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SUMMARY
Within the field of computational neuroscience there are great expectations of finding newways to rebalance
the complex dynamic system of the human brain through controlled pharmacological or electromagnetic
perturbation. Yetmany obstacles remain between the ability to accurately predict how andwhere best to per-
turb to force a transition from one brain state to another. The foremost challenge is a commonly agreed defi-
nition of a given brain state. Recent progress in computational neuroscience hasmade it possible to robustly
define brain states and force transitions between them. Here, we review the state of the art and propose a
framework for determining the functional hierarchical organization describing any given brain state. We
describe the latest advances in creating sophisticated whole-brain computational models with interacting
neuronal and neurotransmitter systems that can be studied fully in silico to predict and design novel pharma-
cological and electromagnetic interventions to rebalance them in disease.
INTRODUCTION

In the broadest sense, brain states are often referred to as states

of, for example, wakefulness, sleep, and anesthesia (Gervasoni

et al., 2004; Northoff, 2013; Tononi et al., 1994). Nevertheless,

a precise and commonly agreed definition of a brain state is still

missing and the underlying dynamical complexity remains un-

known. The contention here is that computational neuroscience

offers amechanistic framework for characterizing brain states in

terms of the underlying causal mechanisms and dynamical

complexity.

Brain states consist of the continuously evolving dynamics of

widespread networks that are characterized by condition-

dependent self-organization, going through stable, ‘‘quasi-sta-

ble,’’ high or low activities, and transient arrangements. The

key question is how best to identify states from functional neuro-

imaging data with a focus on capturing their whole-brain dy-

namics over time and space (Deco et al., 2019b). Until now,

existing definitions of brain states have been restricted to

resting-state networks and mainly to describing grand average

descriptions of functional brain activity (Barttfeld et al., 2015;

Carhart-Harris et al., 2016; Tagliazucchi et al., 2016).

Yet time is crucial for describing brain states, and any potential

definition would need to be extended to include dynamics in or-

der to understand the underlying information processing across

time and space. As shown in Figure 1, it is possible to create a
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detailed taxonomy of the many different empirical and analytical

tools that have been developed to try to fill this gap (see also Bol-

ton et al., 2020). In particular, there has been significant progress

in characterizing the spatiotemporal dynamics of neuroimaging

data (de Pasquale et al., 2016; Hansen et al., 2015; Hutchison

et al., 2013; Preti et al., 2017).

Still, moving beyond such correlational descriptions will need

mechanistic whole-brain modeling of the dynamics underlying

the brain states. It is, of course, important to realize that brain-

state dynamics and organization are emergent properties of

the computational model, and as such the main aim is to find

the best definition and identification method for brain states

that maximally reflect the capabilities of themodel andmeaning-

fully summarize features of the data. In other words, not all mea-

sures that characterize the empirical data can be extractable

from the whole-brain computational model data.

Using whole-brain modeling to bring about an enhanced

description of brain states is not just useful for understanding

the healthy brain but holds great promise for helping support

diagnosis and therapeutic interventions in disease (Deco and

Kringelbach, 2014; Gilson et al., 2020). Recent evidence of the

usefulness of whole-brain models for disease has emerged

from clinical conditions such as stroke (Adhikari et al., 2017), ep-

ilepsy (Hashemi et al., 2020), and brain tumors (Aerts et al.,

2020). Still, although promising, the methods have yet to be

used to their full potential for clinical treatments.
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Figure 1. Taxonomy of Tools for Character-

izing Brain States over Time and Space

Brain activity with concomitant behavior can be

measured over many different temporal and spatial

scales.

(A) Empirical behavioral measures can capture infor-

mation starting at a timescale of tens of milliseconds.

(B) On the other hand, empirical brain measures, for

example neuronal recordings, can capture informa-

tion such as spiking activity on a much faster sub-

millisecond timescale. Other technologies such as

local field potential recordings, EEG, and MEG can

similarly capture fast temporal information but on a

much less localized spatial scale. fMRI remainsone of

the most widespread methods for measuring brain-

wide activity with excellent sub-millimeter spatial

resolution but is limited in the temporal domain by

hemodynamics. Another popular whole-brain imag-

ing method is PET, which is less precise in both

temporal and spatial information but can measure

important informationabout neurotransmitterdensity.

