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SUMMARY
The human brain consists of specialized areas that flexibly interact to form amultitude of functional networks.
Complementary to this notion ofmodular organization, brain function has been shown to vary along a smooth
continuum across the whole cortex. We demonstrate a mathematical framework that accounts for both of
these perspectives: harmonicmodes.We calculate the harmonicmodes of the brain’s functional connectivity
graph, called ‘‘functional harmonics,’’ revealing a multi-dimensional, frequency-ordered set of basis func-
tions. Functional harmonics link characteristics of cortical organization across several spatial scales,
capturing aspects of intra-areal organizational features (retinotopy, somatotopy), delineating brain areas,
and explaining macroscopic functional networks as well as global cortical gradients. Furthermore, we
show how the activity patterns elicited by seven different tasks are reconstructed from a very small subset
of functional harmonics. Our results suggest that the principle of harmonicity, ubiquitous in nature, also un-
derlies functional cortical organization in the human brain.
INTRODUCTION

The topographic organization of the brain into functionally

specialized areas is one of its fundamental properties (Felleman

and Van Essen, 1991), suggested to have been present in evolu-

tion as early as the last common ancestor of vertebrates (Krubit-

zer and Kaas, 2005; Eickhoff et al., 2018). The individuality of

each brain area is determined by its functional specification, its

microstructure (cyto- and myeloarchitecture) (Eickhoff et al.,

2018), and its inter- and intra-areal connectivity (Glasser et al.,

2016). Significant effort in neuroscience has been directed to-

ward subdividing the brain into adjoining parcels based on func-

tional characteristics and inter-areal connectivity (Eickhoff et al.,

2018; Glasser et al., 2016). However, in parallel to this modular

view of brain organization, where separate, adjoining brain areas

with uniform functionality and homogeneous structural connec-

tivity form distinct functional units, there is also extensive evi-

dence that gradually varying boundaries between brain areas

exist, suggesting a degree of transition (Bailey and Von Bonin,

1951) and context-dependence (Salehi et al., 2020) instead of

sharply separated brain areas. Furthermore, topographic map-

pings including retinotopy (Sereno et al., 2001), somatotopy
This is an open access article under the CC BY-N
(Penfield and Rasmussen, 1950), and tonotopy (Perrone-Ca-

pano et al., 2017), show that representations of our visual field,

body, and auditory frequency spectrum are spatially continuous

across the areas of the primary visual, somatomotor, and audi-

tory cortices, respectively, exemplifying an organizational princi-

ple that is complementary to the finding of relatively uniform

functionality within some brain areas.

In order to allow for the immense complexity of human brain

function (Tononi et al., 1994), a multitude of functionally distinct

brain areas coordinate through synchronous fluctuations in their

activity (Varela et al., 2001). Coherent oscillations among distinct

brain areas have been shown to be another evolutionarily

conserved aspect of brain activity (Vincent et al., 2007). Howev-

er, more complex or elaborate mental processes are hypothe-

sized to result from the convergence of information from sensory

modalities onto association cortices (Mesulam, 1998). This

convergence is assumed to increase with spatial distance on

the cortex from the highly functionally specialized primary

cortices (Buckner and Krienen, 2013). As a consequence, gra-

diental organization might be a general organizational principle

throughout the cortex and not only in primary sensory areas. In

line with this hypothesis, a principal connectivity gradient of
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cortical organization in the human connectome has been identi-

fied, where the functional networks of the human brain are

located according to a functional spectrum from perception

and action to more abstract cognitive functions (Margulies

et al., 2016; Huntenburg et al., 2018). This suggests that in addi-

tion to coherent oscillations between brain regions (‘‘modular

view’’), macroscopic networks can also be described in terms

of ‘‘gradiental’’ organization. It is important to note that both

organizational principles are complementary and not mutually

exclusive (i.e., brain regions may differ in the degree to which

their boundaries are sharp) (Tian and Zalesky, 2018; Bajada

et al., 2020). However, the principles underlying the functional or-

ganization of macroscopic networks from specialized brain

areas remain largely unknown.

Here, we propose that the human brain’s functional organiza-

tion is governed by the natural principle of harmonic modes. In

particular, we demonstrate how harmonic modes of the resting

state functional connectivity of the human cortex can explain

both gradiental organization and the presence of distinct func-

tional areas (parcels). The principle of harmonic modes underlies

a multitude of physical and biological phenomena including har-

monic waves encountered in acoustics (Chladni, 1802), optics

(Bedzyk et al., 1988), electron orbits (Schrödinger, 1926; Moon

et al., 2008), electro-magnetism (Roos, 2012; Britton et al.,

2012), and morphogenesis (Murray, 1988; Xu et al., 1983). The

principle of harmonicity is also respected in the human brain

across multiple scales, ranging from the ocular dominance pat-

terns of the early visual areas (Swindale, 1980), visual hallucina-

tions (Ermentrout andCowan, 1979; Bressloff et al., 2002; Billock

and Tsou, 2007; Rule et al., 2011), to the organization of cortical

and thalamic tissues (Wilson and Cowan, 1973; Atasoy et al.,

2016). On the macroscopic scale, harmonic modes of the circle

(Nunez and Srinivasan, 2006) and of the sphere have been

proposed to underlie cortical communication observed in

magneto-/electroencephalography (M/EEG) (Nunez and Sriniva-

san, 2006; Tokariev et al., 2019) and in functional magnetic reso-

nance imaging (fMRI) (Robinson et al., 2016).

In the graph domain, it was shown that harmonic modes of the

structural connectome can explain functional connectivity, in

particular, resting state networks (Atasoy et al., 2016). More

generally, harmonic modes of the structural connectome are

useful for our understanding of how functional activity is variably

shaped by underlying white matter connectivity (Preti and Van

De Ville, 2019; Glomb et al., 2020). Moreover, harmonic modes

of the structural connectivity have been found to predict disease

progression in dementia (Raj et al., 2012). Harmonic modes of

the ‘‘functional’’ connectome have been studied for topographic

organization by Haak et al. (2013, 2018). By using predefined re-

gions of interest, they revealed up to two principal fine-grained

gradients along the visual and somatomotor hierarchy. In the

seminal work by Margulies et al. (2016), the authors provided a

detailed analysis and interpretation of the first two gradients of

cortical functional connectivity. In a recent publication, Tian

et al. (2020) applied the procedure described in Haak et al.

(2018) in order to obtain a multi-scale parcellation of the subcor-

tex by considering the first three gradients of its functional con-

nectivity. The link between structural and functional connectivity

is made by dynamical models, which suggest that space and
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time are linked via the oscillatory frequencies of certain brain net-

works (Atasoy et al., 2018). Further evidence for a link between

spatial patterns and oscillations comes from applications of har-

monic modes of the structural connectivity to faster timescales

(i.e., M/EEG) (Glomb et al., 2020; Tokariev et al., 2019; Raj

et al., 2020).

In this work, we uncover the spatial shapes of the first 11 har-

monicmodes that result from synchronous hemodynamic fluctu-

ations in large-scale brain activity as measured in fMRI,

by solving the time-independent (standing) wave equation

(Levy, 2006; Atasoy et al., 2016) on the functional connectivity

(FC) of the human brain. These harmonic modes, called ‘‘func-

tional harmonics,’’ decompose the FC of the human brain into

a hierarchical set of (graph) frequency-specific smooth activity

patterns, or gradients. We demonstrate how functional har-

monics capture spatial organization of the cortex on several

spatial scales, spanning fromwithin-area topographic mappings

to combinations of macroscopic networks. Thereby, the func-

tional harmonics unveil both, the principal connectivity gradient

(Margulies et al., 2016), as well as cortical parcellations (Glasser

et al., 2016), while also exploring, for the first time, higher-order

gradients revealed by the harmonic decomposition of the dense

FC of the human cortex.
RESULTS

Estimation of functional harmonics
We computed functional harmonics of the dense functional con-

nectivity matrix (dense FC) of the Human Connectome Project

(HCP) (Glasser et al., 2013; Van Essen et al., 2012, 2013; Moeller

et al., 2010; Feinberg et al., 2010; Setsompop et al., 2012; Xu

et al., 2012; Jenkinson et al., 2002). Mathematically, the patterns

of harmonic modes of a dynamical system are estimated by the

eigendecomposition of the Laplace operator. In the present

case, we are interested in the Laplace operator of the dense

FC. This dense FC is estimated from the pairwise temporal

correlations between all pairs of vertices on the cortical surface

(V = 59.412 vertices in total) (Figures 1A–1C). Correlations can be

interpreted as measuring the functional similarity of two cortical

regions. Thus, the dense FC can be understood as encoding

functional integration and segregation in the cortex.

We utilized the discrete counterpart of the harmonic modes

that are defined on the graph built from the dense FC (i.e., the ei-

genvectors of the graph Laplacian) (Figures 1D and 1E). This is a

suitable approach because brain connectivity is commonly

conceptualized as a graph in which each node is a location in

the brain and the edges are given by the connectivity matrix;

this is illustrated in Figure 1D (but note that although in the figure,

for illustrative purposes, each node corresponds to a brain re-

gion, in the following analyses, the nodes of the graph are formed

by the full set of vertices on the cortical surface). In our case, in

order to build the graph, we used a binary adjacency matrix A

derived from the dense FC matrix: connections were set be-

tween each vertex i and the k = 300 vertices js iwith the largest

correlations to vertex i, such that the entries aij, js iwere set to 1

where connections between vertices exist and to 0 otherwise.

