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(Received 21 March 2013; accepted 5 December 2013; published online 23 December 2013)

The neuropathology of schizophrenia remains unclear. Some insight has come from modern

neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure

and function of the brain. Using functional magnetic resonance imaging, it has been found that the

large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the

temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered

network topology, with lower small-world index. The origin of these rsFC alterations and link with

the underlying structural connectivity remain unclear. In this work, we used a computational model

of spontaneous large-scale brain activity to explore the role of the structural connectivity in the

large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15

adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were

built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas.

Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from

other areas in proportion to the number of fibre tracts between them. The simulated mean field

activity was transformed into BOLD signal, and the properties of the simulated functional networks

were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not

directly linked to alterations in the structural topology. Instead, subtly randomized and less

small-world functional networks appear when the brain operates with lower global coupling, which

shifts the dynamics from the optimal healthy regime. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4851117]

Brain activity during rest displays the spontaneous for-

mation and dissolution of large-scale functional networks,

most of which are typically activated during specific

tasks. This phenomenon is believed to reflect noise excur-

sions from the stable equilibrium state into “ghost”

attractor states present in the brain’s dynamical reper-

toire. While these patterns are robust across healthy peo-

ple, they appear disrupted in people with schizophrenia.

Here, we investigate the causes of this disruption. Our

results indicate that the functional alterations observed

in schizophrenia may be due to a decrease in the global

coupling weight between brain areas, which shifts the dy-

namical regime further below the bifurcation, leading to

fewer excursions and therefore more random and less

small-world functional networks.

I. INTRODUCTION

The brain is one of the most complex networks in na-

ture. Modern neuroimaging techniques have helped to detect

in vivo the map of structural and functional connections in

the brain. In particular, the structural connections between

brain regions, which are mediated by white matter fibres, can

be detected using diffusion magnetic resonance imaging

(diffusion-MRI).1,2 On the other hand, functional connec-

tions are typically inferred from temporal correlations

between neural activity measures, such as the blood-oxygen-

level-dependent (BOLD) signal obtained from functional-

MRI (fMRI).3,4 Although the structural connections remain

mostly unchanged over short periods in time, the functional

connections can be increased or decreased depending on the

cognitive task the subject is performing. Interestingly, during

rest, i.e., in the absence of any explicit task, the same func-

tional networks that are typically observed during task

appear temporarily activated on a very slow time scale (i.e.,

<0.1 Hz).5 This spontaneous activity is thought to reveal

intrinsic properties of the brain’s network dynamics and has

attracted a growing body of theoretical and computational

neuroscience research.6–9

Recently, Deco and Jirsa proposed that the emergence

and dissolution of functional networks during rest is the result

of noisy excursions into latent “ghost” attractor states.10 In

this theoretical framework, the resting brain operates at the

brink of a bifurcation that separates the stable low-activity

equilibrium state from the multi-stable state region where

many attractors coexist. This multi-stable attractor landscape
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defines a functionally meaningful dynamic repertoire of the

brain, which is inherently defined by the neuro-anatomical

network structure.

The optimal balance of the brain at rest has proved essen-

tial for an optimal cognitive function. Indeed, over the last

decade, a large number of studies have reported altered rest-

ing brain activity in a wide range of mental illnesses, includ-

ing schizophrenia (see below), Alzheimer’s disease,11–14

dementia,15,16 autism,17,18 mild cognitive impairment,19 mul-

tiple sclerosis,20 and major depression.21,22 These results not

only illustrate the importance of balancing resting-state dy-

namics but also provide insights to understand the intrinsic

mechanisms leading to and potentially treating the diseased

brain.23

Regarding schizophrenia, several studies have reported a

widespread decrease in the functional connectivity (FC) of

patients during rest, supporting the hypothesis that schizo-

phrenia may arise from the disrupted functional integration of

segregated brain areas.24–27 Further analysis of resting-state

functional networks in schizophrenia using graph theory indi-

cate a subtle randomization of functional networks, with

decreased small-world properties, lower clustering coeffi-

cients, and fewer high-degree hubs.25,28,29 In addition, some

topological measures such as the small-world index were

found to correlate with cognitive performance,25 indicating

that resting-state correlations may be closely related to the

binding mechanisms that support the integration of informa-

tion in the brain. In this work, we used data from a group of

adolescent patients with early-onset schizophrenia, which

possibly represent a more severe form of the disease.30,31

In this work, we aim to investigate, from a dynamical

system’s perspective, what occurs in schizophrenia to cause

the disruption of resting-state functional connectivity.

Previous studies have revealed that resting-state functional

networks reflect, to some extent, the underlying structural

connectivity. However, the relationship between the func-

tional alterations observed in schizophrenia and the underly-

ing structural connectivity is not straightforward, and

computational models, like the one presented here, are valua-

ble tools to investigate this non-trivial relationship.32

We start by comparing the structural connectomes from

patients and healthy controls in terms of global topological

properties, such as connection density, number of fibre tracts

per connection, clustering coefficient, path length, small-

world index and hierarchy, among others. Subsequently, to

investigate the dynamical impact of the structural changes

occurring in schizophrenia, we used a reduced dynamic

mean-field model of spontaneous activity.33 The spontane-

ous dynamics obtained with the different structural connec-

tomes, i.e., from patients and healthy controls, was analyzed

and the BOLD functional connectivity was predicted as a

function of the global coupling weight. Our results suggest

that the disruption of functional networks in schizophrenia

may not be directly induced by the alterations observed in

the structural connectomes from patients. Instead, it might

be related to a decrease in the global coupling weight, which

shifts the dynamics to a regime with fewer excursions to

latent ghosts attractors leading to more random functional

connectivity.

II. METHODS AND MEASURES

A. Patients

The study was undertaken in accordance with the guid-

ance of the Oxford and Berkshire Psychiatric Research

Ethics Committees and written consent was obtained from

all participants (and their parents if under the age of 16

years).

