrete states.
Importantly, we do not include in this partition the Right-Left
(RL) fMRI scanning sessions from the same 99 participants
recorded on the same day, which will serve to test the
validity and consistency of the results, as described in the
following section.

Given the large number of observations in this dataset,
clustering algorithms relying on the TxT similarity matrix had
to be discarded because of limited computational resources
(i.e., computing our TxT matrix requires >100 GB of RAM).
Instead, we use the k-means algorithm, which relies on an
iterative process to find the solution that minimizes the distance
between each (1xN) observation and the closest 1xN cluster

centroid (we note that, given the large number of dimensions,
we use the Cosine distance, which significantly reduces the
computation time with respect to City Block or Euclidean
distances). As such, k-means algorithm is used to iteratively
cluster the leading eigenvectors into k = 2 to k = 20 clusters
(resulting in 19 partitions), repeating each calculation 100
times to ensure stability in the results. Since each observation
represents a time point, the output vector of cluster assignments
- where each observation is assigned to its closest 1xN
cluster centroidα = 1...k - can be approached as a trajectory
x (t) in state space.

In Figure 2 we show how the k-means clustering algorithm
divides the phase-space (here represented in only three
dimensions for illustration) into k = 5 (Voronoi) cells, where
each location in the phase space is assigned to the closest
centroid. Using colors to represent the regions of the phase
space assigned to each cluster Rα, we represent in Figure 2B
the same observations from panel A, but highlighting the cluster
assignment at each time point. Although the 3-dimensional
representation serves to illustrate the partition of the phase-space,
there is a clear overlap of colors given that the phase-space,
defined in N = 90 dimensions, cannot be adequately represented
in three dimensions only. To illustrate the decomposition into
k-means clustering algorithm we show, in Figure 2C, the
partition of a 2D plane into k Voronoi cells, where each region
in space is assigned to the closest centroid.

Each cluster Rα(with α = 1...k) is now represented by its
cluster centroid Vcα, each corresponding to a distinct BOLD
phase-locking state (which will be described in detail in the
section “Results”). To assess the quality of the cluster separation,
the silhouette value is computed for each k, which estimates how
similar each observation V1(t) is to its own cluster compared
to other clusters.
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Comparison to Reference Intrinsic Functional
Networks
The existence of functionally interconnected subsystems, where
subsets of brains areas consistently activate together even
during rest, has been widely explored in studies of resting-state
functional connectivity. Intrinsic Functional Networks, typically
assessed using correlation analysis, have been consistently
detected in large cohorts of resting-state fMRI experiments (Yeo
et al., 2011), but the analysis of their temporal dynamics has been
hindered by the methods used to assess them, namely sliding
window methods with their choice of the window over which
connectivity is computed (Hindriks et al., 2016).

Here, we verify if the centroids obtained from clustering
BOLD phase leading eigenvectors obtained at TR resolution share
spatial similarities with the seven cerebral intrinsic functional
networks estimated by Yeo et al. (2011) clustering correlation-
based functional connectivity between 1175 regions of interest
from 1000 participants.

To do so - and since our BOLD PL centroids Vα are defined in
AAL parcellation - we take the mask of the Yeo parcellation into
seven non-overlapping functional networks defined in MNI152
space1 and the mask of the AAL parcellation in the same MNI152
space, and calculate, for each of the 90 AAL brain areas, the
proportion of voxels assigned to each of the seven functional
networks, obtaining in this way 7 1× 90 vectors representing the
intrinsic functional networks in AAL space.

Subsequently, we compute the Pearson’s correlation (with
associated p-values) between these seven networks and the
centroids Vα obtained from our clustering analysis across
the whole range of k explored (setting all negative values of the
centroids’ vectors to zero, to consider only the areas whose BOLD
phase is shifted from the main orientation).

Projection of the Validation Dataset Into the Same
State Space
We used the second fMRI scanning session from each of the 99
participants recorded on the same day as the primary dataset -
differing only in the oblique axial acquisition phase encoding,
being Right to Left (RL) instead of Left to Right (LR) - to verify
the validity and consistency of the partition performed in the
previous session. To do so, we obtained all the 1xN leading
eigenvectors from the the Right-Left (RL) scanning session -
totaling 118602 observations (1198 TRs× 99 subjects) - using the
same methodology as before, but instead of running the k-means
algorithm, we compute the cosine distance between each 1xN
eigenvector V1(t) and the k 1xN cluster centroids Vcα obtained
from the previous analysis, and define the trajectory vector x (t)
by assigning each V1(t) to its closest cluster centroid Vcα .