The graph Laplacian LG is defined as LG = D� A, where D is a



Figure 1. Workflow for the estimation of functional harmonics

(A) Brain activity measuredwith functionalmagnetic resonance imaging (fMRI) in resting state for 812 subjects provided by the HumanConnectomeProject (HCP;

900 subjects data release).

(B) Illustration of brain activity time series of three representative vertices on the cortex (x1, x2,., xn).

(C) The dense functional connectivity (FC) matrix computed from the temporal correlations between the time courses of each pair of vertices as shown in (B)

averaged across 812 subjects.

(D) Representation of the dense FC as a graph, where the edges indicate strong correlations between the corresponding vertices. The anatomical locations of the

vertices are color-coded (Glasser et al., 2016).

(E) Functional harmonics are estimated by the eigenvectors of the graph Laplacian computed on the graph representation of the FC. The first five functional

harmonics ordered from the lowest to higher spatial frequencies are illustrated on the FC graph representation (top), in the eigenvector format as 59,4123 one-

dimensional vectors (middle), and on the cortical surface (bottom). Note that here we show the patterns on the left hemisphere for illustrative purposes, yet the

entire cortex was used in the analysis. Likewise, the graph representations in (D) and (E) are shown for a parcellated version of the FC matrix using the HCP

parcellation (Glasser et al., 2016), i.e., each node represents an HCP parcel, but the computation of the functional harmonics were performed on the dense FC

using 59,412 3 59,412 without any parcellation.
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diagonal matrix that holds the degree (number of connections) of

each vertex i in its diagonal entries dii.

By definition, the first functional harmonic with eigenvalue 0 is

constant over the whole cortex and is discarded. Figure 2 shows

the first 11 non-constant functional harmonics (referred to as j1,

j2,/, j11), ordered starting from the lowest eigenvalue >0, and

illustrating that each harmonic is a smoothly varying pattern on

the cortex between a positive and a negative polarity (i.e., a

gradient). To give an intuitive interpretation of functional har-

monics, we emphasize that the actual magnitudes of the gradi-

ents plotted on the cortex are not per semeaningful, but the dif-

ference between the values assigned to two vertices reflects how

different they are in terms of their ‘‘functional connectivity profile’’

(i.e., their pattern of connectivity to the rest of the cortex).

With increasing eigenvalue, the functional harmonics become

increasingly more complex and segregate the cortex into an

increasing number of nodal areas (Levy, 2006) (contiguous areas
of the cortex with similar colors in the surface plots in Figure 2).

Mathematically, as the eigenvalue increases, (spatial) graph fre-

quency also increases (Shuman et al., 2013). This intrinsic link

between the graph frequency and cortical scale implies that

functional harmonics yield not only a multi-dimensional, but

also a multiscale description of the cortex (Tian et al. 2020).

Note that the ordering by graph frequency is a property that

emerges from the Laplace eigenfunctions and therefore is not

present in function bases proposed by other methods, such as

principle component analysis (PCA) or independent component

analysis (ICA), which, as a result, do not implicitly possess this

multiscale property.

Functional harmonics capture sub-areal topographic
organization
We first tested whether functional harmonics capture cortical or-

ganization on a sub-areal scale (i.e., within a cortical parcel).
Cell Reports 36, 109554, August 24, 2021 3



Figure 2. Functional harmonics capture ex-

isting characterizations of functional anat-

omy

The first 11 non-constant functional harmonics

plotted on the cortical surface. It is clearly visible

that the first two functional harmonics (A and B)

constitute global gradients over the entire cortex,

whereas subsequent maps (C–K) include

increasingly more local details. In each functional

harmonic, known functional regions (e.g., C),

processing streams (e.g., E) or networks (e.g., B)

are discernible, and we have annotated the most

conspicuous ones. In order to illustrate that simi-

larly colored patches of cortex correspond to

known functional regions, borders of HCP parcels

have been added (white lines). V1–V4, visual areas

1 to 4; MT, middle temporal visual area; 24 dd, an

area that contains a higher order representation of

the hand; fusiform face complex, an area that re-

sponds specifically to images of human faces. The

functional harmonics were derived from the HCP’s

dense functional connectivity matrix, which is an

average of over 812 subjects.
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Specifically, we investigated whether functional harmonics cap-

ture somatotopy (Penfield and Rasmussen, 1950) and retinotopy

(Sereno et al., 2001), two major topographic mappings found in

the brain. Topographic mappings represent sensory input on

the cortical surface such that the relative positions of the recep-

tors that receive these inputs (e.g., the photo receptors in the

retina) are preserved. In a broader sense, it refers to anymapping

in which neurons that are close together on the cortical surface in

one functional area project to neurons that are close together in

another functional area. This organization leads to a functional

gradient within a specialized brain area (Haak et al., 2013).

In the HCP parcellation (Glasser et al., 2016), the sensori-

motor cortex is, in each hemisphere, divided into five areas

(1, 2, 3a, 3b, and 4) that are defined cytoarchitechtonically

and using microstructural measures such as cortical thickness

and myelination (see ‘‘Supplementary neuroanatomical results’’

in Glasser et al. [2016]). However, functional connectivity is not

homogeneous within these regions: five somatotopic sub-areas
4 Cell Reports 36, 109554, August 24, 2021
are defined by the HCP (Glasser et al.,

2016) and form a topographic map of

the surface of the body on the cortex,

which is oriented orthogonally to the

anatomically defined areal boundaries.

These sub-areas correspond to repre-

sentations of the face, upper limbs (map-

ped by moving the hands), eyes, lower

limbs (mapped by moving the feet), and

trunk. We observed somatotopic map-

pings within functional harmonics 3 (c3),

7 (c7), and 11 (c11) (Figures 2C, 2G,

and 2K). Figure 3A illustrates the two-

dimensional subspace formed by func-

tional harmonics 3 (c3) and 11 (c11),

which accounts for the mapping of the

human body onto the somatotopic

regions of the cortex. This example
also illustrates how specialized functional regions can be ex-

plained by the interaction of functional harmonics across multi-

ple dimensions within the functional harmonics framework

instead of a single gradient (see Figures S1A–S1C for further

examples).

We derived a measure that we term ‘‘somatotopic silhouette

value,’’ which quantifies the degree to which each somatotopic

sub-area is delineated within these three functional harmonics

(see STAR Methods for details). We compared our results to

those obtained from spherical rotations (Alexander-Bloch

et al., 2018) of functional harmonics 3 (c3), 7 (c7), and 11 (c11).

We found that for functional harmonic 3 (c3), the face and foot

areas were significantly separated from the rest of the cortex

as well as other somatotopic areas; for functional harmonic 7

(c7), we found the face and hand areas, and for functional

harmonic 11 (c11), we found the hand areas to be significantly

separated (see Figure S2A; pcorr < 0.05 after Bonferroni correc-

tion, Monte Carlo tests with 300 rotated versions of the



Figure 3. Functional harmonics capture so-

matotopy and retinotopy

(A) Functional harmonics 3 (c3) and 11 (c11) in their

own space. Vertices are color-coded according to

their anatomical locations (see Figure 1D), and the

location of 4 somatotopic areas in this space is

annotated.

(B and C) Retinotopies of functional harmonics 4

(B, c4) and 8 (C, c8). Each panel shows, on the

right, the colors of the respective functional

harmonic in early visual areas V1–V4 on a polar

plot of eccentricity (distance in degree from

the fovea) and angle on the visual field (see

legend at the bottom of the figure). On the left,

the respective functional harmonic is shown on

a flat map of early visual cortex (left hemisphere). V1, V2, V3, and V4: visual areas 1, 2, 3, and 4. The shown figures are derived from the functional

harmonics obtained from the HCP’s dense functional connectivity matrix, which is an average over 812 subjects.
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functional harmonics). This finding indicates that functional har-

monics capture somatotopic organization in the cortex.

We next investigated the presence of retinotopic mapping of

early visual regions (V1–V4), where cortical representations of

the visual field reflect the positions of the receptors in the retina

of the eye such that each vertex within the patterns of functional

harmonics is assigned an eccentricity (distance from the fovea)

and a polar angle (position in the visual field, i.e., top, bottom,

left, right), according to the HCP retinotopy dataset (Benson

et al., 2018). It has previously been demonstrated that topo-

graphic organization can be evaluated using functional connec-

tivity gradients, either within the visual system (Glasser et al.,

2016; Haak et al., 2018) or on a whole-brain level (Yeo et al.,

2011). Examples of polar plots of the retinotopic gradients are

shown in Figures 3B and 3C (all polar plots are shown in

Figure S2B). To investigate the degree of agreement between

functional harmonics 1–11 (Figure 2) and the retinotopic map-

pings, we measured the correlation between eccentricity as

well as polar angle maps and functional harmonic patterns in

V1–V4. We found significant correlations (pcorr < 0.05 after Bon-

ferroni correction) between the retinotopic eccentricity map and

all functional harmonics 1–11 except functional harmonic 9 and

also between the retinotopic angular map and functional har-

monics 1–4, 7–9, and 11.