We acquired structural data from fifteen adolescent

patients (8 males and 7 females, age: 14–17 years, mean

15.97) who were diagnosed as having DSM-IV34 schizophre-

nia, using the Kiddie Schedule for Affective Disorders and

Schizophrenia.35 In addition, the symptom severity was

measured using the Positive and Negative Syndrome Scale

(PANSS), which consists in an interview to evaluate the

degree of positive (referring mainly to hallucinations, delu-

sions, excitability, suspiciousness, etc.) and negative symp-

toms (representing a diminution or loss of functions such as

anergia, poverty of thinking, etc.) in schizophrenia.36 Age at

onset of symptoms ranged from 13 to 16 years. All schizo-

phrenic patients were receiving atypical antipsychotics.

Furthermore, we acquired control data from fifteen

healthy control participants who were matched for age and

sex to the adolescent-onset patient group (6 males and 9

females, age: 14–17 years, mean 16.03). The adolescent con-

trol participants were recruited from the community through

their general practitioners and were screened for any history

of emotional, behavioural, or medical problems. All partici-

pants attended normal schools. Exclusion criteria included

moderate mental impairment (IQ< 60), a history of sub-

stance abuse or pervasive developmental disorder, significant

head injury, neurological disorder or major medical disorder

(for more details see Douaud et al.37).

B. Structural connectivity data

Anatomic brain networks were constructed using diffu-

sion tensor imaging (DTI). All participants underwent the

same imaging protocol with a whole-brain T1-weighted and

diffusion-weighted scanning using a 1.5 T Sonata MR

imager (Siemens, Erlangen, Germany) with a standard quad-

rature head coil and maximum 40 mT m�1 gradient capabil-

ity. The 3D T1-weighted FLASH sequence was performed

with the following parameters: coronal orientation, matrix

256� 256, 208 slices, 1� 1 mm2 in-plane resolution, slice

thickness 1 mm, TE/TR¼ 5.6/12 ms, flip angle a¼ 19�.
Diffusion-weighted images were obtained using echo-planar

imaging (SE-EPI, TE/TR¼ 89/8500 ms, 60 axial slices,

bandwidth¼ 1860 Hz/vx, voxel size 2.5� 2.5� 2.5 mm3)

with 60 isotropically distributed orientations for the

diffusion-sensitising gradients at a b-value of 1000 s mm�2

and 5 b¼ 0 images.38 To increase signal-to-noise ratio, scan-

ning was repeated three times and all scans were merged.

The parcellation of the entire brain in native DTI space

into 90 cortical and subcortical regions (45 for each hemi-

sphere (Ref. 39)), was accomplished by using the Automated

Anatomic Labelling (AAL) template, where each region rep-

resents a node of the brain network.40 We used Flirt (FSL,

Oxford)41 to co-register the b0 image in diffusion MRI space
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to the T1 template of ICBM152 in MNI (Montreal

Neurological Institute) space.42 The resulting transformation

was then inversed and applied to warp the AAL template

from the MNI space to the native DTI space. Interpolation

with the nearest-neighbour method was used to ensure that

discrete labelling values were preserved.

We used the Fdt toolbox in FMRIB Software Library

(FSL) where FMRIB stands for Functional Magnetic

Resonance Imaging of the Brain (www.fmrib.ox.ac. uk/fsl/,

Oxford) to process the diffusion MRI data. The initial prepro-

cessing involved the coregistration of the diffusion-weighted

images to a reference volume using an affine transformation

for the correction of head motion and eddy current gradient

induced image distortion. We further modeled crossing fibers

within each voxel, and estimated the local probability distribu-

tion of fibre direction at each voxel of the brain.43,44

We estimated the connectivity probability from each

seed region to the 89 other brain regions (using in-house Perl

scripts) by applying probabilistic tractography, using a sam-

pling of 5000 streamline fibres per voxel. The connectivity

probability from a seed voxel i to voxel j was defined as the

proportion of fibres passing through voxel i that reach voxel

j.44 This was then extended from the voxel level to the region

level, and the connectivity probability Pij from region i to

region j was then calculated as the number of sampled fibres

in region i that connect the two regions divided by 5000*n,

where n is the number of voxels in region i.
Despite the dependence of tractography on the seeding

location, the probability from i to j and j to i is highly corre-

lated across the brain for all participants (the least Pearson

r¼ 0.70, p< 10� 50). Therefore, we defined the undirectional

connectivity probability Pij between regions i and j by averag-

ing the two probabilities, and considered this as a measure of

the structural connectivity between two areas, with Cij¼Cji.

We used in-house Perl scripts to implement the calcula-

tion of regional connectivity probability. For each subject, a

90� 90 weighted network was constructed, representing the

anatomical network of the brain. In addition, averaged con-

nectivity matrices, CPatients and CControls, were constructed

for each group of participants.

C. The dynamic mean field model

To investigate the dynamics emerging from the struc-

tural connectomes, we used a dynamic mean-field model for

each of the 90 brain areas, and coupled them together

according to the anatomical structural connectome. The clas-

sical mean field model is used to calculate the steady states

of a network of densely interconnected spiking neurons.45

However, since we are interested on the temporal dynamics

of this mean field (to investigate temporal correlations

between brain areas), we use a dynamic mean-field model

which includes an approximation of the temporal dynamics

of the spiking network.33 The dynamic mean-field approxi-

mation defines the collective dynamics of excitatory and in-

hibitory spiking neurons interconnected by AMPA, GABA,

and NMDA receptors and their respective equations, reduc-

ing the spiking network model to a single dimensional equa-

tion. In this approximation, the behaviour of interacting

brain areas can be described by the following set of coupled

differential equations,

dSnðtÞ
dt
¼ � Sn

sS
þ ð1� SnÞcHðxnÞ þ rtnðtÞ; (1)