Fractional Occupancy
Following the cluster partition into k PL states evolving in
time t, the probabilities - or fractional occupancies - 5

(S)
α

associated to each PL state α and each scan S, can be calculated

1surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011

as follows:

5(S)
α =

1
T

T∑
t=1

χ
[
x (t) ∈ Rα

]
(1)

where χ is the indicator function - χ (A) = 1 if the event A
is true, and χ (A) = 0 otherwise, and T = 1198 is the number
of time points (TRs) corresponding to each fMRI scan (S).
In other words, the equation counts the number of times
when the trajectory x (t) is assigned to each of the defined
clusters R(α), divided by the total number of time points T.
Furthermore, given that participants are constantly in resting
state - i.e. without performing any task -, we assume stationarity
in the data within each scan (justifying the time average in
Eq. 1). Cluster probabilities are estimated separately for each
individual fMRI scan.

Dwell Time
To describe the average time periods when a given PL state α is
being visited in each fMRI scan S, the Dwell Time DT(S)

α is defined
as the mean of all the consecutive periods of each state, i.e.,

DT(S)
α =

1
pα

pα∑
1

Cpα (2)

where DTα is the Dwell Time of PL state α, pα is the number of
consecutive periods assigned to PL state α and Cpα is the duration
of each consecutive period.

Markov Chain Transition Probabilities
Following the same rational as in Eq.1, the definition of the
probability 5αβ to be in the PL state α at time bin t and in the
PL state β at time bin t+ 1 can be written as follows:

5
(S)
αβ =

1
T − 1

T−1∑
t=1

χ[x (t) ∈ Rα, x (t + 1) ∈ Rβ
] (3)

and thus, the transition probability matrix W(S)
αβ of each fMRI

scan S is defined as:

W(S)
αβ = P[x (t + 1) ∈ Rβ

| x (t) ∈ Rα
] =

5
(S)
αβ

5
(S)
α

. (4)

Wαβ defines the transition matrix from state alpha to state beta.
This defines an homogeneous Markov chain, characterizing the
transition between BOLD phase locking states. The transition
probability matrix W(S)

αβ is estimated separately for each scan S.

To each matrix W(S)
αβ is associated a transition graph with an

oriented arrow from α to β if W(S)
αβ > 0 (see Supplementary

Figures S2–S4). To illustrate the transitions at the group level,
we represent the transition graph of the average transition matrix
Wαβacross all scans in the LR sessions.

Intra-Class Correlation
In order to calculate the reliability of the computed measures
between the LR and RL fMRI sessions recorded on the same
day, we calculated the Inter-Class Correlation (ICC) (Landis and

Frontiers in Systems Neuroscience | www.frontiersin.org 5 April 2020 | Volume 14 | Article 20

surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-00020 April 17, 2020 Time: 17:59 # 6

Vohryzek et al. Ghost Attractors in Spontaneous Brain Activity

Koch, 1977; Xing and Zuo, 2018). ICC describes the proportion
of within-subject variability versus between-subject variability
across recording conditions as follows:

ICC =
MSEb −MSEw
MSEb +MSEw

, (5)

where MSEw and MSEb are the within-subject and between-
subject mean squared errors, respectively (Xing and Zuo, 2018).
Positive ICC values (i.e., when within-subject MSE is smaller than
the between-subject MSE) indicate individual reliability, which,
depending on its value, is categorized as low (0 < ICC < 0.2),
fair (0.2 < ICC < 0.4), moderate (0.4 < ICC < 0.6), substantial
(0.6 < ICC < 0.8) and almost perfect (0.8 < ICC < 1)
(Landis and Koch, 1977).

Effects of Low-Pass Temporal Filtering
A typical step in the pre-procession of fMRI resting-state data
is the application of a low-pass filter to exclude high frequency
noise in the BOLD signal (typically < 0.1 Hz). However, given
that BOLD signals are already averaged over all voxels within
each brain area - which should improve the signal-to-noise ratio-,
and given the instantaneous nature of our dynamic analysis, we
performed our first analysis directly on the unfiltered BOLD
signals recorded at a TR of 0.72 s, corresponding to a Nyquist
frequency of fNq = 1/2TR = 0.694 Hz.

To verify whether the higher frequency components in
the BOLD signal are meaningful for the dynamic analysis of
functional networks, we apply a 2nd order Butterworth band-
pass filter to the ROI-averaged BOLD signals - before computing
LEiDA and clustering into k = 5 states - varying the low-pass
cut-off frequency to 0.07, 0.1, 0.2 or 0.6944 Hz, while keeping
the lower high-pass frequency limit at 0.01 Hz (to exclude only
the ultra-slow signal drifts from the scanner). ICC measures
were subsequently calculated for the corresponding Dwell Times,
Fractional Occupancy and Transition Probabilities obtained.