(C) The empirical measures can be combined in

whole-brain models, which helps bridge the gap

between the measurements on their own and a

causal mechanistic understanding of them.

(D) This summarizes the temporal properties of

many different analytical tools.

(E) Similarly, these analytical tools have different strengths in characterizing the spatial properties of the brain from neurons to assemblies of neurons, to

neuroimaging voxels incorporating millions of these to fine-, medium-, and coarse-grade parcellations of the brain.

BOLD, blood-oxygenation-level-dependent ; CAPs, co-activation patterns; EEG, electroencephalography; FC, functional connectivity; FCD, functional con-

nectivity dynamics; fMRI, functional magnetic resonance imaging; HMM, hidden Markov model; LEiDA, leading eigenvector dynamics analysis; LFP, local field

potential; PMS, probabilistic metastable substate; WBM, whole-brain model.
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In this review, we focus on how whole-brain models can pro-

vide a robust quantitative definition of brain states, providing a

possible basis for the precise prediction of the effects of pharma-

cological and electromagnetic perturbations needed to force

transitions between brain states. Long term, such a framework

would be highly useful for biomarkers needed for the diagnosis,

for instance, of comatose patients—and actual interventional

treatment to awaken these patients. Finally, we propose and

discuss novel approaches, which could be used to advance

the field beyond the state of the art.

Principles of Brain States Revealed by Whole-Brain
Modeling
The main aim of computational neuroscience is to reverse engi-

neer the human brain to discover the mechanistic principles that

allow the brain to orchestrate the complex behavior needed for

survival. This is inspired by the success of modern physics,

which is based on its ability to model the constitutive elements

of a system and to systematically perturb these elements to

discover the emergence of the underlying dynamics (Feynman

et al., 2005). As an example, the detailed understanding of fluid

dynamics has come about through careful modeling of the sta-

tistical properties of the necessary and sufficient elements over

multiple scales (Frisch, 1995).

In a similar way, the progress of neuroscience has been facil-

itated by the use of whole-brain modeling in simulating brain dy-

namics. The fundamental principle is to link anatomical structure

with functional dynamics (Deco et al., 2009; Jirsa et al., 2002)

(Figure 2A). The anatomy can be represented in many ways,
2 Cell Reports 32, September 8, 2020
ideally through large-scale tract tracing providing directional

anatomical connectivity (Kötter, 2004; Markov et al., 2014).

This information is not currently possible to obtain in humans

but instead researchers have measured unidirectional connec-

tivity using in vivo diffusion magnetic resonance imaging

(dMRI) combined with probabilistic tractography (Basser and

Pierpaoli, 1996; Beaulieu, 2002; Hagmann et al., 2010; Johan-

sen-Berg and Rushworth, 2009).

These tractographymeasures are not without problems, given

that fiber tracking is complex and involves many steps inherently

subject to potential errors from and decisions regarding local fi-

ber orientation modeling, integration/propagation, interpolation,

seeding, masking, and stopping criteria (Jeurissen et al., 2019).

Recent comparisons between connectomes created with diffu-

sion tractography-based and neuroanatomical tracer studies

have shown that state-of-the-art tractography does not detect

all neuroanatomical pathways and their corresponding connec-

tion strengths (Donahue et al., 2016). Thus, even when using

state-of-the-art methods with high-quality diffusion data, many

issues are currently unresolved. Still, many of these issues can

be overcomewith the use ofmodel-based estimates of the effec-

tive connectivity, where measures of functional connectivity can

enhance and supplement the anatomical structural connectivity,

especially the strengths of connectivity even at the individual

level (Gilson et al., 2016; Pallarés et al., 2018).

In order to further reduce the complexity of modeling, the brain

is typically divided into ameaningful parcellation based on struc-

tural and functional information, typically on the order of 80–150

nodes (Eickhoff et al., 2018a, 2018b). The functional global



Figure 2. Whole-Brain Modeling of Brain States

(A) The fundamental idea is to couple the local dynamics of a region through the anatomical connectivity to other regions in order to accurately generate the

empirical whole-brain data coming from measurements across different timescales (e.g., fMRI, MEG, EEG, and PET). Thus, the main ingredients in this whole-

brain model of brain-state dynamics are (1) the local dynamics, (2) the anatomical structural connectivity between regions, and (3) their functional whole-brain

activity data. The local neuronal dynamics can be expressed, for example, as a spiking neuronal network or mean fieldmodel or with mesoscopicmodels such as

the Hopf model.