These results, obtainedwith whole-brain connectivity, demon-

strate that retinotopic organization of the early visual areas is

implicitly present in the resting state brain activity (Yeo et al.,

2011) and is revealed by the functional harmonic basis.

We draw the reader’s attention to the fact that retinotopic

organization has been shown in rich detail elsewhere, using

either retinotopic mapping techniques based on specific visual

stimuli (Benson et al., 2018; Sereno et al., 2001) or functional

connectivity within the visual system (Glasser et al., 2016;

Haak et al., 2018). Thus, although functional harmonics capture

some prominent aspects of retinotopic organization, there are

also details that require more dedicated approaches.

It is also important to note that the borders of visual areas V1–

V4, which were identified by the existence of orderly topographic

maps with clear visual field reversals (Sereno et al., 1995), corre-

spond to a sign reversal between the positive and negative polar-

ity of the harmonic pattern in various functional harmonics (e.g.,

c5–c10). Yet in functional harmonics, the delineation of the visual
areas occurs in a hierarchical fashion (i.e., although the sign

changes in c1 and c2 follow the borders of the visual cortex as

a whole, higher order functional harmonics respect various bor-

ders occurring between V1–V4 within the visual cortex).

Functional harmonics reveal specialized brain areas
By visual inspection of Figure 2, one notices that patches of cor-

tex that are colored in the same shade seem to correspond to a

certain degree to known specialized brain regions (parcels)

delineated by the HCP parcellation (Glasser et al., 2016) or

groups of such regions (all parcel borders are shown in Data

S1, page 1). This suggests that the gradients described by func-

tional harmonics are flat within many specialized cortical areas,

indicating a near-homogeneous functional connectivity profile.

In order to quantify the homogeneity within cortical areas of

the functional harmonics shown in Figure 2, we compared the

within-area-variability to the average between-area-variability

of each parcel. The resulting measure is similar to the silhouette

value used in quantifying the quality of cluster solutions (de

Amorim and Hennig, 2015), but ranges between 0 and 1, where

a value close to 1 indicates that the functional harmonic is homo-

geneous within that region. We refer to this measure as ‘‘modi-

fied silhouette value’’ (see STAR Methods for details).

We applied this analysis to four alternative function bases: (1)

eigenvectors of the dense FCmatrix (Data S1, page 2), (2) eigen-

vectors of the adjacency matrix (Data S1, page 3), (3) principal

components (PCA) (Data S1, page 4), and (4) independent com-

ponents (ICA) (Data S1, page 55). The first two of these bases

were chosen in order to test the effect of the two major process-

ing steps that are necessary when transforming the dense FC

matrix into the Laplacian: (1) the adjacency matrix is obtained

from the dense FC matrix by binarizing (using k = 300 nearest

neighbors), and (2) the graph Laplacian is obtained from the ad-

jacency matrix by normalizing, i.e., taking into consideration the

degree of each vertex (LG = D� A). Furthermore, to relate the

performance of functional harmonics to other well-known func-

tion bases, we also performed the analysis with the basis func-

tions of (3) PCA and (4) ICA. As shown in Figure 4A, although

all approaches exhibited moderate to high modified silhouette

values, indicating that they all reflected the functional organiza-

tion well, we found that functional harmonics had significantly

higher modified silhouette values than three of the four function
Cell Reports 36, 109554, August 24, 2021 5



Figure 4. Functional harmonics capture

specialized brain areas

Themodified silhouette values (y-axes in all panels)

quantifies the degree to which gradients described

by the functional harmonics as well as control ba-

sis sets are flat within the parcels defined by the

HCP parcellation. A modified silhouette value

close to 1 indicates homogeneous values within

HCP parcels.

(A) A comparison between the basis sets indicates

that functional harmonics and adjacency eigen-

vectors have significantly higher modified silhou-

ette values than theother three (Wilcoxon rank-sum

test, black bars indicate significant differences at

pcorr < 0.05 after Bonferroni correction). Each data

point is computed from a matrix that is an average

over 812 subjects.

(B–F) Modified silhouette values of the first 11 non-

constant components of each basis set (colored

circles; each data point is computed from a matrix

which is an average over 812 subjects) compared

to their rotations (gray crosses). The stars above

each column indicate significant silhouette values

(pcorr < 0.05 after Bonferroni correction, Monte

Carlo test with 220 spherical rotations per

component). Functional harmonics had the highest

number of significantmodified silhouette values (10

out of 11).
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bases; only eigenvectors of the adjacency matrix had equally

high modified silhouette values.

We established significance of the modified silhouette values

obtained from each functional harmonic by computing the

same measure also for n = 220 spherical rotations of the func-

tional harmonics (Alexander-Bloch et al., 2018) (stars above

each column in Figures 4B–4F). By doing so, we ensured that ho-

mogeneous gradients within parcels are not due to the proper-

ties of the harmonic decomposition alone, but are specific to

their location on the cortical surface. As shown in Figure 4B,

we found that the modified silhouette values of 10 of the first

11 functional harmonics were larger than those of the rotated

harmonic basis (pcon < 0.05 after Bonferroni correction, Monte

Carlo tests; see STAR Methods for details). The only exception

to this finding was functional harmonic 4 (c4), which captures

the retinotopic organization of early visual regions (Figure 3B;

see above for a discussion of retinotopic organization of func-

tional harmonics), and which is relatively flat over the rest of

the cortex. When applied to the four alternative function bases,

the same analysis showed that for eigenvectors of the dense

FC matrix, only 7 out of 11 basis functions had a significantly

higher modified silhouette value than their spherical rotations;

for eigenvectors of the adjacency matrix, this number was 8

out of 11, for PCA, only 3 PCs reached significance, and for

ICA, this number was 4 out of 11 (Figures 4C–4F). For qualitative

evaluation, the overlap between parcels and functional har-

monics as well as other bases are shown in Data S1, pages 1–5.

Functional harmonics yield graph frequency-specific
brain networks
In Margulies et al. (2016), the authors investigated the principal

cortical gradients captured by the first two functional harmonics.
6 Cell Reports 36, 109554, August 24, 2021
Although it should always be considered that harmonic modes

describe the structure of the underlying graph in a multi-dimen-

sional fashion (as is illustrated for two dimensions in Figure 3A),

in the following, we provide some insight into the functional signif-

icance of each of the functional harmonics shown in Figure 2.

Functional harmonics 1 (c1) and 2 (c2) correspond to previously

identified large-scale gradients (Margulies et al., 2016) that delin-

eate the separationbetween themajor sensory and the uni- versus

multimodal cortices in thebrain, respectively (seeFigureS1D). Fig-

ures 2A and 2B demonstrate the overlap between the visual and

sensorimotor networks as defined in Yeo et al. (2011) and the gra-

diental patterns of the first and second functional harmonics. We

observed that functional harmonic 3 (c3) reveals a finer subdivision

of the somatosensory/motor system (Zeharia et al., 2012, 2015;

Kuehn et al., 2017). The overlay of the borders of the five somato-

topic areas defined by the HCP (Glasser et al., 2016; Barch et al.,

2013) on the third functional harmonic are shown in Figure 2C.

Similarly, in functionalharmonic4 (c4),we foundafinersegregation

of the visual system, following a retinotopic eccentricity gradient

(Benson et al., 2018). The overlay of the borders of early visual

areas (V1–V4) on functional harmonic 4 (c4) are shown in Figure 2D

(for further details on retinotopic and somatotopic mapping, see

above).

Qualitative evaluation of higher frequency functional har-

monics systematically revealed their link to more specialized

complex brain function. The pattern observed in functional har-

monic 5 (c5) (Figure 2E) is consistent with a functional network

in which action and perception interact. In the negative polarity,

we found primary visual, auditory, and somatosensory cortices,

whereas the regions in the positive polarity closely resemble the

sensory-motor pathway, which has been shown to mediate se-

lective interactions between resting state networks along the
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visual hierarchy (Yeo et al., 2011). Parts of this pathway are

known to be modulated by visuospatial attention (Corbetta and

Shulman, 2002). The fact that we also found auditory and so-

matosensory regions is in line with the idea that the interplay be-

tween action and perception circuits—also known as active

inference (Friston et al., 2011; Adams et al., 2013)—is a multi-

modal process (Keysers et al., 2010; Hauk and Pulverm€uller,

2004; Pulverm€uller and Fadiga, 2010). In functional harmonic 6

(c6), auditory and visual areas were both localized in the positive

polarity, forming a network related to audiovisual object

(including faces) recognition (Beauchamp et al., 2004; Levy

et al., 2001; Hasson et al., 2003) (i.e., recognition of the ‘‘outer

world’’). The negative polarity of functional harmonic 6 (c6) seg-

regates the somatotopic face area as well as parts of the default

mode network (DMN), a network of regions whose activity has

been related to self-referential tasks (Gusnard et al., 2001).