RESULTS

Phase-Locking States Reveal Relevant
Functional Networks
We obtain a set of BOLD phase-locking patterns from the first
session of resting-state fMRI of 99 unrelated subjects using
the LEiDA approach (see section “Materials and Methods” for
details). Each BOLD phase-locking pattern is represented as a
vector with N elements, each element representing the projection
of the BOLD phase of a brain area into the leading eigenvector of
all BOLD phases (here N = 90 since we use the 90 non-cerebellar
brain regions from the AAL atlas).

Firstly, we verify the overlap between the BOLD phase-locking
states obtained across clustering solutions (with 2 < k < 20)
to seven intrinsic functional networks defined in the literature
(Yeo et al., 2011). In Figure 3, we report for all partitions into
k states (rows), the k cluster centroids obtained (columns). The
cluster centroids Vcα(representing BOLD phase-locking states)
are represented in the brain by coloring only the brain areas
whose BOLD phase projects in the opposite direction from the

main orientation of BOLD phases (negative elements in Vcα).
BOLD phase locking states are color-coded according to the
most significantly correlated RSN used as reference (shown in
panel B), given a corrected threshold of p < 0.05/k, and in black
otherwise. The same Figure is shown from a top view perspective
in Supplementary Figure S1.

Sorting the states according to their probability of occurrence,
we find consistently across clustering solutions a most prevalent
state, occupying the first column of Figure 3, in which the BOLD
phase of all brain areas project into the same direction. Since
it does not reveal the separation of any particular subsystem,
and does not significantly overlap with any reference functional
network, this so-called global state (state 1) is represented as a
transparent brain.

The remaining states are all characterized by a phase shift
in the BOLD signal of a given subset of brain areas, which are
highlighted as colored patches. Notably, most of the obtained
cluster centroids demonstrate a close statistical similarity to
reference functional networks, revealing a strong and highly
significant overlap (up to r = 0.89, with p-values down to10−30)
with the different RSNs used as reference. We also find that
some partitions show different PL states overlapping with the
same reference RSN. When no significant overlap is found, the
patches are colored in black. One example is the second most
prominent state appearing in all clustering solutions with k > 7,
which involves regions of basal ganglia, which have been omitted
in the analysis of functional networks from Yeo et al. (2011).

We chose to focus on the clustering solution with k = 5
within the range of best clustering performance according to the
silhouette value (Figure 3C), as it reveals a meaningful partition
of the BOLD PL patterns into four representative functional
networks. For k = 5 we found State 2 to correlate with the Default
Mode Network (r = 0.71, p = 10−14), State 3 to correlate with the
Fronto-parietal Network (r = 0.84, p = 10−21), State 4 to correlate
with the Visual Network (r = 0.88, p = 10−29) and finally State 5
to mostly correlate with the Ventral Attention Network (r = 0.71,
p = 10−14). In Supplementary Figures S5, S6, we also report
the overlap of cluster centroids with reference functional brain
networks obtained for the filtered series (0.04–0.07 Hz) both from
top and side view.

Exploration of a Repertoire of BOLD
Phase Locking States
In Figure 4, we show the different representations of the BOLD
PL states and their properties. Each PL state is represented in
two ways: on the left we plot the N = 90 vector elements as
arrows representing the magnitude of projection of each brain
area into the leading eigenvector of BOLD phases V1 and on the
right by rendering and coloring the brain regions shifted from
the main orientation (corresponding to the red arrows on the
left) according to the relevant functional system to which they
maximally overlap with (Figures 4A,E).

The PL states can also be represented in the form of a matrix
by computing the matrix product of each centroid’s vector Vcα
and its transpose, describing the pairwise relationship between
individual brain regions in each PL state (Figure 4B).

Frontiers in Systems Neuroscience | www.frontiersin.org 6 April 2020 | Volume 14 | Article 20

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-00020 April 17, 2020 Time: 17:59 # 7

Vohryzek et al. Ghost Attractors in Spontaneous Brain Activity

FIGURE 3 | Centroids overlap with Functional Brain Networks. (A) Representation of the centroids obtained for each k-means clustering solution with K ranging
between 2 and 20. Centroids are represented in cortical space, rendering only the ROIs whose BOLD phase is shifted > ±π/2 with respect to the leading direction.
ROIs are colored according to the reference Functional Brain Network (shown in panel B) to which they most significantly relate with. Pearson’s r and corresponding
p-value are reported as a title only when surviving a conservative threshold of p < 0.05/K, to correct for the number of independent hypotheses tested in each
partition model. Centroids not significantly overlapping with any of the reference functional networks are colored in black. Side views of the same centroids are
reported in Supplementary Figure S1. (B) Reference functional brain networks estimated from 1000 subjects from correlation-based intrinsic functional
connectivity (Yeo et al., 2011). (C) Silhouette value, used to evaluate clustering performance, shows a peak for partitions into 2 to 6 clusters.