(B) The model is fitted to the dynamics, originally only using the average FC but now using temporal dynamics such as the FCD.

(C) An evenmore accurate version of brain dynamics can be obtained through using the LEiDA framework. Left: how the phase of the BOLD signal is computed for

every time point in a given brain region. This is repeated for all brain regions and, at each time point, the BOLD phase coherence matrix between brain regions is

computed. Left panel: how the leading eigenvectors for all phase coherencematrices in all participants are clustered in order to define the substates. Right panel :

the PMS space, which captures the center of the clusters (top) with their probability of occurrence and associated lifetimes (bottom). This framework allows for a

given brain state to be accurately quantified.
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dynamics emerge from the mutual interactions of local node dy-

namics coupled through the underlying empirical anatomical

connectivity. This functional activity can be captured with

whole-brain neuroimaging methods, typically fMRI (functional

magnetic resonance imaging), MEG (magnetoencephalogra-

phy), and EEG (electroencephalography). These measures cap-

ture different timescales of brain activity (see Figure 1).

Whole-brain models aim to balance between complexity and

realism in order to describe the most important functional fea-

tures of the brain in vivo (Breakspear et al., 2010; Deco et al.,

2011). The most successful whole-brain computational models

have taken their lead from statistical physics, where it has

been shown that macroscopic physical systems obey laws

that are independent of their mesoscopic constituents (Haken,

1988). Each node typically consists of a suitable approximation

of the local neuronal dynamics, which can be expressed as a

spiking neuronal network (Deco and Jirsa, 2012; Ghosh et al.,

2008), mean field model (Deco et al., 2014b; Honey et al.,
2007), or mesoscopic model (for instance, the Hopf model;

Deco et al., 2017b; Freyer et al., 2012). Typically, these models

fit the empirical data by optimizing the global coupling parameter

that scales the underlying structural connectivity, which as-

sumes that the conductivity is uniform across the brain. But it

is, of course, also possible to model potential heterogeneity in

conductivity by adapting the effective connectivity to the empir-

ical data (Gilson et al., 2016). The emergent collective macro-

scopic behavior of brain models has been shown to depend

only weakly on individual neuron behavior (Breakspear et al.,

2010).

The whole-brain-modeling framework has been successful in

explaining the patterns of spontaneous inter-regional functional

activity correlations, forming the so-called resting-state net-

works captured by fMRI (Breakspear, 2004; Deco et al., 2011,

2013; Deco and Kringelbach, 2014; Ghosh et al., 2008; Honey

et al., 2007). Recent developments have shown that whole-brain

models are able to describe not only static functional
Cell Reports 32, September 8, 2020 3
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connectivity (FC; averaged over all time points) (Deco et al.,

2017b) but also dynamical measurements such as the temporal

structure of the activity fluctuations in functional connectivity dy-

namics (FCD) (Figure 2B) (Hansen et al., 2015). Whole-brain

models can also be used to explain brain activity on faster time-

scales (milliseconds) as measured, for example, with MEG (Ca-

bral et al., 2014; Deco et al., 2017a) but many challenges remain

to unify the different timescales. Crucially, it has also been

demonstrated that whole-brain models can bridge the gap be-

tween different timescales frommilliseconds to tens of seconds,

offering unparalleled mechanistic insights into the multi-scale

nature of whole-brain activity (Deco et al., 2019b).

Brain States: Descriptions of Dynamics
Early descriptions of brain states have focused on them as

merely a point in a state space, a high-dimensional coordinate

system characterizing the activity of the brain at a given time.

But this does not capture the dynamical nature of a brain state

over time. Some have instead proposed describing a brain state

as an attractor of interacting brain regions (Deco and Jirsa, 2012;

Gu et al., 2018), but this does not capture the metastable nature

of brain states (Shanahan, 2010; Tognoli and Kelso, 2014). All of

these methods provide more or less accurate descriptions of the

fundamental underlying ensemble or ‘‘cloud’’ of possible steady

states (attractors). These descriptions have nevertheless been

very useful tools for thinking about brain function but without

capturing all aspects of the rich functional dynamics of brain

states.