HðxnÞ ¼
axn � b

1� expð�dðaxn � bÞÞ ; (2)

xn ¼ wJNSn þWJN

X

p

CnpSp þ I0; (3)

Sn denotes the average synaptic gating variable at the local

cortical area n (n¼ 1,…,N, where N is the total number of

nodes). xn is the total input current in area n and HðxnÞ is a

transduction function that transforms the input current into

the population firing rate. w ¼ 0:9 is the weight of local exci-

tatory recurrence and Cnp is coupling weight between the

areas n and p, defined as the number of fibres detected from

DTI, and varies from subject to subject. W is the global cou-

pling weight that scales C uniformly and is the only parame-

ter that we vary in this work. Parameter values for the

input–output function (2) are a¼ 270 VnC, b¼ 108 Hz, and

d¼ 0.154 s. ss¼ 100 ms is the decay time constant of S and

H (in Hz) is divided by 1000 for unit consistency. c¼ 0.641

is a constant related to the magnesium concentration control-

ling the NMDA currents (see Theodoni et al. (Ref. 46)). The

synaptic couplings are JN ¼ 0.2609 nA and the overall effec-

tive external input is I0¼ 0.3 nA. In Eq. (1), ti is uncorre-

lated standard Gaussian noise and the noise amplitude at

each node is r¼ 0.001 nA. Model parameters were defined

in Deco et al.33 to be consistent with a detailed spiking

model validated to reflect neurophysiology.10

Simulations were run for increasing values of global cou-

pling weight W, using the structural connectivity matrices from

the 15 patients with schizophrenia and the 15 healthy controls.

The critical coupling weight, Wcrit, was identified by detecting

the coupling weight above which the equilibrium state

becomes unstable, i.e., when the mean synaptic activity, hSi,
crosses a threshold of 0.3 after a transient period of 10 s.

D. Simulated functional connectivity

To explore the relationship between structural and func-

tional connectivity in schizophrenia, we used the Balloon-

Windkessel model47 to transform the simulated mean field ac-

tivity into BOLD signal.9,10,33 This model describes the trans-

duction of neuronal activity (given by the level of synaptic

activity, Sn) into perfusion changes and subsequently into

BOLD signal. The simulated BOLD signal was down-sampled

at 2 s to have the same temporal resolution as in the empirically

measured BOLD signal (see Sec. II E). The simulated FC is

given by the correlation matrix of the simulated BOLD signals

in each brain area. For each group-averaged structural connec-

tomes, CPatients and Ccontrols, the resulting functional connectiv-

ity (FC) matrices were calculated for a range of global

coupling weights, W (see Figure 1 for an illustration).

E. Empirical functional connectivity

The different FCs simulated with the model (i.e.,

obtained with CPatients and CControls and for increasing global
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coupling weights W) were compared with the functional

connectivity measured between the same 90 brain areas

averaged across 18 healthy subjects provided to us by

He and colleagues.48 This empirical FC matrix represents

the average FC obtained from 18 right-handed healthy young

volunteers at rest (9 females, age range of 21–25 years). The

subjects were scanned using a 3T GE MR scanner (EXCITE,

Milwaukee, USA). The images were obtained using an

EPI sequence with the following parameters: 30 axial slices,

slice thickness¼ 4.5 mm with no gap, matrix¼ 64� 64,

TR¼ 2000 ms, TE¼ 30 ms, flip angle¼ 90�, field of view

¼ 220� 220 mm2. Subjects were instructed to lay com-

pletely still, keep their eyes closed and relax their minds as

much as possible. See Wang et al.49 for a full description of

the pre-processing of the resting-state fMRI data.

To compare the simulated FCs with the real one, we

computed the Pearson correlation between values in the

upper-triangular part of the FC matrices (excluding the diag-

onal), as in Deco et al.33

F. Evaluating network properties

The structural brain networks derived from DTI can be

represented as 90 � 90 connectivity matrices, C, where each

entry in the matrix Cnp indicates the number of fibre tracts

detected between the areas n and p,8n; p 2 N). To compare

the structural networks from patients and controls at a global

level, we defined a number of measures, some of which from

graph theory, and tested for their significance using the two-

sample Kolmogorov-Smirnov test.50

First, for each subject, we calculate the total number of

fibre tracts detected between brain areas. Second, consider-

ing that two brain areas are connected if at least one fibre

tract is detected between them, we estimate the connection

density, or cost, of the networks. The cost is given as the per-

centage of existing connections, divided by the total number

of possible connections ((N2 � N)/2). Subsequently, we esti-

mate the average number of fibre tracts detected per connec-

tion and its variance.

To gain information about the topological organization

of brain networks we estimated some measures from graph

theory with the help of the Brain Connectivity Toolbox,51

namely:

Degree. The degree of a node d(n) is taken as the num-

ber of nodes to which node n is connected.

Characteristic path length. The shortest path length

between areas n and p is the minimum number of connec-

tions that are needed to connect regions n and p. The charac-

teristic path length is given as the mean shortest path length

over all pairs of nodes in the network.

Clustering coefficient. The clustering coefficient of a

node n indicates the fraction of a node’s neighbours (i.e.,

connected to node n) that are also neighbours of each other.

The network clustering coefficient is taken as the average

clustering coefficient of all nodes in the network.

Small-worldness. One of the most striking and widely

studied properties of brain networks is their small-world

organization.52–55 A network C is considered to be small-

world (r> 1), if the characteristic shortest path length is

small and the clustering coefficient is high, when compared

to an equivalent random graph R.56 The small-world archi-

tecture is particularly rich in complex brain networks

because it supports both segregated specialization and dis-

tributed integration, maximizing the information transfer at a

relatively low wiring cost. The importance of a small-world

topology for an optimal cognitive performance is corrobo-

rated by reports of disrupted small-world properties of func-

tional networks in diseases such as schizophrenia,25,28,29

Alzheimer’s disease14 and attention-deficit/hyperactivity dis-

order.57 As such, here we investigate for which model pa-

rameters the simulated functional networks have typical

small-world properties from health and schizophrenia.