Assuming stationarity of the brain’s dynamical regime during
rest, we compute the probability of occurrence of PL states as
well as their mean Dwell Time within each fMRI scan (see
section “Materials and Methods”). In Figures 4C,D, we show the
probabilities of occurrence and mean Dwell Times of each PL
state obtained for each participant, plotting the values obtained
from the first fMRI session (LR) versus the values obtained from
the second same-day fMRI session (RL). We find that, in both
LR and RL sessions, State 1 shows high variability both in terms
of probability of occurrence (mean = 0.51, standard deviation
(std) = 0.16) and Dwell Times (mean = 3.94 s, std = 1.73 s),
with some subjects spending as little as 20% of the time in this
globally coherent state, whereas others spend up to 80% of the
time, with some occurrences lasting up to 10 s (the reliability
of metrics across recordings will be addressed in a following
section). Interestingly, the other 4 states show consistently
lower probabilities of occurrence, with state 2 (overlapping
with the DMN) occurring on average 16.6 ± 7.6% of the time
(mean ± std), being slightly more prevalent than the other states
(state 3: 12.7 ± 6.2%; state 4: 9.9 ± 4.7%; state 5: 9.5 ± 5.5%).
Not only do these functionally relevant PL patterns occur less

often, but they also show, consistently across subjects, much
shorter Dwell Times, lasting on average around 2 TRs (state 2,
1.71 ± 0.34 s; state 3 1.57 ± 0.37 s; state 4, 1.4 ± 0.34 s; state 5,
1.3± 0.22 s).

In Figure 4E, we report the correlation between each PL state
and the seven intrinsic functional networks used as reference
(see section “Materials and Methods”). We observed State 2
to correlate only with the Default Mode Network (r = 0.71,
p = 10−14), State 3 to correlate with the Fronto-parietal Network
(r = 0.84, p = 10−24), State 4 to correlate with the Visual Network
(r = 0.88, p = 10−29) and finally State 5 to mostly correlate with
the Ventral Attention Network (r = 0.71, p = 10−14) but also with
the Somatomotor Network (r = 0.53, p = 10−8). Supplementary
Figure S7 of the states’ measures for the filtered data (0.04–
0.07 Hz) is added in the Supplementary Material.

Recurrent Excursions Into BOLD PL
States
Similar to the probability of occurrence of a given state, we
can quantitatively characterize the temporal trajectories by the
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FIGURE 4 | Repertoire of BOLD Phase Locking States obtained using K = 5. (A) BOLD Phase Locking states represent recurrent patterns of BOLD phase alignment
across the whole brain. Each centroid is a vector VC of size 1xN whose elements indicate how each brain area projects into it. Each centroid is represented in the
brain in two different ways: (left) by placing an arrow at the centre of gravity of each brain area and setting its size, direction and color according to the magnitude
and sign of the corresponding element in VC (coloring in red for positive projections into VC, and blue otherwise). (right) Rendering all brain areas with positive values
in VC colored according to the functional network to which they show maximal overlap (see Figure 3 and/or panel E below). (B) Phase-locking matrices computed
as the outer product of the centroid vectors VC. (C) Scatter plots of state Fractional Occupancy, plotting the values obtained for the 99 fMRI scans in the LR
scanning session versus the values from the RL session. (D) Scatter plots of mean state Dwell Times, plotting the values obtained for the 99 fMRI scans in the LR
scanning session versus the values from the RL session. (E) Correlation between each BOLD PL state and the seven networks of intrinsic functional connectivity
from Yeo et al. (2011). * indicates significance corrected for multiple comparisons with Pearson’s p-value < 0.05/7.

probabilities of transition between the different BOLD PL states.
In Figure 5A we show the average transition matrix,Wαβ, as
the probability of switching from state α to state β. We noted
that the highest probabilities of transition (Wαβ > 0.5) were
along the diagonal (representing the probability to remain in the
same state) as well as along the first column (representing the
transitions back to the state 1). The characteristic self-transitions
(α→ α) along the diagonal are a distinctive feature of the system,
indicating the relative stability of each state. State 1 reveals the
highest stability (with 77% probability of remaining in it in the
following TR), whereas the probability of remaining in the other
states is close to chance levels. The scatter plots in Figure 5B
show the transition probabilities obtained for each of the 99
participants (LR session vs. RL session), revealing consistency of
the results across participants and scanning sessions.