Recently, a novel framework called leading eigenvector dy-

namics analysis (LEiDA) was proposed to characterize probabi-

listic metastable substates (PMSs) as stochastic subdivisions of

regular and persistent brain states (Cabral et al., 2017; Deco

et al., 2019a). The fundamental framework of LEiDA is shown in

Figure 2C. In brief, the method uses the blood-oxygenation-

level-dependent (BOLD) phase signal to determine the state of

whole-brain synchronization between different brain regions at

every timepoint. This iscomputed forall participantsandgroup re-

sults are clustered to find the metastable substates where their

probability of occurrence characterizes a given brain state. More

specifically, for every time point, in every brain region of each

participant, the Hilbert transform is used to compute the phase

of the BOLD signal, giving rise to the BOLD phase coherencema-

trix between brain regions. The dimensionality is reduced by ex-

tracting the leading eigenvector V1(t) of this matrix. The PMS is

then computed by using a clustering algorithm on all the concate-

nated leading eigenvectors for all time points in all participants.

The resulting PMS space captures the center of the clusters with

their probability of occurrence and associated lifetimes and is

thus a strong candidate for an operational definition of a brain

state.

Figure 1 shows how LEiDA, and other analytical tools, can be

characterized in terms of their spatiotemporal taxonomy. How-

ever, in addition to these measures, LEiDA differs in important

ways from other analytical tools. As an example, LEiDA is related

to brain activity and not to measures of connectivity/correlation,

such as co-activation patterns (CAPs) (Liu and Duyn, 2013),

innovation-driven co-activation patterns (iCAPs) (Karahano�glu

and Van De Ville, 2015), and connection-wise variability (Kucyi
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and Davis, 2014). Similarly, the method uses the fluctuations at

a specific timescale defined by a band-pass filter, and is based

on oscillatory/phase features, rather than transients (Baker et al.,

2014; Vidaurre et al., 2018) and microstates (Lehmann et al.,

1998; Michel and Koenig, 2018). Finally, LEiDA defines discrete

states in time (determined by clustering) instead of overlapping

states determined by subspace methods.

Indeed, the LEiDA framework has been shown to be highly flex-

ible, robust, and precise. It has allowed for recurrent substates to

bedetectedandcharacterized for restingstate (Cabral et al., 2017)

and task (Stark et al., 2020) in the healthy brain. It can also distin-

guish between brain states in disease (Figueroa et al., 2019) and

even in altered states such as psilocybin (Kringelbach et al.,

2020; Lord et al., 2019) and sleep (Deco et al., 2019a). Further-

more, it has been shown that a whole-brain model can simulate

the PMS space describing the necessary and sufficient dynamical

features of the functional empirical data (Deco et al., 2019a).

Forcing Controlled Transitions: Model-Based and
Empirical Evidence
There is a growing interest in how best to control the brain and its

transitions in health and disease. But the full potential has yet to

be fulfilled, i.e., where amodel has predicted a perturbation forc-

ing a state transition and where this prediction has subsequently

been empirically tested and validated. Still, as shown in the

following, many strategies are being explored at this point.

One framework is to use a strategy where the dynamical tra-

jectory of brain activity is continuously controlled by external

stimulation predicted by a computational model (Gu et al.,

2017). However, the viability of this strategy has been questioned

(Tu et al., 2018).

More generally, manipulation of the brain must encompass

more than simply controlling individual trajectories. Instead, it

must solve the fundamental problem of how to force transitions

between different brain states. Given a robust definition of brain

state, one strategy could be to find the optimal, precise perturba-

tion that can force a transition between different brain states. The

key idea is shown in Figure 3A,which sketches how to usewhole-

brainmodels to predict loci of stimulation that can offer a route to

change the dynamical landscape of a brain state such that the

brain will self-organize into a desired target brain state. Such a

strategy could be termed ‘‘homeostatic rebalancing.’’

In terms of empirical evidence of how individual trajectories

can change with brain state, Massimini and colleagues used

transcranial magnetic stimulation (TMS)-EEG to investigate the

perturbation-elicited changes in global brain activity during

wakefulness, sleep, anesthesia, and coma (Figure 3B). The re-

sults showed that non-REM (rapid eye movement) sleep is

accompanied by a breakdown in cortical effective connectivity,

where the stimuli rapidly extinguish and do not propagate

beyond the stimulation site (Casali et al., 2013; Ferrarelli et al.,

2010; Massimini et al., 2005). The results also showed significant

differences in brain-wide spatiotemporal propagation of external

stimulation, which distinguishes between different brain states

(Casali et al., 2013).