Thus, the negative polarity of functional harmonic 6 (c6) forms

a self-referential processing stream (Gusnard et al., 2001; Haxby

et al., 2000; Leslie et al., 2004). Functional harmonic 7 (c7) pro-

vides a finer somatotopic gradient, including a higher hand

area, 24 dd, in the medial cortex (Zeharia et al., 2015) (see Fig-

ure 2G and annotations in Figure 2C). Functional harmonics 8–

10 (c8, c9, and c10) correspond to different subdivisions of higher

order networks such as the frontoparietal network and DMN (see

Figures S3A–S3C). In particular, the DMN (Raichle et al., 2001) is

delineated in the positive polarity of functional harmonic 9 (c9)

(borders of the DMN as defined by Yeo et al. [2011] are overlaid

on functional harmonic 9 (c9) in Figure 2I). In functional harmonic

10 (c10), we found a significant correlation (r = �0.63, p = 4 $

10�21) with the degree of auditory involvement of the functional

areas (Figure S3D). Functional harmonic 11 (c11), the first clearly

asymmetric harmonic between the two hemispheres, yields

the separation between the right and left somatotopic hand

areas (Pool et al., 2014).

Overall, these results demonstrate that functional harmonics

provide a multitude of functionally relevant macroscopic net-

works, each associated with a unique graph frequency.

Relating rest and task with functional harmonics
Functional harmonics, by definition, yield the extension of the

Fourier basis to the functional connectivity of the human brain.

Laplace eigenfunctions on a one-dimensional domain with cyclic

boundary conditions (i.e., a circle) yield sine and cosine waves

withdifferent frequencies,which constitute thewell-knownFourier

basis. In a similar manner, we estimated the functional harmonics

bycomputing the Laplace eigenfunctions ona graph encoding the

human brain’s functional connectivity (illustrated in Figure 1D). As

such, the functional harmonics provide a frequency-specific func-

tionbasis, inwhich anypattern ofbrain activityon thegraphcanbe

represented as a weighted combination of functional harmonics.

Given the experimental evidence showing that resting state func-

tional connectivity reflects connectivity during task (Biswal et al.,

1995; Deco et al., 2011; Buckner et al., 2013; Cole et al., 2016),

we tested how efficiently the functional harmonics derived from

the resting state dense FC can represent task-induced cortical

activity.

To this end, we reconstructed 47 group-level task maps pro-

vided by the HCP (Barch et al., 2013) from the superposition of
functional harmonics (see STAR Methods for details). The 47

maps consist of activation maps as well as contrasts derived

from 7 groups of tasks (working memory, motor, gambling, lan-

guage, social, emotional, and relational; see STAR Methods for

summaries). This reconstruction yields a coefficient (weight) for

each functional harmonic, quantifying how much it contributes

to a certain taskmap. The set of all coefficients forms a spectrum

equivalent to the power spectrum obtained from a Fourier trans-

form, in this case the power spectrum of the functional harmonic

basis. We quantified the goodness of fit by measuring the dis-

tance between the original and the reconstructed task maps.

We determined how well the first 11 non-constant functional

harmonics shown in Figure 2 were able to approximate task

mapsandcompared their performance to the fouralternative func-

tionbasesmentionedabove (eigenvectors of the FC, eigenvectors

of the adjacency matrix, principal components, and independent

components), as well as spherical rotations of functional har-

monics (Alexander-Bloch et al., 2018). Note that the first 11 func-

tional harmonics constitute �0.02% of the total functional har-

monic spectrum. Due to the intrinsic ordering of functional

harmonics by graph frequency, using only the first few functional

harmonics omits more localized details of brain activity and thus,

the omitted information results in a reconstruction error.

Figures 5A–5G show the average normalized reconstruction

errors for all groups of tasks and for all compared function bases.

First focusing on the functional harmonic basis (red line), the er-

ror drops from between 1.00 (for emotion) and 1.40 (for lan-

guage) to between 0.65 (for emotion) and 0.78 (for language).

This corresponds to a level of correlation between the original

task maps and the task maps reconstructed from the first 11

non-constant functional harmonics of between 0.78 (for emotion)

and 0.69 (for language; see Figure S4A). Figure 5H illustrates the

reconstruction procedure for one specific task (workingmemory:

body) (see Data S1, page 6 for all tasks).

We next compared the reconstruction performance of the func-

tional harmonics to each alternative function basis, employing

a Monte-Carlo analysis. Again, using only the first 11 non-

constant components, we found that reconstruction errors of

functionalharmonicsweresignificantly lower than thoseof their ro-

tations for each of the task groups (all pcorr < 0.035, Monte-Carlo

tests with 1,000 permutations, Bonferroni corrected for multiple

comparisons), and significantly lower than those of the adjacency

eigenvectors in six out of seven task groups (all pcorr < 0.035,

Monte-Carlo tests with 1,000 permutation, Bonferroni corrected

for multiple comparisons, except language, where p = 0.18 before

correction for multiple comparisons, n.s.). In comparison to FC ei-

genvectors, we found that functional harmonics performed signif-

icantly better in the reconstruction of motor tasks (pcorr < 0.035,

Monte-Carlo tests with 1,000 permutations, Bonferroni corrected

for multiple comparisons), whereas there was no significant differ-

ence inother taskgroups (all p > 0.01beforecorrection formultiple

comparisons, n.s.). Compared to PCAand ICA, the reconstruction

errors of functional harmonics were significantly lower for motor

and working memory task groups (all pcorr < 0.035, Monte-Carlo

tests with 1,000 permutations, Bonferroni corrected for multiple

comparisons),whereas for all other taskgroups, therewerenosig-

nificant differences (all p > 0.01before correction formultiple com-

parisons, n.s.). We also tested the performance of the alternative
Cell Reports 36, 109554, August 24, 2021 7



Figure 5. A small set of functional harmonics suffices to reconstruct diverse task activity maps

(A–G) Mean reconstruction errors for each of the 7 task groups and all 6 basis function sets when only the first 11 non-constant components are used (see Figure

S4 for results when using more components).

(H) One example for a reconstruction using a working memory task. The bottom panel is the original task activation map (working memory—body; see also Data

S1, page 6, panel l), and top panels use the number of harmonics indicated on the left to reconstruct it.

(I) Results of significance tests comparing normalized reconstruction errors of functional harmonics to other function bases (significant differences at pcorr < 0.05

after Bonferroni correction, Monte Carlo tests with 1,000 permutations). Top: When using only the first 11 components, functional harmonics outperformed each

of the other function bases. Bottom: When using the first 100 components (Figure S4), eigenvectors of the dense FC outperformed functional harmonics in 3 task

groups. All basis sets were derived from matrices which are averages over the same 812 subjects. The task activity maps (Cohen’s D activation contrast maps)

are based on 997 subjects.
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functionbaseswhen thefirst100componentswereused (DataS1,

page 6). We found several changes in contrast to the results with

only the first 11 components. First, FC eigenvectors outperformed

functional harmonics in working memory, language, and social

tasks, whereas there was no significant difference in the other

task groups. Second, functional harmonics outperformed PCA in

all seven taskgroups insteadofonly inmotorandworkingmemory.

Third, for ICA, only 15 ICs were extracted, and when all of them

were used, functional harmonics outperformed ICA in social

and emotional tasks in addition to working memory and motor

tasks as before. The results remained the same for adjacency

eigenvectors.

Figure 5I provides a summary of the results. The first 11 non-

constant functional harmonics performed at least as well as

the tested alternative function bases in all task groups (i.e.,

none of the alternative function bases outperformed functional

harmonics in any of the task groups). When 100 components

were used, FC eigenvectors outperformed functional harmonics

in three task groups.

Next, we wanted to confirm that the decrease in reconstruc-

tion error did not merely reflect the fact that functional harmonics

capture global features of brain activity maps common to all

tasks. We designed an analysis that allowed us to test whether

functional harmonics are able to capture brain activity that is

specific to a task or group of tasks. Figures 6A, 6D, and 6G

and Figures 6B, 6E, and 6H show three examples of task activa-

tion maps and the corresponding normalized power of the first

11 non-constant functional harmonics, respectively, revealing

how strongly each of the 11 functional harmonics shown in Fig-

ure 2 contributes to these particular task maps. In other words,

Figures 6B, 6E, and 6H show spectral representations of the

task maps in Figures 6A, 6D, and 6G. For qualitative evaluation,

we display the task activation maps reconstructed by superim-

posing functional harmonics in the order of their contribution

strength for varying numbers of functional harmonics in Figures

6C and 6F (see Data S1, page 6 for all tasks). Across all 47

task maps that were evaluated, the functional harmonic that

was the strongest contributor was always either the constant

functional harmonic or one of the first 11 non-constant har-

monics shown in Figure 2.

In order to confirm that each spectral representation was spe-

cific to the task map from which it was obtained, we computed

the distance between a given reconstructed map and all original

task maps, resulting in a confusion matrix for each number of

harmonics with maximum contribution. If a spectral representa-

tion is indeed specific to a task map, the error should be minimal

between a reconstruction and its corresponding task map

compared to the error of the reconstruction of the other 46

task maps. The confusion matrices in Figures 6J–6L show the

pairs of the original and reconstructed task activation maps

with the minimum distance when using 1, 4, and 40 functional

harmonics with maximum contribution. Colored squares mark

the 7 task groups as in Figure 5. The proportion of unambigu-

ously identified tasks depending on the number of

functional harmonics is shown in Figure 6M. We found that

sparse representations using the 4 functional harmonics with

the largest power for each task are sufficient to unambiguously

characterize the seven task groups with the exception of one
workingmemory task (Figure 6K), and 70%of all individual tasks.