The network measures defined in this section were calcu-

lated for all subject’s structural connectomes. We used the

two-sample Kolmogorov-Smirnov test50 and the Mann-

Whitney U-test58 to evaluate if the differences between

patients and controls are statistically different. Both tests eval-

uate the likelihood that the values from the 2 groups belong to

the same continuous distribution (if p> 0.05). However, while

FIG. 1. Diagram illustrating the steps to obtain the simulated functional con-

nectivity matrices. Using the average structural connectomes (C) from each

group of subjects (i.e., 15 healthy controls or 15 patients with schizophre-

nia), we model the behaviour of coupled brain areas using a dynamic mean-

field model and vary the global coupling weight W. For each W, the simu-

lated mean field activity at each node is transformed into BOLD signal using

the Balloon-Windkessel haemodynamic model and the correlation matrices

are computed to obtain the simulated FCs.
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the Kolmogorov-Smirnov is more sensitive to the difference

between means, the Mann-Whitney is more sensitive to the

difference between medians, and as such is more robust

against outliers.

To evaluate the topological organization of the func-

tional networks obtained with the model, we estimated the

small-world index as a function of the global coupling

weight W. Since the functional connectivity represents the

correlation between BOLD signals, it is necessary to define a

correlation threshold above which a functional connection is

considered a link. This threshold needs to be defined as a

function of the connection density,25,29 since networks need

to have the same number of nodes and the same number of

links for a reliable comparison. As such, the properties of the

functional networks were estimated for a range of connection

densities, and subsequently averaged across this range. Here,

we defined the range of thresholds in order to match the

small-world index of the best simulated healthy FC before

the bifurcation (i.e., where the fit with empirical healthy FC

was optimal, W¼ 1.3) with the small-world index reported

in Lynall et al. for healthy controls (r¼ 1.614). Since in

Lynall et al. only 72 of the 90 AAL brain areas were consid-

ered, we selected only the same 72 brain areas for this com-

parison.39 This resulted in a threshold range between 23%

and 33%. All other analyses were performed in networks

containing all the 90 brain areas.

III. RESULTS

First, the structural networks from the brains of patients

and controls were compared taking into account the total

number of fibres, the number of fibres per connection and the

connection density but no statistically significant differences

were found between groups in these general measures

(Figure 2 and Table I). In addition, structural networks were

compared in terms of their topological organization using

some typical measures from graph theory, such as the char-

acteristic path-length, the clustering coefficient, the mean

degree, and the small-world index. From the graph-

theoretical perspective, some measures showed significant

differences between patients and controls, in particular when

using the Mann-Whitney U-test to test for statistical signifi-

cance (p< 0.05).

Second, we investigated if the structural connectivity

from patients with schizophrenia induced alterations at the

dynamical level using a whole-brain model of spontaneous

activity (see Sec. II C for details). For such, we simulated the

dynamics obtained with the model using the structural con-

nectomes from the 15 patients and the 15 controls. The main

parameter varied in the model was the global coupling

weight W. In Deco et al.33 it was found that the model opti-

mally reproduced spontaneous healthy FC when W was set

below a critical value Wcrit. As such, we investigated if the

structural connectivity from patients with schizophrenia

induces a shift in Wcrit. As shown in Figure 3(a), the mean

Wcrit appeared lower in patients (Wcrit¼ 1.36 6 0.12 for con-

trols and Wcrit¼ 1.29 6 0.11 for Patients; mean 6 standard

deviation). However, the difference was not significant as it

did not reject the null hypothesis with >95% confidence

(p-value ¼ 0.052 using the 2-sample Kolmogorov-Smirnov

test). Using the average structural connectomes from

patients and controls instead of the individual ones (Figure

3(b)), we also found the difference to be negligible: Wcrit

CControls¼ 1.404 and Wcrit CPatients¼ 1.408. For a range of

coupling weights falling before this critical value

(1.25<W< 1.35) the simulated FCs optimally approximate

the empirical one (Pearson correlation q> 0.3), as observed

in a previous implementation of the model.33 Notably, an

optimal fit with empirical healthy FC can be obtained not

only with the connectomes from controls but also with the

connectomes from patients, without any significant differ-

ence between groups (Figure 3(c)).

FIG. 2. Properties of the structural networks from patients and controls. In each plot, the structural connectivity properties of 15 healthy controls (�) and 15

patients with schizophrenia (1) are reported (see Table I). Std, standard deviation.
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Although no differences were detected in the critical cou-

pling weight between patients and controls, subtle structural

differences occurring in the disease may have an impact in

the topological organization of functional connectivity.

Following reports of less small-world resting-state functional

networks in schizophrenia,25,28,29 we investigated the small-

world index of the FCs simulated with the connectomes from

patients and controls. As shown in Figure 4, for the same cou-

pling weight, the small-world index did not appear signifi-

cantly reduced in patients. What is more, in the region of

optimal fit with empirical healthy FC, the FCs simulated with

the patients’ structural connectome sometimes even exhibited

higher small-worldness than the FCs obtained with the aver-

age connectome from controls. This suggests that the topo-

logical alterations observed in functional networks in

schizophrenia (such as a reduced small-world index) may not

be directly linked to changes in the structural connectivity but

to other factors influencing the brain’s spontaneous dynamics

in the disease. As a matter of fact, it can be seen in Figure 4

that the small-world index is sensitive to the coupling weight,

increasing continuously until the critical coupling weight and

then returning to low values after the bifurcation. In the range

of coupling weights where the simulated FCs optimally repro-

duce the empirical healthy FC (W� 1.30 6 0.5), the small-

world properties are in the range of the ones reported for

healthy subjects in Lynall et al., rControls¼ 1.614 6 0.0745.