In addition, a very recent study also used TMS-EEG to charac-

terize individual brain dynamics at high temporal resolution, where

TMSwasused tocreate transitions to individuallydefinednodesof



Figure 3. Summary of Examples of Empirical Brain Stimulations

(A) The goal of whole-brain modeling is to predict potential perturbations that can change the dynamical landscape of a source brain state such that the brain will

self-organize into a desired target brain state. The figure is a cartoon of how a healthy brain state is associated with a dynamical landscape (left), which is

perturbed in disease (middle), and showing ‘‘homeostatic rebalancing’’ following a precise perturbation (right).

(B) Empirical evidence of how brain stimulation can affect brain activity comes from Massimini and colleagues, who investigated the perturbation-elicited

changes in global brain activity during wakefulness, sleep, anesthesia, and coma using TMS-EEG. They found significant differences in brain-wide spatio-

temporal propagation of external stimulation, which distinguishes between different brain states. Further details are available in Casali et al. (2013).

(C) Beyond such short-lasting changes, longer-lasting changes have been caused by direct deep brain stimulation to alleviate symptoms in disease. The figure

shows the results of using awhole-brain model of simultaneous neuroimaging activity and direct ON-OFF deep brain stimulation. Left: histograms of whole-brain-

model parameters associated with each brain region for healthy individuals (top) and individuals with Parkinson’s disease OFF stimulation (middle) and ON

stimulation (bottom). Middle: specific differences between brain region ON and OFF stimulation. Right: significant differences (in red) in the brain (for details, see

Saenger et al., 2017).

(D) Another example of global dynamical changes following perturbations comes from pharmacological stimulation with psilocybin, which stimulates serotonin

release. This has been explicitly modeled with a whole-brain model. Left: coupling between neuronal and neurotransmitter systems through a raphe nucleus

releasing serotonin. Right: significant improvement in fitting the empirical data with and without this dynamical feedback coupling in terms of PMS and lifetime of

the PMS states (see full details in Kringelbach et al., 2020).
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two well-known resting-state networks (Ozdemir et al., 2020). The

study found network-specific source-level EEG propagation pat-

terns thatwerehighly reproducibleacrosssessions1monthapart.

Further evidence comes from whole-brain models of the

longer-lasting direct stimulation offered by deep brain stimula-

tion (Kringelbach et al., 2007), which can help alleviate otherwise

treatment-resistant symptoms in neuropsychiatric and motor

disorders. Figure 3C shows the results from whole-brain models

of simultaneous neuroimaging activity and direct ON-OFF deep

brain stimulation (Kahan et al., 2014) alleviating symptoms of

brain disease (Saenger et al., 2017; van Hartevelt et al., 2014,

2015). This has revealed the underlying brain networks changing

with long-lasting stimulation—as well as identified potential new

targets for rebalancing.
This empirical evidence clearly reflects the change of dy-

namics following perturbation but the field awaits confirmation

of the predictive power of whole-brain modeling for forcing

transitions between brain states. A potential route to con-

ducting such crucial experiments could come from the whole-

brain models that have been constructed for other animals

including non-human primates (Deco et al., 2014a; Shen

et al., 2019) and rodents (Melozzi et al., 2017). In the future,

these models could be used for investigating the changes in

brain state between awake and anesthetized non-human pri-

mates (Autio et al., 2020; Barttfeld et al., 2015; Uhrig et al.,

2014), and suggest potential stimulation sites for transitioning

between brain states, which can then be further probed in

these animal models.
Cell Reports 32, September 8, 2020 5
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It stands to reason that such models will need to combine

structural, functional, and neurotransmitter neuroimaging data

to properly simulate the underlying brain dynamics (Deco

et al., 2018). Figure 3D shows the result of dynamically coupling

neuronal activity with neurotransmitter release, in this case the

dynamic serotonin release in connection with the use of psilo-

cybin (Kringelbach et al., 2020). Once the model is fully estab-

lished, the regional drug receptor modulation could be opti-

mized by finding the optimal weighting of the receptor density

such that the optimized model generates the functional dy-

namics of the healthy state (Deco et al., 2018). The current ev-

idence suggests that it would be important to combine such

direct brain manipulations with environmental manipulations,

e.g., drug-assisted psychotherapy, which could be a particu-

larly fruitful approach for neuropsychiatric disorders such as

depression (Carhart-Harris et al., 2018) or addiction (Johnson

et al., 2017).