When the 40 functional harmonics with maximum contribution

were used, which corresponds to 0.1% of the complete spec-

trum of functional harmonics, 44 out of 47 task maps were

correctly identified from their reconstructions (Figure 6L).

These results demonstrate that functional harmonics provide a

functionally relevant representation, where the brain activity

accompanying different tasks can be unambiguously identified

from the activation profiles of a small range of functional

harmonics.

DISCUSSION

In this paper, we show that harmonic modes of the vertex-level

functional connectivity of the human cortex, termed functional

harmonics, link observations spanning several spatial scales,

from sub-areal topographic mappings (somatotopy, retinotopy),

to delineation of specialized functional brain areas, to the level of

large-scale networks and combinations thereof. In this view,

functional integration and segregation on all these levels can

be accounted for by the samemathematical framework (i.e., har-

monic modes).

Although it is abundantly clear from the literature that modular

and gradiental organization are complementary principles in the

human brain, a mathematical framework that can account for

both has thus far been missing. Within the functional harmonic

framework, specialized regions as well as networks of function-

ally related regions correspond to patches of the cortical surface

within which the gradiental patterns of functional harmonics are

relatively constant. Such constant regions are then increasingly

segregated into finer regions through the interaction of functional

harmonics acrossmultiple dimensions, aswas recently shown to

be the case for the subcortex by Tian et al. (2020).

We have interpreted the first 11 functional harmonics in rela-

tion to existing characterizations of functional anatomy, like the

concordance between functional harmonic 5 and the sensory-

motor pathway (Yeo et al., 2011). Thus, in this framework,

functional networks observed during rest and task emerge as a

graph frequency-specific function basis derived from the human

resting state functional connectivity matrix.

Harmonic modes are initially a dimensionality reduction tech-

nique: they are estimated as the eigenvectors of the graph Lapla-

cian.As such, theyareorderedbygraph frequencyandorthogonal

to one another. By definition, any pattern of cortical activity can be

expressed in this function basis as a superposition of functional

harmonics. In this new function basis, brain activation patterns

measured during tasks are expressed in a convenient and

compact manner as task-specific spectra that quantify the contri-

bution of each functional harmonic.

We tested how well functional harmonics are able to capture

task activity patterns (reconstruction errors, as shown in Fig-

ure 5), as well as specialized brain regions (modified silhouette

values, as shown in Figure 4), and compared them to other

function bases on these two spatial scales. In both regards,

functional harmonics outperformed PCA and ICA, two very

popular dimensionality reduction techniques, suggesting that

the non-linear nature of harmonic modes captures important

properties of cortical organization. The remaining two function
Cell Reports 36, 109554, August 24, 2021 9



Figure 6. Functional harmonics provide a

characterization of task activity maps

(A) Original task map of the contrast between

working memory (face) and average working

memory from the HCP task dataset (Barch et al.,

2013).

(B) Spectral representation of the task map shown

in (A) (i.e., the normalized coefficients of the graph

Fourier transform quantify the contribution of the

first 11 non-constant functional harmonics to the

task map). The color indicates the task group (see

legend in L).

(C) Reconstruction of the task map in (A) when

using the functional harmonic with the strongest

contribution (highest coefficient) only, the four

functional harmonics with the strongest contribu-

tions, and the forty functional harmonics with the

strongest contributions.

(D–F) The same as (A)–(C) using the map of the

contrast between motor (right hand) and average

motor.

(G–I) The same as (A)–(C) using the map of the

contrast between motor (trunk) and average

motor.

(J–L) Confusion matrices. Black entries mark the

task map-reconstruction-pair that has the lowest

reconstruction error; colored squares indicate the

task group.

(M) Proportion of reconstructions, for each number

of harmonics, which have the minimum recon-

struction error with their exact original task map

(thick line) and a task map belonging to the same

group of tasks as the original map (thin line).

Functional harmonics were derived from theHCP’s

dense functional connectivity matrix, which is an

average of over 812 subjects. The task activity

maps (Cohen’s D activation contrast maps) are

based on 997 subjects.
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bases were chosen because they constitute steps in our pro-

cessing pipeline. Eigenvectors of the dense FC performed

equally well or better than functional harmonics in task recon-

struction but performed significantly worse in capturing brain

regions. This is interesting because it suggests that although

details of the FC that are not preserved in the k = 300 nearest

neighbor graph shape task activity, the same does not seem to

be true for parcel boundaries. In fact, with regard to the parcel-

lation, eigenvectors of the adjacency matrix performed almost

as well as functional harmonics, and significantly better than

FC eigenvectors, suggesting that keeping only the nearest

neighbors is actually beneficial for delineating parcel borders.

At the same time, eigenvectors of the adjacency matrix were

outperformed by functional harmonics in task reconstruction.

It should be noted, however, that the differences between func-

tional harmonics, FC eigenvectors, and adjacency eigenvectors

were slight in reconstruction performance. We speculate that

the reason for these contrasting results could be that the par-

cellation captures average functional regions, whereas during

task, parcel borders can shift and adapt (Salehi et al., 2020),

consistent with the idea that transitions between parcels may

be gradiental (Bailey and Von Bonin, 1951; Bajada et al., 2020).

The approach of functional harmonics allows interpreting

cortical activity patterns as different combinations of the same
10 Cell Reports 36, 109554, August 24, 2021
functional networks that are activated in order to fulfill task de-

mands. In addition, the continuous nature of functional har-

monics enables them to combine brain regions intomacroscopic

networks in amanner that allows the shape of the regions to vary

depending on context (Salehi et al., 2020). Future research

should evaluate whether the exact shapes of (combinations of)

functional harmonics is in line with activation studies using

different tasks.

Beyond dimensionality reduction, the interpretability of func-

tional harmonics demonstrated in this paper, their multi-scale

properties, and their orthogonality make them a candidate orga-

nizational principle that could explain how the brain flexibly

switches between overlapping functional networks: functional

harmonics are, by definition (Belkin and Niyogi, 2003), the pat-

terns with the least overall variation on the cortex that respect

the constraints posed by the functional relationships given by

the FC. This implies that the average difference between neigh-

boring nodes in a graph representation is minimized. Intriguingly,

theoretical work has shown that activation patterns on graphs in

which neighboring nodes co-activate lead to patterns with min-

imum free energy or entropy (Tomasi et al., 2013; Gu et al., 2018;

Friston, 2010), and the transition between such patterns requires

minimal energy (Gu et al., 2015). This means that transitioning

between the functional networks instantiated by the functional
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harmonics in response to changing task demands is optimally

efficient. In addition, functional harmonics and the networks to

which they correspond emerge in a wholly self-organizing

fashion from the functional connectivity.

Another important conceptual aspect of harmonic modes is

their grounding in physical theories linking them to standing

waves. This suggests that each spatial pattern on the graph

might be linked to a unique set of temporal frequencies. Such

a link would make it possible to interpret functional harmonic

modes as ‘‘communication channels’’ along the lines of the ideas

of multiplexing (Akam and Kullmann, 2014). In Haak et al. (2018),

the authors demonstrated that harmonic modes applied to the

visual system were able to ‘‘tease apart’’ retinotopic gradients

in separate harmonic modes. In parallel to this idea, we assert

that functional harmonics are able to ‘‘tease apart’’ overlapping

functional networks subserved by specialized brain regions

with multiple functions. For example, area MT, annotated in Fig-

ures 2E and 2F, is part of the sensory-motor pathway (Figure 2E)

as well as audiovisual processing (Figure 2F). The idea of

‘‘communication channels’’ suggests that depending on which

function area MT is fulfilling at any given moment, the network

that it is engaged in would synchronize using different temporal

frequencies.

Taken together, we conclude that although functional har-

monics perform very well in both capturing the HCP parcellation

and taskmap reconstruction, they offer specific benefits in terms

of interpretability. This makes them an excellent choice not only

as a tool for dimensionality reduction, but for exploring cortical

organization.

Despite the relative simplicity of the approach presented here

as compared to, e.g., ICA, there are several technical issues

that need to be addressed in the future in order to ensure robust-

ness of the eigenmaps discussed in this work. In particular, the

choice of how to set the weight in the adjacency matrix, the

choiceof Laplacian, and thechoice of k (number of nearest neigh-

bors) are free parameters, the impact of which needs to

be systematically explored in the future. Here, we obtained highly

interpretable cortical patterns using the technique of Laplacian

eigenmaps (Belkin andNiyogi, 2003) with a binary adjacencyma-

trixwith k=300nearest neighbors. Although this canbe seen as a

standard approach, connection weights in the adjacency matrix

could be set in a graph distance-dependent manner, or the orig-

inal correlation values could be used (Belkin and Niyogi, 2003);

instead of the combinatorial Laplacian, one could use the sym-

metric normalizedLaplacian. In this study,wedid not findany sig-

nificant difference when using the normalized Lapalcian. The

choice of k was previously discussed regarding a related tech-

nique, the Isomap algorithm (Tenenbaum et al., 2000; Balasubra-

manian et al., 2002): k should be chosen such that a

balance between local and global features is achieved. The

amount of local and global connections has been suggested to

have amajor impact on the performance of the harmonic decom-

position (Haak et al., 2018; Naze et al., 2021). At the same time, k

might vary in a subject- or state-specific manner, revealing

further interesting properties of cortical organization.