Another relevant feature is the asymmetry of the transition
matrix, which is indicative of an imbalance in the reciprocity of
transitions both to and from a given state, as can be observed
with the apparent proclivity for switching into the (global) state
1, whereas the probability to leave from it is much smaller.

In Figure 5C, a Transition Graph is constructed from the
transition matrix W shown in panel A, where edges α→ β are
directed and weighted with weight Wαβ. This gives a good insight
into the spontaneous transition dynamics and motivates the use
of the Markov chain transition matrix beyond the probability
of occurrence alone. Supplementary Figure S8 of the transition
graph and matrix for the filtered data (0.04–0.07) is added in
the Supplementary Material. Furthermore, the comparison of
LR and RL sessions for the probabilities of transition is added in
Supplementary Figure S10.
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FIGURE 5 | Trajectories of brain activity in state space. (A) Transition matrix quantifying the probability of the trajectory transiting from one state to another as defined
in Equation 5, averaged across the scans from all 99 participants in the LR session. (B) Transition probabilities estimated for each fMRI scan, each dot
corresponding to one participant, plotting the probabilities of switching in the LR fMRI session versus the RL fMRI session. (C) Transition Graph is constructed from
transition matrix W where edges α→ β are directed and weighted with weight Wαβ.

Reliability of Individual Metrics
To assess the metric’s reliability across same-subject same-day
recordings when compared to other subjects, we computed the
Intra-Class Correlation (see section “Materials and Methods”)
for each measure above, namely, the Fractional Occupancies, the
Dwell Times and the Transition Probabilities. In Figure 6A, we
show the Fractional Occupancy for all 5 states to have moderate
reliability values (State1: ICC = 0.59, State 2: ICC = 0.47, State 3:
ICC = 0.42, State 4: ICC = 0.39 and State 5: ICC = 0.51). The Dwell

Times for the first three states had moderate values of ICC and
States 4 and 5 showed poor values (State1: ICC = 0.55, State 2:
ICC = 0.37, State 3: ICC = 0.4, State 4: ICC = 0.32, and State 5:
ICC = 0.28, Figure 6B).

Regarding the transition matrix, Figure 6C shows that the
probability of remaining in the (global) State 1 has one of the
highest ICC values (ICC = 0.61), with most of the transition to
and from the State 1 showing a range of fair to moderate ICC
values (0.29 < ICC < 0.62). States 2 and 3 have border-line
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FIGURE 6 | Individual reliability of the Phase-locking states’ measures: (A) Intra-Class Correlation (ICC) calculated for the Fractional Occupancy, showing positive
ICC values for all five PL states, meaning that the within-subject error is smaller than the between-subject error. All values are within a moderate range of
within-subject reliability (i.e., 0.4 < ICC < 0.6) according to the categorization by (Landis and Koch, 1977). (B) Intra-Class Correlation for Dwell Times for all five
states showing the states 1,2 and 3 to be in the moderate reliability range. (C) ICC for the normalized Probability Transition Matrix showing positive ICC values in all
transitions, with the probabilities of transition from state 1 being the most reliable, whereas other transitions, particularly between states 2 to 5, showing lower
reliability. The ICC is categorized, based on (Landis and Koch, 1977) as low (0 < ICC < 0.2), fair (0.2 < ICC < 0.4), moderate (0.4 < ICC < 0.6), substantial
(0.6 < ICC < 0.8) and almost perfect (0.8 < ICC < 1)

moderate values of ICC in the self-transitions (State 2: ICC = 0.39,
State 3: ICC = 0.40) and some of the transitions to other states
were also in the moderate range. States 4 and 5 seem to have
relatively poor, but still positive, ICC values for the probability
of transitions metric (Figure 6C).

Taken overall, the ICC results show that all the measures
evaluated have smaller within-subject error than the between-
subject error (given ICC values are positive for all measures),
indicating that the measures proposed herein capture individual
fingerprints of dynamic functional connectivity. To improve
the assertion of individual landscapes and reliability of
the methodology we added scatter plots for all the three
measures (Fractional Occupancy, Dwell Times and Transition
Probabilities) of the two sessions (LR and RL) in Figures 4, 5.

Effect of the Temporal Filtering
All the results shown so far were obtained directly from the
ROI-averaged BOLD signals from the HCP dataset, without
applying any temporal frequency filter. Temporal filtering is
a typical pre-processing step in resting-state fMRI analysis to
remove frequency components regarded as noise. In this section,
we evaluate whether the inclusion of the higher frequency
components in the BOLD signal improve the analysis of
dynamic functional connectivity by evaluating its effects on the
reliability (ICC) of the measures across sessions, which should
be maximized if assuming stationarity in individual resting-
state dynamics.