Forcing Controlled Transitions: Insights from Whole-
Brain Models
Although the cited data are promising in terms of mapping and

understanding the effects of brain manipulation, there is clearly

a need for a more principled way to establish the causal transi-

tioning between brain states. This would allow for the potential

to predict where and how to intervene to rebalance diseased

brain states.

Recently, exactly such evidence has started to emerge (Deco

et al., 2019a), based on the ability to quantify a brain state with

the PMS framework described above. The basic idea is to

exhaustively stimulate offline a realistic whole-brain model accu-

rately modeling different brain states, in order to detect the types

and loci of stimulation that would be most effective in forcing a

transition between the brain states. In a clinical context, the tran-

sition would aim for a homeostatic rebalancing of healthy whole-

brain dynamics in order to predict the condition where Hebbian

learning will cause a meaningful recovery.

Specifically, Figure 4A shows how a whole-brain model would

be able to fit the PMS space of the two radically different brain

states of human sleep and wakefulness (Stevner et al., 2019).

The strategy was to investigate the best stimulation of this

whole-brain model to force transitions between different brain

states and thus ‘‘awaken’’ the brain from deep sleep to wakeful-

ness and vice versa. The whole-brain model was able to model

these two states (Figure 4B), which were extracted from unique

continuous neuroimaging data of healthy participants falling

asleep during simultaneous fMRI and EEG (Tagliazucchi and

Laufs, 2014).

The results provided evidence for the role of regions in promot-

ing a transition (Figure 4C) but also provided proof of principle

that multi-site stimulation can achieve similar results with lower

stimulation in each site. The results showed that, as expected,

for the transition from deep sleep to wakefulness, there are

many regions that are able to promote a transition (given suffi-

cient stimulation), whereas other regions are less suitable for

this. In contrast, it is much harder to find targets to make the

whole-brain model of wakefulness fall asleep, requiring higher

levels of stimulation and much more specific targets. This pro-

vides the first evidence for externally forcing controlled transi-
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tions between different brain states by means of in silico stimu-

lation of the whole-brain model (Deco et al., 2019a).

In general, although this review has mainly focused on phar-

macological and electromagnetic stimulation, sensory stimula-

tion is equally an ecologically valid and important approach.

Specifically, whole-brain modeling could, for example,

contribute to the enhanced use of the exciting modest improve-

ment after somatomotor stimulation in stroke rehabilitation

(French et al., 2010).

Functional Hierarchical Organization: Toward Better
Descriptions of a Brain State
This new in silico brain-state-transition framework currently ex-

plores the potential of all brain regions in promoting transitions.

However, this exhaustive search could likely be improved given

that the brain is well known to be hierarchically organized (Hun-

tenburg et al., 2018; Margulies et al., 2016; Mesulam, 1998;

Preti and Van De Ville, 2019) (Figure 5A). Recent progress in-

cludes a characterization of the brain’s fundamental metastable

states (Vidaurre et al., 2017) and work on graph signal process-

ing decomposing functional data on harmonic modes of struc-

tural connectivity (Preti and Van De Ville, 2019). This allows for

a quantification of coupling/decoupling between activity and

underlying structure and relates the coupling strength to

behavior.

Primarily sensory areas such as visual and auditory are unlikely

to play a role in orchestrating higher brain function. Instead, the

historical record of accidental lesions of higher-order regions in

humans has been shown to have a direct impact on behavior

(Broca, 1861; Eslinger and Damasio, 1985; Rorden and Karnath,

2004; Wernicke, 1874), and therefore likely to have a direct

impact on the orchestration of brain function. In terms of forcing

transitions between different brain states, this means that the

search space for suitable regions could be limited to the regions

located toward the top of the hierarchy. Consequently, it is

fundamental to quantify the functional hierarchy of the human

brain.

One promising framework for establishing the functional hier-

archy is to apply harmonic modes to functional connectivity

data. Figure 5B shows how this has been used to reveal the

multi-dimensional hierarchical nature of brain organization

(Glomb et al., 2019).