Lower small-world indexes like the ones reported in schizo-

phrenia (rPatients¼ 1.5300 6 0.1184)25 could be obtained in

the model by setting the global coupling weight in the range

between 1<W< 1.30. When the global coupling weight is

decreased in the model, the dynamical regime of the system

is moved in the direction of the stable low-activity equilib-

rium state leading to more random and consequently

less-small world functional networks. These results suggest

that the behavioural symptoms observed in schizophrenia

may be originated by a decrease in the coupling weight which

TABLE I. Group differences between structural networks from patients and controls. Std., standard deviation. The significance was estimated using the two-

sample Kolmogorov-Smirnov test. Measures that rejected the null hypothesis with >95% confidence are marked with (*).

Controls Patients
Kolmogorov-Smirnov test Mann-Whitney U-test

Mean Std Mean Std p-value p-value

Total fibres 4.425� 105 3.932� 104 4.583� 105 2.619� 104 0.307 0.171

Fibres/connection (mean) 211.096 6.803 206.335 7.572 0.308 0.199

Fibres/connection (std) 343.051 14.144 343.433 12.259 0.589 0.934

Connection density 26.180 2.265 27.742 1.494 0.136 0.421

Clustering coefficient 0.615 0.012 0.622 0.011 0.136 0.106

Path length 1.667 0.053 1.628 0.030 0.052 0.031*

Degree (mean) 23.301 2.016 24.690 1.330 0.136 0.042*

Small-world index 1.905 0.145 1.796 0.056 0.052 0.034*

FIG. 3. Dynamical behaviour of the model obtained with the connectomes from patients (red) and controls (blue). (a) The critical coupling weight (Wcrit) can

be determined from simulations by detecting the coupling weight above which the average synaptic input <Sn> increases from the low firing equilibrium state

to a high firing state. As such, vertical lines indicate the Wcrit of the corresponding connectomes. (b) Same as (a) but estimated for the average connectome

from patients, CPatients, and the average connectome from controls, CControls. (c) Correlation between the simulated functional connectivity matrices

(FC)—obtained with CPatients (red) and CControls (blue)—and the empirical healthy FC, as a function of the global coupling weight (W). Error bars indicate the

mean and standard deviation across 20 simulations (None of these values was significantly different between groups: p> 0.05, for all W). The vertical dashed

line indicates the critical coupling weight Wcrit defined in (b).
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leads to a shift from the healthy spontaneous regime—at the

border of the bifurcation—towards the stable low-activity

equilibrium state.

IV. DISCUSSION

Several experimental and theoretical studies indicate

that resting-state functional connectivity is strongly shaped

by the underlying structural connectivity.7,33,59 However, the

fact that functional networks appear subtly randomized in

schizophrenia does not necessarily mean that the long-range

white matter fibres connecting brain areas are more ran-

domly distributed.25,27–29 In the present work, we use for the

first time structural connectomes from adolescents with

early-onset schizophrenia and controls together with a com-

putational model of whole-brain spontaneous activity in

order to investigate the causes of disrupted resting-state

functional connectivity in the disease.

Analysing the connectomes from patients and controls

at the structural level, significant differences could only be

found at the level of their topological organization, and only

when using the Mann-Whitney U-test, which is more robust

against outliers. In particular, the structural connectomes

from patients had lower path length, higher mean degree and

lower small-world index. These results point to the direction

that, even if the connectomes from patients have a similar

number of links as controls, these links are organized differ-

ently and this (dis)organization could potentially affect nor-

mal brain function originating the behavioural symptoms

observed in schizophrenia.

To investigate the impact of these structural alterations

in the spontaneous functional connectivity, the spontaneous

activity was simulated for the different structural connec-

tomes using the reduced mean field model. Although the crit-

ical coupling weight appeared to be sensitive to subtle

structural differences existing between subjects, it did not

differ significantly between groups. This suggests that, at

least from the perspective of the current model, the structural

connectivity of patients with schizophrenia does not affect

the dynamical regime of the system. However, this paper

shows only one of the possible mechanisms by which the

altered functional connectivity in schizophrenic patients

could be explained, and an influence of structural connectiv-

ity cannot be completely ruled out.

Analysing the simulation results in terms of spontaneous

BOLD functional connectivity, an optimal fit with empirical

healthy functional connectivity could be obtained with both

the connectomes from controls and patients, as long as the

coupling weight was set within an optimal range before the

critical value. Indeed, as shown in Deco et al.,33 this is where

the functional connectivity maximally expresses the underly-

ing structural connectivity. Even so, the maximum correla-

tion obtained between real and simulated functional

connectivity was only slightly above 0.3 for both groups. As

such, the functional networks resulting from the different

structures could still differ in topology even if they showed a

similar correlation coefficient with real healthy functional

connectivity.

As the resting-state functional networks from patients

with schizophrenia have been found to be less small-world

than healthy controls and the structural networks from

patients showed a trend to be less small-world, we expected

the simulated functional networks to have a lower small-

word index in the patients’ group. However, we found that

the simulated functional networks obtained with the patients’

structural connectome sometimes even displayed a higher

small-world index, making proof of the complex relationship

between structural and functional connectivity. From the per-

spective of the current model, we found that the best way to

obtain functional networks with small-world indexes match-

ing the ones reported experimentally for patients25 would be

by adjusting the global coupling weight of the system. In

other words, the small-world indexes reported for healthy

people could be obtained in the range of coupling weights

where a best fit with empirical FC was obtained, whereas the

small-world indexes reported in schizophrenia could be

obtained in the model by decreasing the global coupling

weight.

From a physiological perspective, the global coupling

weight in the model scales the strength of excitatory synaptic

FIG. 4. Small-world index of simu-

lated FC as a function of the global

coupling weight W and comparison

with values reported in the literature.