As shown in Figures 7A,C, filtering has a crucial effect on
the Dwell Times, with lower cut-off frequencies leading to longer
Dwell Times for all states, and especially for state 1. Notably,
when reaching up to the Nyquist frequency, the mean Dwell
Times of states 2 to 5 approach the duration of 2TRs consistently
for all subjects and in both LR and RL fMRI sessions, while state 1
lasts for slightly longer periods. When evaluating the Dwell Times
ICC (Figure 7E), we find that the ICC is maximal for states 1, 2,
and 3 when the high frequency components of the BOLD signal

are included. However, it is important to take into account that
the accurate estimation of Dwell Times is limited by the temporal
resolution of the current fMRI dataset, minimizing the difference
between subjects and hence affecting the ICC estimation.

Regarding the Fractional Occupancy of the states, it appears
from Figures 7B,D that filtering does not affect the overall values
estimated across subjects and in the different sessions. However,
when looking at the ICC values for Fractional Occupancy
(Figure 7F), we find that this measure is much more reliable
within individuals (and across all states) when the high frequency
components of the BOLD signal are included. Similarly, the
ICC of the Transition Probabilities (shown in Supplementary
Figure S9) shows a slight improvement in the reliability of most
transitions. Actually, when considering only frequencies <0.2 Hz,
a few transition probabilities have even a negative ICC, indicating
no individual reliability at all. Overall, these findings point to
the direction that it is important to consider the high frequency
components of resting-state BOLD signals when assessing
individual fingerprints in dynamic functional connectivity.

DISCUSSION

The challenge of describing dynamic functional connectivity for
a mechanistic understanding of the brain processing as well as
for its potential use in clinical research, has been of great interest
to the neuroimaging community (Hutchison et al., 2013; Preti
et al., 2016). With the advent of open multimodal neuroimaging
data, it is possible to address and validate these approaches in
representative datasets (Van Essen et al., 2013; Poldrack and
Gorgolewski, 2014). In this work, we apply, formalize and validate
the Leading Eigenvector Dynamics Analysis (LEiDA) to a large
cohort of 99 healthy unrelated HCP subjects (Glasser et al.,
2013). We describe brain activity during rest as a time evolving
trajectory in a low-dimensional state space, where states are
defined according to characteristic whole-brain configurations
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FIGURE 7 | Temporal Filtering effect on Dwell Time and Fractional Occupancy. (A,C) Dwell Times obtained across four different band-pass filters applied to the
BOLD signals, keeping the lower bound fixed at 0.01 Hz and varying the higher (lowpass) cutoff frequency between 0.07, 0.1, 0.2, and 0.6944 Hz, which
corresponds to the Nyquist frequency fNq = 1/(2TR). Results are shown for LR (A) and RL (C) recording sessions. (B,D) Fractional Occupancies across the four
different filtrations for LR (B) and RL (D) recording sessions. (E,F) Inter-Class Correlation (ICC) across four different filtrations for Dwell Times (E) and Fractional
Occupancy (F). The red dashed line represents the threshold for moderate reliability based on the Landis and Koch (1977) ICC scale.
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of BOLD phase-locking. Furthermore, we validate these BOLD
phase-locking states to reference networks of intrinsic functional
connectivity (Yeo et al., 2011) and compute their properties of
fractional occupancy, Dwell Times and transition probabilities.
We subsequently assess the reliability of these measures across the
two same-day fMRI recordings (using Intra-Class Correlation)
and show that all measures have a smaller within-subject error
than the between-subject error (ICC values > 0), with the
highest reliability values being detected when including the high
frequency components (>0.1 Hz) of ROI-averaged BOLD signals
in the analysis. We argue that such interpretation of brain
activity, validated with reliability analysis, has the potential to
identify individual-specific fingerprints in the brain’s dynamical
landscape and thus serve personalized clinical applications in
diagnostics and therapeutics of patients with cognitive disorders.

Concepts and methods from dynamical systems theory are
proving useful in the analysis of brain activity at the macroscopic
scale, as they serve to formally characterize the complex dynamics
emerging from the collective behavior of billions of interacting
neurons, exhibiting features such as multi-stability, meta-stability
and self-organized criticality, that may serve helpful to identify
the underlying principles coordinating cognition at the whole-
brain level (Deco and Jirsa, 2012; Tognoli and Kelso, 2014; Cocchi
et al., 2017; Roberts et al., 2019). Here, we aimed at a different
characterization of the dynamical properties of the intrinsic
functional networks emerging spontaneously and consistently
during rest. Our analysis revealed a repertoire of BOLD phase-
locking states through which the trajectory of brain activity
consistently returns in time and across subjects.