A complementary approach is to estimate the bidirectional in-

formation flow between brain regions (Figure 5C), where the

spatial map of outgoing information corresponds strongly to

the hierarchical organization revealed by the myelination of brain

regions, whereas the incoming information reflects high-order

integrative processing (Figure 5D). This has been used to

discover the functional rich club of interacting brain regions for

resting and seven different tasks (Deco et al., 2019c), revealing

a common core, akin to the global workspace originally pro-

posed by Baars (Baars, 1989; Dehaene and Changeux, 2011;

Dehaene et al., 1998). As such, this could be a major step for-

ward in understanding and defining the complex choreography

of information flow within the functional hierarchical organization

underlying brain states. Ultimately, this may help identify the

necessary and sufficient networks needed to force transitions

between brain states.



Figure 4. A Whole-Brain-Model-Based Framework Forcing Transitions between Brain States

The aim of this review is to show the potential of using whole-brain modeling to predict how best to force transitions between brain states. Although much

research remains, this figure shows recent proof of principle in the context of the normally occurring wake and deep sleep states in healthy participants (Deco

et al., 2019a).

(A) In this study, these two different brain states are characterized in terms of their PMS profile and fitted to whole-brain models. Here are shown the results

obtained for wakefulness (left) and sleep (right) comparing the empirical and whole-brain-model results. The rendering shows the differences between these

states (bottom).

(B) Summary of the main framework for identifying potential regions forcing a transition. This is an iterative process where all the brain regions in the whole-brain

model in the source state (e.g., awake) are systematically stimulated in silico and the resulting state is compared to the fit with the PMS profile of the target (e.g.,

sleep) brain state.

(C) The large middle panel shows the results of systematic, exhaustive stimulation of the whole-brain regions. As can be seen, this led to different transitions from

sleep to awake (top) and from awake to sleep (bottom). The results show that whereas many regions are able to promote a transition (given sufficient stimulation),

other regions are less suitable for this (see burgundy areas). Overall, this shows in principle how to identify regions that promote transitions and could provide the

basis for future empirical confirmation. Full details are provided in Deco et al. (2019a). Abbreviations: AAL, automated anatomical labeling.
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Conclusion and Perspectives
In this review, we have shown that we could soon be in a position

to accurately characterize and control brain states in health and

disease. Further progress will require (1) a deeper understanding

and quantitative definition of what constitutes a brain state, (2)
further work on how best to predict transition between brain

states using causal whole-brain computational modeling, and

(3) experimental research in other animals to validate that the pre-

dicted stimulation causally brings out transitions between brain

states using pharmacological or electromagnetic stimulation.
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Figure 5. Functional Hierarchical Organization of Brain States

(A) Left: Mesulam’s seminal proposal that brain processing is shaped by a hierarchy of distinct unimodal areas (blue and green) to integrative transmodal areas

(red) (Mesulam, 1998). Right: subsequent research by Margulies and colleagues has used neuroimaging to confirm and extend this proposal by showing how the

functional gradients show hierarchical organization (Margulies et al., 2016).

(B) More recent research has significantly extended this idea by revealing the multi-dimensional hierarchical nature of brain organization (Glomb et al., 2019). This

approach uses applied harmonic modes to functional connectivity data in a large sample of human healthy participants (top left), and builds the harmonic basis

functions for hierarchical brain activity (bottom).

(C) Complementary research has estimated the information flow in over 1,000 healthy participants using a novel method called normalized directed transfer

entropy flow (Deco et al., 2019c). The figure shows the bidirectional matrix of information flow between regions. Summing these across rows and columns

provides the total incoming (Gin) and outgoing (Gout) information for each brain region.

(D) The outgoing information flow corresponds well to the existing hierarchical information provided by the level of myelination of sensory regions, whereas the

incoming information flow is found in integrative higher-order regions.
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Othermajor challenges include the need to better characterize the

structural connectome of the brain (ideally at the level of a single

participant) with sufficient detail to capture the best features sup-

porting the whole-brain model’s emerging features. The pro-

posed framework of estimating the effective connectivity is

partially addressing these major challenges, but next-generation

whole-brain models will need to be further validated by better

structural imaging data, which could, for example, be provided

by whole-brain multi-layer fMRI. Overall, the novel ideas put for-

ward in this review are highly relevant for basic and clinical neuro-

scientists across many disciplines, potentially unifying and ex-

plaining a number of hitherto complex problems.
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