It should be noted that our approach differs from that used in

Margulies et al. (2016) and Haak et al. (2018), in that it uses an

adjacency matrix derived directly from the FC instead of quanti-
fying the similarity of connectivity profiles in an intermediate

step. The fact that the first two functional harmonics look virtually

identical to what was presented in Margulies et al. (2016) speaks

to the robustness of these principal cortical gradients toward the

specific technique (they also used a slightly different definition of

the Laplacian, and k was around 6,000, i.e., 10% of the connec-

tions were retained).

Considering that the principle of harmonic modes, when

applied to the structural connectivity of the human brain—the

human connectome—has been shown to reveal functional

networks (Atasoy et al., 2016), our results point to the existence

of the same fundamental principle in multiple aspects of

human brain function, including functional integration and

segregation. Beyond the results presented here, functional har-

monics suggest novel ways to understand the dynamics of the

human brain in health and in pathology, as well as to explore

individual differences within this multi-dimensional harmonic

representation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

functional harmonics

(HCP_S900_CORR_manifold_knn300.mat)

this manuscript https://doi.org/10.5281/zenodo.5046434

k-means cluster memberships

(cluster_kmeans.mat)

this manuscript https://doi.org/10.5281/zenodo.5046434

adjacency matrix with 300 nearest

neighbors (adjacency_nn300.mat)

this manuscript https://doi.org/10.5281/zenodo.5046434

custom formatted version of RSN (Yeo 7

networks) surface labels

Human connectome project/this

manuscript (converted for convenience

from .nii to .gii using connectome

workbench)

https://doi.org/10.5281/zenodo.5046434

Dense functional connectivity matrix

(HCP_S1200_812_rfMRI_MSMAll_

groupPCA_d4500ROW_zcorr_

recon2.dconn.nii)

Human connectome project https://db.humanconnectome.org/data/

projects/HCP_1200 ; click on ‘‘812

Subjects, recon r227, Dense Connectome’’

Medial wall index file

(Human.MedialWall_Conte69.32k_

fs_LR.dlabel.nii)

Human connectome project BALSA database, https://balsa.wustl.edu/

file/

show/J2Vn

Cortical surfaces, inflated (S900. <

hemisphere >

.inflated_MSMAll.32k_fs_LR.surf)

Human connectome project BALSA database, https://balsa.wustl.edu/

file/show/QlL6

Cortical surfaces, flat (S900. < hemisphere

> .flat.32k_fs_LR.surf.gii,)

Human connectome project BALSA database, https://balsa.wustl.edu/

file/show/2VVz4

Cortical surfaces, spherical (< hemisphere >

.sphere.32k_fs_LR.surf.gii)

Human connectome project BALSA database, https://balsa.wustl.edu/

file/show/55xB

Cortical surface labels (Q1-

Q6_RelatedValidation210.Cortical

Areas_dil_Final_Final_Areas_Group_

Colors.32k_fs_LR.dlabel.nii)

Human connectome project BALSA database: https://balsa.wustl.edu/

file/show/3VLx

Cortical areal borders (Q1-

Q6_RelatedParcellation210. < hemisphere

> .CorticalAreas.32k_fs_LR.border)

Human connectome project BALSA database, https://balsa.wustl.edu/

file/show/gmXm

HCP atlas colors Human connectome project https://osf.io/bw9ec/

HCP task maps

(HCP_S1200_997_tfMRI_ALLTASKS_

level2_cohensd_hp200_s2_

MSMAll.dscalar.nii)

Human connectome project https://db.humanconnectome.org/data/

projects/HCP_1200; click on ‘‘Download

group average dataset’’

Retinotopy maps Human connectome project prfresults.mat from https://osf.io/bw9ec/;

using ’’group subject’’ (ID 999999) and full

model fit

Principal components of dense FC Human connectome project https://db.humanconnectome.org/data/

projects/HCP_1200; click on ‘‘812

Subjects, recon r227, Group-PCA

Eigenmaps’’

Independent components of HCP resting

state data

Human connectome project https://db.humanconnectome.org/data/

projects/HCP_1200; click on ‘‘812

Subjects, recon r227 only, PTN Release’’

Software and algorithms

custom code (MATLAB) used to produce

analysis results and plot figures

this manuscript https://doi.org/10.5281/zenodo.5046434

(Continued on next page)
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Fieldtrip (version 20180903) Oostenveld et al., 2011 https://www.fieldtriptoolbox.org/

download/ (registration required)

Connectome workbench Human connectome project https://www.humanconnectome.org/

software/connectome-workbench

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Katharina Glomb

(katharina.glomb@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data. Instructions for obtaining the datasets are listed in the Key resources table. Any

data derived from this publicly available data have been deposited at Zenodo and are publicly available as of the date of publication.

DOIs are listed in the Key resources table.

All original code has been deposited on Zenodo and is publicly available as of the date of publication. DOIs are listed in the Key

resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

General information
The data used in this study was acquired and made publicly available by the Human Connectome Project, WU-Minn Consortium

(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that sup-

port theNIHBlueprint for Neuroscience Research; and by theMcDonnell Center for SystemsNeuroscience atWashingtonUniversity.

All study protocols were approved by the Washington University institutional review board, and informed consent was obtained in all

cases (Glasser et al., 2013; Van Essen et al., 2013).

For visualization purposes, we used the surfaces provided with the functional data (see Key resources table for surface files).

While all results presented here can be reproduced from the freely available data described above with the help of our published

code, the functional harmonics and adjacency matrix referred to throughout this paper have been shared on Zenodo. The DOI is pro-

vided in the Key resources table.

Dense functional connectivity matrix
In this study, we used the dense functional connectivity matrix (dense FC), which is part of the Human Connectome Project’s 900

subjects data release (Glasser et al., 2013; Van Essen et al., 2012, 2013; Moeller et al., 2010; Feinberg et al., 2010; Setsompop

et al., 2012; Xu et al., 2012; Jenkinson et al., 2002). It is available under https://db.humanconnectome.org/data/projects/

HCP_1200. Clicking on ‘‘812 Subjects, recon r227, Dense Connectome’’ will download the appropriate .zip-archive (user login

necessary). The list of names of all the files used in this study is shown in the Key resources table. Note that in this release, many

of the subjects are related to at least one other subject of the group. The group average functional connectivity matrix was obtained

by correlating group-PCA eigenmaps from 812 out of the 900 subjects included in this release, which are the subjects that completed

all four sessions of 15-minute resting state fMRI.

Data are encoded in CIFTI file format (Glasser et al., 2013), which means that coordinates are defined on the cortical surface

(‘‘grayordinates’’), i.e., using n vertices rather than voxels (Van Essen et al., 2012). The file was read using connectome workbench

functions (Marcus et al., 2011) and converted to a single precision vector of length ðn $n�nÞ=2 (due to its symmetry) using MATLAB

(The MathWorks, Natick, MA). We also excluded the medial wall. This reduced the size of the FC matrix in memory from 33 GB to

approximately 6 GB, greatly easing subsequent computations.

Retinotopy data
For the analyses involving retinotopic maps, we used data available on https://osf.io/bw9ec/ and described in Benson et al. (2018).

The relevant file is named ‘‘prfresults.mat’’ and contains a variable ‘‘allresults’’ of dimensionality 91282 (grayordinates) 3 6 (quanti-

ties)3 184 (181 subjects plus 3 different group averages)3 3 (model fits). We used only the quantities ‘ang’ and ‘ecc’, the first model
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fit, of the group average across all available subjects, which uses all available time points. See https://osf.io/bw9ec/wiki/home/ for

details.

Task maps
For task reconstructions, we used data contained in the S1200 group average data release, which is available on https://www.

humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation, as ‘‘HCP_S1200_Grou-

pAvg_v1 Dataset’’ (see Key resources table). Here we provide a summary of the tasks that form part of the HCP task battery (Barch

et al., 2013). There are 7 groups of tasks:workingmemory,motor, gambling, language, social, emotional, relational. Subjects performed

all tasks in two separate sessions (workingmemory, gambling, and motor in the first session, language, social cognition, relational pro-

cessing, and emotion processing in the second).

Working memory. Four different stimulus types were used, presented in separate blocks: pictures of faces, places, tools and body

parts. Two different task types were used: a 2-back working memory task, where subjects had to respond if a stimulus matched that

two trials back, and a 0-back working memory task, where subjects had to respond whenever a single stimulus returned that was pre-

sented at the beginning of the block. This resulted in a total of 19 different workingmemory taskmaps, consisting of 14 activationmaps

(such as 0-back, 2-back, face, body, etc.) and 5 contrasts (between the two task types, between each stimulus type and the average

across all stimuli, etc.).

Motor. Visual cues indicated whether participants should move their left or right fingers, left or right toes, or move their tongue. The

goal was to identify the motor areas that correspond to these five body parts. This resulted in 26 different task maps (7 activation

maps for 5 body parts plus visual cue plus average, and 6 contrast maps).