Simulated data obtained with the struc-

tural connectomes from controls (blue)

and patients (red). Error bars indicate

the mean and standard deviation across

20 simulations (* indicate values sig-

nificantly different between groups:

p< 0.05). The dotted lines and shades

represent the empirical values (mean

and standard deviation) reported for

functional networks in health and

schizophrenia.25
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input between brain areas. A decrease in this coupling

weight could be, in general terms, related to any disruption

of synaptic and/or axonal mechanisms. For example, there is

convincing evidence that NMDA receptor hypofunction may

contribute to the symptomatic features of schizophrenia,60

which supports the findings in this study. In addition, it could

also be related to reports of deficient synaptic plasticity61 or

malfunction in the dopaminergic,62,63 glutamatergic,64 or

cholinergic65,66 neurotransmission in schizophrenia.

Importantly, the current model provides a global picture for

the pathophysiology of schizophrenia, where the communi-

cation between brain areas is reduced, irrespective of the

physiological mechanism causing it.

Note that the hypothesis of a decreased coupling

strength between brain areas in schizophrenia has been al-

ready proposed in previous works.32,67 In more detail, using

two different models at the node level, it was found that the

properties of resting-state functional networks in schizophre-

nia could be obtained by decreasing the global coupling

strength. However, these studies used only the structural con-

nectomes from healthy subjects, and therefore it was not pos-

sible to test if the same results could be obtained with

connectomes from patients with schizophrenia. Here, our

results indicate that the structural differences found between

healthy controls and patients did not affect the spontaneous

functional networks, corroborating previous theoretical pre-

dictions and extending them to early-onset schizophrenia

which is clinically more severe than the adult-onset form of

the disease.

In Deco and Jirsa,10 it is proposed that the healthy rest-

ing brain operates at the brink of a bifurcation that separates

the low-activity equilibrium state from the multistable state

region where many attractors—corresponding to high activ-

ity in different brain areas—coexist. Under these conditions,

the activation of resting-state networks occurs due to struc-

tured noise fluctuations around the low-activity state induced

by the presence of latent “ghost” attractors at the edge of the

bifurcation. In this theoretical scenario and in the light of the

current results, we propose that the brains in schizophrenia

are operating further below the bifurcation than healthy sub-

jects and therefore fewer excursions to the “ghost” attractor

states occur. Beyond the resting-state, one can speculate that

this condition can explain the behavioural symptoms of

schizophrenia, whose most characteristic sign is the disinte-

gration of psychological functions resulting in a loss of unity

of mind and consciousness.68,69

Furthermore, our results indicate that the spontaneous

activity of people with schizophrenia could be balanced back

to normal values if the global coupling weight between brain

areas could be increased in some way, i.e., with the help of

medication or using deep brain stimulation. Actually, we

find that the FC matrices simulated with the model using the

patient‘s structural connectomes can predict with good

agreement the functional connectivity from healthy subjects

(and with small-world properties that match the ones from

controls) if the global coupling weight is tuned at an optimal

value.

Despite providing a meaningful theoretical scenario, this

work has several limitations. While the patient and control

groups were matched for age and sex for the measures of

structural connectivity, we were unable to obtain functional

data from these groups. Instead, we had to use functional

connectivity data from a slightly older control group. In

addition, the topological properties of simulated functional

networks were compared with the ones reported empirically

from 15 healthy adult volunteers and 12 patients with schizo-

phrenia.25 In further studies, the employment of empirical

functional data from the same patients and controls would be

needed to validate the results reported herein. Although our

model results do not indicate any direct influence of the

structural connectivity in the topology of functional net-

works, it is important to note that our analysis was performed

at a very low resolution (i.e., only 90 brain areas) and our

model is (intentionally) very reduced. As such, the influence

of structural connectivity on the functional topology cannot

be ruled out.

ACKNOWLEDGMENTS

The research reported herein was supported by the ERC

Advanced Grant DYSTRUCTURE (No. 295129), by the

FET Flagship Human Brain Project, by the Spanish Research

Project SAF2010-16085, by the CONSOLIDER-INGENIO

2010 Programme CSD2007-00012, by the Brain Network

Recovery Group through the James S. McDonnell

Foundation, by the FP7-ICT BrainScales, and by the

TrygFonden Charitable Foundation. Funding for the scan-

ning was supported by the MRC (G0500092).

1Y. Iturria-Medina, E. J. Canales-Rodriguez, L. Melie-Garcia, P. A.

Valdes-Hernandez et al., Neuroimage 36, 645 (2007).
2P. Hagmann, M. Kurant, X. Gigandet, P. Thiran et al., PLoS ONE 2, e597

(2007)
3B. B. Biswal, M. Mennes, X. N. Zuo, S. Gohel et al., Proc. Natl. Acad.

Sci. U.S.A. 107, 4734 (2010).
4B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, Magn. Reson.

Med. 34, 537 (1995).
5J. S. Damoiseaux, S. A. Rombouts, F. Barkhof, P. Scheltens et al., Proc.

Natl. Acad. Sci. U.S.A. 103, 13848 (2006).
6A. Ghosh, Y. Rho, A. R. McIntosh, R. K€otter et al., PLoS Comput. Biol.

4, e1000196 (2008).
7C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet et al., Proc. Natl. Acad.

Sci. U.S.A. 106, 2035 (2009).
8G. Deco, V. Jirsa, A. R. McIntosh, O. Sporns et al., Proc. Natl. Acad. Sci.

U.S.A. 106, 10302 (2009).
9J. Cabral, E. Hugues, O. Sporns, and G. Deco, Neuroimage 57, 130

(2011).
10G. Deco and V. K. Jirsa, J. Neurosci. 32, 3366 (2012).
11M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, Proc. Natl.