By analyzing the PL state’s fractional occupancy, Dwell Time
and probability of transitions, our results revealed that the BOLD
phase-locking states can be divided in two groups according
to their dynamical properties: On one hand, our algorithm
consistently detects a state where all the ROI-averaged BOLD
signals project into the same direction captured by the leading
eigenvector (state 1 for all clustering solutions). This state exhibits
longer Dwell Times and shows high between-subject variability
but also high within-subject reliability. On the other hand, we
detect for all k-means clustering solutions, a set of k-1 states
where the BOLD signals of some brain areas project into the
opposite direction from the main BOLD phase orientation.
These states occur consistently less often and last for shorter
times than the global state, but reoccur consistently across
subjects and sessions. Given the reduced stability of these BOLD
phase-locking states with respect to the meta-stable globally
synchronized state, we refer to this second group as “ghost”
attractor states. In other words, ghost attractors in this framework
refer to short-lived (or weakly stable) network configurations that
consistently reoccur across fMRI recordings.

Regarding the functional relevance of these “ghost” phase-
locking states, our results show a clear and highly significant
overlap of most cluster centroids (obtained for the whole
range of partitions explored) with a set of seven previously
identified networks of intrinsic functional connectivity used as
reference. This finding indicates that these patterns of BOLD
phase locking, despite being obtained from a different analytic
perspective than more conventional correlation-based analyzes,

are closely related to the so-called resting-state networks. Yet,
unlike correlation-based analyses that reveal only the spatial
map of these functional networks, the LEiDA approach allows
characterizing their properties over the temporal dimension. As
the reference RSNs are computed from the correlation-based
static functional connectivity, a perfect match to the BOLD
phase-locking states detected herein is not expected. Rather, they
can be considered for validation of the functional relevance of
the PL states and served to guide the choice of the number of
states or further analysis. The number of states chosen is a trade-
off between more fine-grained but less robust state solutions
as demonstrated by the increasing specificity of functional
subsystems for higher k. Here, the clustering solution with k = 5
was chosen for being within the range of maximal Silhouette
value and for revealing a separation into distinct functionally
meaningful systems such as the Default Mode Network, the
Frontoparietal Network, the Ventral Attention Network and the
Visual Network. However, a partition into a higher number of
states may prove necessary when addressing particular conditions
that affects a particular subsystem optimally defined for higher
k. For instance, in a previous work using LEiDA, the partition
into k = 10 was chosen for detecting the network that most
significantly distinguished patients in remission from major
depressive disorder and controls (Figueroa et al., 2019), whereas
another study found the solution with k = 7 to optimally highlight
the effects of psilocybin (Lord et al., 2019).

For all partitions into k > 7, our algorithm consistently
detected a functional subsystem involving the basal ganglia
(colored in black in Figure 3 and Supplementary Figure S1)
for not overlapping with any of the reference RSNs) as the
second most prevalent BOLD PL state. This indicates that resting-
state activity also involves connectivity to subcortical areas,
which appears particularly important for the study of psychiatric
disorders, such as anxiety-related disorders involving the basal
ganglia. Following previous LEiDA studies, we chose here a
coarse parcellation into N = 90 brain areas and did not include
the BOLD signal detected in the cerebellum. The Anatomic
Automatic Labeling Atlas has been validated in many studies
and has shown consistency in the LEiDA results across datasets
(Cabral et al., 2017b; Figueroa et al., 2019; Lord et al., 2019).
However, it is based on an anatomic definition of the brain
regions and as such might not generalize adequately to the
dynamic functional connectivity analysis. We expect to extend
to finer-grained and fMRI-derived parcellations in future studies,
potentially including other substructures such as the cerebellum,
in order to gain a wider insight into the network configurations
observed in brain activity at the macroscopic scale (Cammoun
et al., 2012; Glasser et al., 2016; Schaefer et al., 2018).

The mechanistic interpretation of the empirical data proposed
herein serves as a great candidate for further theoretical
exploration by whole-brain computational models (Ghosh et al.,
2008; Deco et al., 2009; Honey et al., 2009). To this date, many
models have demonstrated well-matched dynamics to the brain
activity as represented by static functional connectivity in a
critical range of parameters where the brain is poised between
noisy and oscillatory activity. Furthermore, different properties
were shown to have an impact on the emerging dynamics
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such as propagation delays, local vs. global connections, signal-
to-noise ratio, and local inhibitory rules (Deco et al., 2009,
2014; Honey et al., 2009; Cabral et al., 2011). Extending such
modeling endeavors away from static functional connectivity
to a dynamic representation of the experimental data is
currently becoming a possible new avenue into understanding the
underlying principles governing dynamic functional connectivity
(Hansen et al., 2015; Cabral et al., 2017a; Deco et al., 2018,
2019). Recently, Deco et al. have shown how the dynamic
representation of resting-state data in wakefulness and sleep
(characterized using LEiDA) can serve to explore how a whole-
brain model can be perturbed to identify the brain regions
responsible for the transition between awake and sleep state
(Deco et al., 2019).