Gambling (Incentive processing). Subjects played a game inwhich they couldwin or losemoney. The gamewas to guesswhether the

numberona ‘‘mysterycard’’ thatcould rangebetween1and9wouldbe lessormore than5.Thenumbersweregivenafter subjectsmade

their guess and were chosen according to the trial type: ‘‘win’’ - the number would correspond to their guess and they would win 1$;

‘‘neutral’’ - the number would equal 5 and they would neither win nor lose any money; ‘‘loss’’ - the number would not correspond to

the guess and participants would lose $0.50. Separate blocks are used in which trials are either mostly win or mostly lose, resulting in

two conditions, punish and reward. This resulted in 3 different taskmaps (2 activationmaps, i.e., one for each condition, and 1 contrast).

Language. Two different task types were used, ‘‘story’’ and ‘‘math.’’ ‘‘Story’’ consisted of participants listening to 5-9 sentences of

a story, and answering a 2-alternative forced choice question thereafter. ‘‘Math’’ required participants to solve simple addition and

subtraction problems. The two task types are similar in terms of auditory input and attentional load, but different in terms of semantic

and numerosity related processing. As for gambling, the two task types resulted in 3 task maps (2 activation, 1 contrast).

Social (Theory of Mind, TOM). Subjects viewed videos of objects (squares, circles, triangles) thatmoved around in one of twoways:

‘‘Random’’ - there was no interaction between the objects, or ‘‘TOM’’ - the objectsmoved as if theywere reacting to the other objects’

‘‘thoughts and feelings.’’ The subjects then had to judge whether the objects were interacting or not, or respond with ‘‘not sure.’’ As

with gambling and language, the two task types resulted in 3 task maps (2 activation, 1 contrast).

Emotional. Subjects viewed one of two types of stimuli, ‘‘faces’’ or ‘‘shapes,’’ and had to decide which of two stimuli presented at

the bottom of the screen matched the stimulus at the top of the screen. The faces included emotional stimuli, i.e., angry or fearful

expressions. Again, the two task types resulted in 3 task maps (2 activation, 1 contrast).

Relational. There were two conditions, ‘‘match’’ and ‘‘relational.’’ In all cases, stimuli could have one of six shapes combined with

one of six textures. In the ‘‘match’’ condition, which served as a control condition, two shapes were presented at the top and one at

the bottom of the screen. A word (‘‘shape’’ or ‘‘texture’’) that appeared in the middle of the screen instructed subjects to decide

whether the bottom stimulus matched either of the top stimuli in the dimension indicated by the word. In the ‘‘relational’’ condition,

two stimuli were presented each at the top and at the bottom of the screen, with no word in the middle. Instead, participants had to

determine themselves across which dimension the top pair differed, and, subsequently, indicate whether the bottom pair differed

over the same dimension. Again, the two task types resulted in 3 task maps (2 activation, 1 contrast).

Task maps were computed using FSL’s FEAT and FLAME (Woolrich et al., 2004; Jenkinson et al., 2012), conducting a between-

subject (‘‘level 2’’) analysis, resulting in effect sizes (Cohen’s d). We used the task maps with minimal smoothing (2mm

total smoothing); see 1200 subjects data release reference manual (https://www.humanconnectome.org/storage/app/media/

documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf), pp. 45-54 and 100-104.

METHOD DETAILS

Software
All data analysis was performed using MATLAB versions 2014b and 2017b. All custom code is available on Zenodo, the DOI is pro-

vided in the Key resources table. We also used scripts and functions from the following freely available software packages: Fieldtrip

(version 20180903) (Oostenveld et al., 2011); Connectome workbench (Marcus et al., 2011). Links to these toolboxes are provided in

the Key resources table.
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Background: Functional Harmonics
The approach presented here relies on representing the human brain’s communication structure (dense FC) as a graph and esti-

mating the eigenfunctions of the graph Laplacian applied to this structure. The graph representation of the dense FC G= ðV; EÞ is
created by using the vertices sampled from the graymatter cortical surface as the nodes V = fviji˛1;/;ngwith n being the total num-

ber of nodes (n= 59:412 in this study) and the connections between the vertices as the edges E = feij
��ðvi;vjÞ˛V3Vg; the connections

are taken as the correlations between vertices in the dense FC matrix. We represent this graph structure G by its n3n adjacency

matrix A= ½aij� that is formed by connecting each node i to its k-nearest neighbors (k = 300 in this study) according to its correlations

in the dense FC matrix, i.e.:

aij =

(
1 cij˛ki;cj : 1%j%n; jsi
0 cij;ki;cj : 1%j%n; jsi ;

(Equation 1)

where ki is the set of the k largest values in row i in the dense FCmatrix. In order to ensureA is symmetric, we also set aji = 1, if aij = 1.

Defining A in this way results in a symmetrical sparse binary matrix. Note that this symmetrization is necessary in order to ensure that

an eigenvalue decomposition remains feasible.

Then we estimate the graph Laplacian defined as

LG = D� A ; (Equation 2)

where A is the adjacency matrix as defined above, and D is the degree matrix, which is defined as a diagonal matrix with diagonal

elements

dii =
Xn

j = 1

aij: (Equation 3)

As such, the degree matrix D contains each node’s degree in its diagonal. Due to the symmetrization of A, it is possible that vertices

have slightly more than k = 300 nearest neighbors, as functional connectivity in the brain is not fully symmetrical (i.e., if j is among the k

nearest neighbors of i, the reverse is not necessarily the case). By subtracting the adjacency from the degree matrix, a normalization

is effectively performed, as the resulting graph Laplacian’s rows and columns sum to 0.

Finally, we estimate the functional harmonics as the eigenfunctions J= fj1;j2;/;jng of LG by solving:

LGji = liji; i˛f0; 1;/;ng; (Equation 4)

where ji are the n31 eigenvectors and li are the corresponding eigenvalues.

Control function bases

1. Spherical rotations: We performed comparisons against spherical rotations of surface maps. We followed Alexander-Bloch

et al. (2018), adapting freely available code (https://github.com/spin-test/spin-test) to be used with HCP surfaces. In this

approach, surface maps are projected to a spherical surface and rotated by a random angle. Values are then mapped back

to the nearest vertex, and the map is symmetrized in order to preserve this property. Parts of the corpus callosum that are

rotated to the cortical surface are labeled as missing data (NaNs) and are ignored in any subsequent calculations (e.g., within-

and across area distances, see below). Since we used multi-dimensional function bases, we rotated the surface

maps corresponding to each dimension by the same angle. Note that, however, the resulting rotated function basis is no longer

orthonormal due to the symmetry preserving step.

2. Eigenvectors of the dense FC: An intuitive basis is to take the eigenvectors of the dense FC without applying a threshold as

done for obtaining the adjacency matrix. These eigenvectors have been shown to contain valuable information about dynam-

ical FC (Cabral et al., 2017). The first 20 eigenvectors of the dense FC are shown in Data S1, page 2.

3. Eigenvectors of the adjacency matrix: In order to test the effect of thresholding/binarizing on the one hand and the effect of

using the graph Laplacian instead of the adjacency matrix itself on the other, we also compared to the eigenvectors of

the adjacency matrix, i.e., the dense FC thresholded such that only the 300 nearest neighbors of each vertex are retained

and set to 1. The first 20 eigenvectors of the adjacency are shown in Data S1, page 3.

4. Principal components (PCs): PCA (principal component analysis) is a popular dimensionality reduction technique which pre-

serves the maximum amount of variance in the data. It consists of taking the eigenvectors of the covariance matrix of the time

series. These principal components are provided by the HCP via Connectome DB (see Key resources table). The first 20 PCs

are shown in Data S1, page 4.

5. Independent components (ICs): A popular dimensionality reduction technique in resting state fMRI (Beckmann et al., 2005), inde-

pendent component analysis is the foremostmethod for obtaining resting state networks. It consists of analyzing the timeseries of

the data and finding those spatial patterns that are maximally independent from each other.We tested all sets of ICs that are pro-

vided by the HCP (see Key resources table), and found that the set with the lowest number of components, i.e., n = 15, performs
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best. Therefore, we restricted our comparisons to this set of ICs. Note that ICs are not orthonormal and therefore do not form a

basis in the strictly mathematical sense. The 15 ICs used in our comparisons are shown in Data S1, page 5.

Modified silhouette values
To test whether functional harmonics are flat within the parcels as defined in the HCP parcellation (Glasser et al., 2016), we modified

the silhouette value which is a commonly used measure to evaluate the degree to which a cluster structure captures the distances in

the dataset (de Amorim and Hennig, 2015). We computed this modified silhouette value of each functional harmonic as:

S =
1

N

X
i

ðMbetweenðiÞ�MwithinðiÞÞ
,

maxðMbetweenðiÞ;MwithinðiÞÞ ; (Equation 5)

whereMbetweenðiÞ is the average Euclidean distance on the functional harmonic between vertices belonging to a parcel i and vertices

belonging to all other parcels, while MwithinðiÞ is the average distance between vertices within the parcel i. Note that while the

commonly used silhouette coefficient takes on values between �1 and 1, this modified version lies between 0 and 1: If all vertices

belonging to a parcel i have the same value, and at least some vertices outside the parcel i have different values, thenMbetweenðiÞ> 0,

MwithinðiÞ= 0 and SðiÞ = 1, indicating a perfectly flat gradient within the parcel i. If, on the other hand, there is no difference between

MbetweenðiÞ andMwithinðiÞ, SðiÞ = 0. By averaging over the modified silhouette values of all parcels, one obtains a measure of how well

the data fit the parcellation. Note that we replaced the somatosensory/motor core areas 1, 2, 3a, 3b, and 4 with the somatotopic sub-

areas given by the HCP (Glasser et al., 2016) for a more detailed evaluation.