Acad. Sci. U.S.A. 101, 4637 (2004).
12J. S. Damoiseaux, K. E. Prater, B. L. Miller, and M. D. Greicius,

Neurobiol. Aging 33, 828.e19 (2012).
13M. A. Binnewijzend, M. M. Schoonheim, E. Sanz-Arigita, A. M. Wink

et al., Neurobiol. Aging 33, 2018 (2012).
14K. Supekar, V. Menon, D. Rubin, M. Musen et al., PLoS Comput. Biol. 4,

e1000100 (2008).
15R. L. Buckner, A. Z. Snyder, A. L. Sanders, M. E. Raichle et al., J. Cogn.

Neurosci 12(Suppl 2), 24 (2000).
16S. A. Rombouts, J. S. Damoiseaux, R. Goekoop, F. Barkhof et al., Hum.

Brain Mapp. 30, 256 (2009).
17D. P. Kennedy, E. Redcay, and E. Courchesne, Proc. Natl. Acad. Sci.

U.S.A. 103, 8275 (2006).
18S. J. Weng, J. L. Wiggins, S. J. Peltier, M. Carrasco et al., Brain Res.

1313, 202 (2010).

046111-8 Cabral et al. Chaos 23, 046111 (2013)

http://dx.doi.org/10.1016/j.neuroimage.2007.02.012
http://dx.doi.org/10.1371/journal.pone.0000597
http://dx.doi.org/10.1073/pnas.0911855107
http://dx.doi.org/10.1073/pnas.0911855107
http://dx.doi.org/10.1002/mrm.1910340409
http://dx.doi.org/10.1002/mrm.1910340409
http://dx.doi.org/10.1073/pnas.0601417103
http://dx.doi.org/10.1073/pnas.0601417103
http://dx.doi.org/10.1371/journal.pcbi.1000196
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1073/pnas.0901831106
http://dx.doi.org/10.1073/pnas.0901831106
http://dx.doi.org/10.1016/j.neuroimage.2011.04.010
http://dx.doi.org/10.1523/JNEUROSCI.2523-11.2012
http://dx.doi.org/10.1073/pnas.0308627101
http://dx.doi.org/10.1073/pnas.0308627101
http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.024
http://dx.doi.org/10.1016/j.neurobiolaging.2011.07.003
http://dx.doi.org/10.1371/journal.pcbi.1000100
http://dx.doi.org/10.1162/089892900564046
http://dx.doi.org/10.1162/089892900564046
http://dx.doi.org/10.1002/hbm.20505
http://dx.doi.org/10.1002/hbm.20505
http://dx.doi.org/10.1073/pnas.0600674103
http://dx.doi.org/10.1073/pnas.0600674103
http://dx.doi.org/10.1016/j.brainres.2009.11.057


19S. A. Rombouts, F. Barkhof, R. Goekoop, C. J. Stam et al., Hum. Brain

Mapp. 26, 231 (2005).
20S. Bonavita, A. Gallo, R. Sacco, M. D. Corte et al., Mult. Scler. 17, 411

(2011).
21M. D. Greicius, B. H. Flores, V. Menon, G. H. Glover et al., Biol.

Psychiatry 62, 429 (2007).
22I. M. Veer, C. F. Beckmann, M. J. van Tol, L. Ferrarini et al., Front. Syst.

Neurosci. 4, 41 (2010).
23M. L. Kringelbach, A. L. Green, and T. Z. Aziz, Front. Integr. Neurosci. 5,

8 (2011).
24K. J. Friston and C. D. Frith, Clin. Neurosci. 3, 89 (1995).
25M. E. Lynall, D. S. Bassett, R. Kerwin, P. J. McKenna et al., J. Neurosci.

30, 9477 (2010).
26M. Liang, Y. Zhou, T. Jiang, Z. Liu et al., Neuroreport 17, 209 (2006).
27P. Skudlarski, K. Jagannathan, K. Anderson, M. C. Stevens et al., Biol.

Psychiatry 68, 61 (2010).
28Y. Liu, M. Liang, Y. Zhou, Y. He et al., Brain 131, 945 (2008).
29D. S. Bassett, B. G. Nelson, B. A. Mueller, J. Camchong et al.,

Neuroimage 59, 2196 (2012).
30S. Kumra and S. Charles Schulz, Schizophr. Bull. 34, 15 (2008).
31M. Kyriakopoulos and S. Frangou, Int. Rev. Psychiatry 19, 315 (2007).
32J. Cabral, M. L. Kringelbach, and G. Deco, Pharmacopsychiatry 45(Suppl

1), S57 (2012).
33G. Deco, A. Ponce-Alvarez, D. Mantini, G. L. Romani et al., J. Neurosci.

33, 11239 (2013).
34American Psychiatric Association (Ed.), Diagnostic and Statistical Manual

of Mental Disorders: DSM-IV-TR (American Psychiatric Pub., 2000).
35J. Kaufman, B. Birmaher, D. Brent, U. Rao et al., J. Am. Acad. Child

Adolesc. Psychiatry 36, 980 (1997).
36S. R. Kay, A. Fiszbein, and L. A. Opler, Schizophr. Bull. 13, 261 (1987).
37G. Douaud, C. Mackay, J. Andersson, S. James et al., Brain 132, 2437

(2009).
38A. James, M. Hough, S. James, L. Winmill et al., Schizophr. Res. 128, 91

(2011).
39See supplementary material at http://dx.doi.org/10.1063/1.4851117 for the

list of brain areas selected.
40N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello et al.,

Neuroimage 15, 273 (2002).
41M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Neuroimage 17, 825

(2002).

42D. Collins, P. Neelin, T. Peters, and A. C. Evans, J. Comput. Assist.