Representing dynamic functional connectivity through the
prism of dynamical system theory hypothesizes the existence of
attractors in N-dimensional space through which the functional
activity evolves in time. Assuming this hypothetical scenario, it
describes a state-based propagation of the data, rendering the
underlying dynamics in a discrete sense (Baker et al., 2014;
Karahanoğlu and Van De Ville, 2015; Preti et al., 2016; Cabral
et al., 2017a). However, other methods have considered dynamic
functional connectivity from a continuous point-of-view, such as
the spatio-temporal connectome where brain activity is described
as a temporal graph (Griffa et al., 2017; Vohryzek et al., 2019) and
auto-regressive models (Liégeois et al., 2017). We acknowledge
that looking at the brain activity in a discrete sense is only
one of the interpretations currently proposed in trying to
describe the emergent complex phenomena observed in whole-
brain dynamics.

It is to be noted that the applied clustering algorithm
is just one amongst many decomposition methods that can
partition the LEiDA results into meaningful states. Indeed,
(Cabral et al., 2017b) compared the results from k-means
algorithm to the Hidden Markov Model (HMM), in their
paper on cognitive performance of patients, showing similar
results with both approaches (Cabral et al., 2017b). However,
k-means was chosen here for its relatively simple implementation
and its relatively low computational cost, revealing functionally
meaningful cluster centroids.

New imaging methods benefit greatly from the reliability
analysis that investigates individual variabilities across recordings
sessions. Especially in clinical applications, reliability is crucial
to obtain stable measures across time for individual subjects
(i.e., low within-subject variability) and at the same time
distinguishable differences between subjects (i.e., high between-
subject variability) (Xing and Zuo, 2018; Zuo et al., 2019).
In this work, Intra-Class Correlation is used to calculate the
desirable ratio between between-subject variability and within-
subject variability across recording sessions. One of the Intra-
Class Correlation scales proposed by Landis and Koch (1977)
to assess reliability for clinical applications suggests that values
1.0 > ICC > 0.8 have excellent reliability, 0.8 > ICC > 0.6
substantial reliability, 0.6 > ICC > 0.4 have moderate reliability
and, 0.4 > ICC > 0.2 poor substantial reliability. In other words,
it is desirable to obtain high reliability values for the method’s
possible clinical application.

In the last part of our study, we show that including the high
frequency components up to the Nyquist frequency maximizes
the ICC values (reaching a mainly moderate range of ICC values).
As such, it is likely that the temporal resolution of the fMRI
acquisition might have hindered further increase in reliability.
Although the Dwell Times become significantly shorter if no
smoothing is applied - which may decrease the detection of RSNs
in correlation-based analysis - we find that the occurrence of
these states is intrinsically short, given that the measures become
more reliable. Although the hemodynamic response function
(HRF) is intrinsically slow, the capacity of the BOLD signal to
detect faster frequency components is still highly debated in the
literature (Glerean et al., 2012; Deco et al., 2019). Nevertheless,
it is likely that resting-state dynamics occurs at a faster time
scale than captured with the BOLD signal, as suggested by MEG
studies that point to a duration of around 200 ms (Baker et al.,
2014; Vidaurre et al., 2016). Here, we show that LEiDA allows
detecting meaningful dynamic network configurations occurring
at relatively short time-scales for fMRI analysis, which may serve
useful not only for resting-state analysis but also for the detection
of task related patterns [as in Stark et al. (2019)], that may not be
captured with conventional general linear models using the HRF.
Overall, we expect that novel insights into BOLD signal temporal
characteristics and improvements in fMRI temporal resolution
might increase the ICC reliability of these measures.

CONCLUSION

In summary, we combine novel analytic tools to quantitatively
characterize brain activity in each fMRI scan as a trajectory
through a discrete set of BOLD phase-locking states. Given the
dynamical properties of these states (fractional occupancy, Dwell
Time and transition probability) we propose that RSNs behave as
ghost attractors, emerging spontaneously and for brief periods,
but recurring consistently across subjects and sessions. Our
study corroborates previous theoretical works that put forward
an interpretation of brain activity as a trajectory evolving in
time in an energy landscape (Deco et al., 2011; Ashourvan
et al., 2017). By demonstrating the functional relevance of the
BOLD phase-locking states detected and the reliability of the
measures across same-subject sessions we go further by revealing
the existence of individual-specific energy landscapes in brain
activity with potential application in patient-specific diagnostics
and therapeutics.
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