Tomogr. 18, 192 (1994).
43T. E. Behrens, M. W. Woolrich, M. Jenkinson, H. Johansen-Berg et al.,

Magn. Reson. Med. 50, 1077 (2003).
44T. E. Behrens, H. J. Berg, S. Jbabdi, M. F. Rushworth et al., Neuroimage

34, 144 (2007).
45N. Brunel and X. J. Wang, J. Comput. Neurosci. 11, 63 (2001).
46P. Theodoni, T. I. Panagiotaropoulos, V. Kapoor, N. K. Logothetis et al.,

Front. Hum. Neurosci. 5, 145 (2011).
47K. J. Friston, L. Harrison, and W. Penny, Neuroimage 19, 1273 (2003).
48Y. He, J. Wang, L. Wang, Z. J. Chen et al., PLoS ONE 4, e5226 (2009)
49J. Wang, L. Wang, Y. Zang, H. Yang et al., Hum. Brain Mapp. 30, 1511

(2009).
50F. J. Massey, J. Am. Stat. Assoc. 46, 68 (1951).
51M. Rubinov and O. Sporns, Neuroimage 52, 1059 (2010).
52O. Sporns and J. D. Zwi, Neuroinformatics 2, 145 (2004).
53O. Sporns and C. J. Honey, Proc. Natl. Acad. Sci. U.S.A. 103, 19219

(2006).
54D. S. Bassett and E. Bullmore, Neuroscientist 12, 512 (2006).
55O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, Trends Cogn.

Sci. 8, 418 (2004).
56D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
57L. Wang, C. Zhu, Y. He, Y. Zang et al., Hum. Brain Mapp. 30, 638

(2009).
58M. Hollander and D. A. Wolfe, Wiley Series in Probability and Statistics

Texts (Wiley, 1999), references Sec. XIV.
59E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009).
60J. T. Coyle, G. Tsai, and D. Goff, Ann. N.Y. Acad. Sci. 1003, 318 (2003).
61K. J. Friston, Acta Psychiatr. Scand Suppl. 99, 68 (1999).
62G. Winterer and D. R. Weinberger, Trends Neurosci. 27, 683 (2004).
63G. Winterer, Pharmacopsychiatry 39, S68 (2006).
64D. C. Goff and J. T. Coyle, Am. J. Psychiatry 158, 1367 (2001).
65G. Winterer, Curr. Opin. Psychiatry 23, 112 (2010).
66A. Mobascher, T. Warbrick, J. Brinkmeyer, F. Musso et al., Eur.

Neuropsychopharmacol. 21, S515 (2011).
67J. Cabral, E. Hugues, M. L. Kringelbach, and G. Deco, Neuroimage 62,

1342 (2012).
68E. Bleuler, Allg. Z. Psychiatr. Psychischgerichtliche Med. 65, 436

(1908).
69O. Sporns, Networks of the Brain (MIT Press, 2010).

046111-9 Cabral et al. Chaos 23, 046111 (2013)

http://dx.doi.org/10.1002/hbm.20160
http://dx.doi.org/10.1002/hbm.20160
http://dx.doi.org/10.1177/1352458510394609
http://dx.doi.org/10.1016/j.biopsych.2006.09.020
http://dx.doi.org/10.1016/j.biopsych.2006.09.020
http://dx.doi.org/10.3389/fnsys.2010.00041
http://dx.doi.org/10.3389/fnsys.2010.00041
http://dx.doi.org/10.3389/fnint.2011.00008
http://dx.doi.org/10.1523/JNEUROSCI.0333-10.2010
http://dx.doi.org/10.1097/01.wnr.0000198434.06518.b8
http://dx.doi.org/10.1016/j.biopsych.2010.03.035
http://dx.doi.org/10.1016/j.biopsych.2010.03.035
http://dx.doi.org/10.1093/brain/awn018
http://dx.doi.org/10.1016/j.neuroimage.2011.10.002
http://dx.doi.org/10.1093/schbul/sbm123
http://dx.doi.org/10.1080/09540260701486258
http://dx.doi.org/10.1055/s-0032-1309001
http://dx.doi.org/10.1523/JNEUROSCI.1091-13.2013
http://dx.doi.org/10.1097/00004583-199707000-00021
http://dx.doi.org/10.1097/00004583-199707000-00021
http://dx.doi.org/10.1093/schbul/13.2.261
http://dx.doi.org/10.1093/brain/awp126
http://dx.doi.org/10.1016/j.schres.2011.02.014
http://dx.doi.org/10.1063/1.4851117
http://dx.doi.org/10.1006/nimg.2001.0978
http://dx.doi.org/10.1006/nimg.2002.1132
http://dx.doi.org/10.1097/00004728-199403000-00005
http://dx.doi.org/10.1097/00004728-199403000-00005
http://dx.doi.org/10.1002/mrm.10609
http://dx.doi.org/10.1016/j.neuroimage.2006.09.018
http://dx.doi.org/10.1023/A:1011204814320
http://dx.doi.org/10.1016/S1053-8119(03)00202-7
http://dx.doi.org/10.1371/journal.pone.0005226
http://dx.doi.org/10.1002/hbm.20623
http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1385/NI:2:2:145
http://dx.doi.org/10.1073/pnas.0609523103
http://dx.doi.org/10.1177/1073858406293182
http://dx.doi.org/10.1016/j.tics.2004.07.008
http://dx.doi.org/10.1016/j.tics.2004.07.008
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1002/hbm.20530
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1196/annals.1300.020
http://dx.doi.org/10.1111/j.1600-0447.1999.tb05985.x
http://dx.doi.org/10.1016/j.tins.2004.08.002
http://dx.doi.org/10.1055/s-2006-931498
http://dx.doi.org/10.1176/appi.ajp.158.9.1367
http://dx.doi.org/10.1097/YCO.0b013e3283366643
http://dx.doi.org/10.1016/S0924-977X(11)70838-0
http://dx.doi.org/10.1016/S0924-977X(11)70838-0
http://dx.doi.org/10.1016/j.neuroimage.2012.06.007

	s1
	s2
	s2A
	s2B
	s2C
	d1
	d2
	d3
	s2D
	s2E
	s2F
	f1
	s3
	f2
	t1
	f3a
	f3b
	f3c
	f3
	s4
	f4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69