To evaluate the somatotopic organization of the functional harmonics, we used ameasure that is similar to the silhouette value, but

adapted to measure the separation from the rest of the cortex and from other somatotopic areas:

Ssom = ðMbetween;som + MbetweenÞ
�
maxðMbetween;som;MbetweenÞ$Mbetween;som ; (Equation 6)

whereMbetween;som is the average Euclidean distance between vertices belonging to a somatotopic area and all vertices belonging to

other somatotopic areas. The first term of the equation is between 1 and 2 and is close to 2 if bothMbetween;som andMbetween are equal.

Multiplying by Mbetween;som ensures that Ssom is not large if both Mbetween;som and Mbetween are small.

Reconstructing task maps
The spatial pattern of each task map on on the cortex sðvÞ was decomposed into and reconstructed from the functional harmonics

J= fjkgnk = 1 as:

bs = a1j1 +a2j2 +/+anjn =
Xn

k =1

akjkðvÞ; (Equation 7)

where the coefficient ak of each functional harmonic jk was estimated by projecting the task map sðvÞ onto that particular harmonic

jk . As such, ak are estimated as:

ak = Cs;jkD : (Equation 8)

Then, each task map is reconstructed using Equation 7. In this study, we limit our reconstructions to using a maximum of 100 non-

constant functional harmonics ðn = 101Þ.
In order to make reconstruction errors comparable across tasks, and to allow us to average across tasks, we normalized the orig-

inal and the reconstructed task maps to zero mean and unit variance across the cortical surface. For a reconstruction s�ðmÞ, wherem

indicates a binary vector of dimensionality 10131 which contains ones for harmonic basis functions that are used in the reconstruc-

tion and zeros otherwise, we then computed the normalized reconstruction error as:

REðmÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
v

�
snormðvÞ � snormðvÞ�ðmÞ

�2,X
v

snormðvÞ2
vuut (Equation 9)

We normalized by the sum of squares of the normalized original task map in order to obtain values of RE that are comparable across

tasks.

We also computed the Pearson correlations between s and s�ðmÞ (reported in Figure S4).

Somatotopic areas
In the visual and somatosensory/motor cortices, some functional harmonics are rather determined by retinotopy and somatotopy

than by anatomical or microstructural features. For the former, somatotopic areas occupy exactly the same surface area as the

sensorimotor core areas, 1, 2, 3a, 3b, and 4. We therefore replaced, where appropriate, the borders of the HCP parcellation by

the borders of the five somatotopic regions.
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Parcel borders for visualization
In order to discuss the meaning of the functional harmonics, we show borders of certain parcels on the cortical surfaces (Figure 2).

We used three different methods to select which borders to show. First, for some functional harmonics, it was feasible to select

these areas manually (for example, early visual areas in functional harmonic 4, somatotopic areas in functional harmonics 3 and 4).

In the supplementary neuroanatomical results of Glasser et al. (2016), the authors introduce a functional grouping of many regions

that we often used as a guideline, for instance to distinguish between early and association auditory cortex. Second, for some

functional harmonics (for instance, functional harmonics 1 and 2), we show the borders of parcels that belong to resting state net-

works as defined by Yeo et al. (2011). The 7-network parcellation is provided by the HCP, but does not perfectly overlap with the

HCP parcellation. We adjusted the network borders slightly to align the network borders to follow those of the parcels defined in

HCP. Thereby we assigned each parcel to the RSN with which it had the most overlap. Third, some functional harmonics are too

complex to manually select areas or networks (namely, functional harmonics 5, 6, 8, and 10). Here we employed simple k-means

clustering on the functional harmonic, using k = 2 (functional harmonics 5, 6, and 8) or k = 3 (functional harmonic 10); the clustering

results are provided together with the code on Zenodo, see the Key resources table for the DOI. To obtain meaningful clusters in

the somatosensory/motor cortex, we again replaced the sensorimotor core regions 1, 2, 3a, 3b and 4 with the somatotopic areas.

For this purpose, we used vertices within the core regions and re-assigned them to the somatotopic areas based on their dis-

tances to the sub-area borders.

Third-party software
We used the following software packages to aide us in visualization.

d plot_mesh by Gabriel Peyr, https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/5355/

versions/5/previews/toolbox_graph/plot_mesh.m/index.html

d (also includes getoptions.m and check_face_vertex.m)

d freezeColors by John Iversen, https://www.mathworks.com/matlabcentral/fileexchange/7943-freezecolors-unfreezecolors

d rgb by Ben Mitch, https://www.mathworks.com/matlabcentral/fileexchange/1805-rgb-m

d subtightplot by Felipe G. Nievinski, https://www.mathworks.com/matlabcentral/fileexchange/39664-subtightplot

d MarkerTransparency toolbox by Free Software Foundation, https://www.mathworks.com/matlabcentral/fileexchange/

65194-peterrochford-markertransparency

QUANTIFICATION AND STATISTICAL ANALYSIS

Monte Carlo simulations
We used a Monte-Carlo approach for statistical validation.

For the silhouette values, we followed Alexander-Bloch et al. (2018), where permutations consist of rotated surface maps of the

functional harmonics as well as principal components, independent components, eigenvectors of the dense FC, and eigenvectors

of the adjacency matrix. Silhouette values were then computed for the original, non-rotated map as well as for n= 220 rotated maps,

and p values were computed based on the number P of rotations that performed better than the original map:

p = ðP + 1Þ=ðn + 1Þ (Equation 10)

We performed Bonferroni correction by multiplying the resulting p value by 11, i.e., the number of dimensions that was tested.

We used the same approach for the somatotopy index, but only applied to the functional harmonics and their rotations. Since in this

case, we had five somatotopic areas (we averaged over the two hemispheres) and tested three of the 11 functional harmonics (j3, j7,

and j11), we required n= 300 rotations in order to achieve a significance level of a= 0:05 with 15 comparisons.

We also applied a Monte-Carlo permutation test to the mean reconstruction errors by permuting the labels of the basis 1000 times

for each control basis. Here, we pooled the reconstruction errors over the first 11 non-constant components. For the

overall reconstruction performance, we also pooled all 47 task maps; for ad hoc tests of each task category, we pooled only over

the tasks in each category.

Auditory hierarchy
Weobserved that functional harmonic 10 ðj10Þ captures the hierarchical organization of the auditory system (Figure S3D). To quantify

this agreement, wemeasured the correlation between the spatial pattern of functional harmonic 10 ðj10Þ and the extent to which each

area is associated with the auditory network in the resting state (degree of auditory involvement) (Glasser et al., 2016). We found a

significant correlation (r = � 0:63, p = 4$10�21) between functional harmonic 10 ðj10Þ and the degree of auditory involvement of the

functional areas.
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Supplemental Figure 1. Two-dimensional subspaces formed by pairs of functional harmonics, referred to as k.
Related to Figure 3. The color code is taken from the HCP parcellation (Glasser et al., 2016), with blue corresponding to visual
areas, red, auditory areas, and green, somatosensory/motor areas, and the color gradient running from white to black
signifying task-positive to task-negative areas. a: Two-dimensional subspace formed by functional harmonics 5 and 6 (k5 and
k6). V1 (blue), two somatotopic areas (hand and face, green) and auditory areas (red) are separated from each other and
from remaining areas. b: Two-dimensional subspace formed by functional harmonics 3 and 4 (k3 and k4). Visual (blue) and
somatosensory/motor/auditory (green and red) systems are orthogonal to each other. c: Two-dimensional subspace formed
by functional harmonics 3 and 7 (k3 and k7). A different separation of somatotopic regions from that shown in Figure 3a is
apparent. d: Two-dimensional subspace formed by functional harmonics 1 and 2 (k1 and k2). This reproduces findings from
Margulies et al. (2016), where visual areas (blue), somatosensory/motor areas (green) and higher-order areas belonging to
the default mode network (black) are separated from each other. The shown figures are derived from the functional harmonics,
obtained from the HCP’s dense functional connectivity matrix, which is an average over 812 subjects.



a
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Supplemental Figure 2. Additional examples for topographical features captured by functional harmonics. Related to
Figure 3b,c. a: “Somatotopy index" (see STAR Methods for details) for functional harmonics 3, 7, and 11, and each of the
somatotopic subregions (averaged across hemispheres), blue circles; gray crosses are computed from 300 sets of rotations of
functional harmonics. This index will be high if the region is separated well from both the entire rest of the cortex and the other
somatotopic regions (see Methods). Related to Results-section “Functional harmonics capture sub-areal topographic
organization". b: All retinotopic mappings in V1-V4 found in the first 11 harmonics (k1-k11). The functional harmonics were
derived from the HCP’s dense functional connectivity matrix, which is an average over 812 subjects.



Supplemental Figure 3. Functional harmonics 8-10 correspond to different subdivisions of higher-order networks.
Related to Figure 2. Normalized average Euclidean distances between all pairs of parcels, ordered by resting state network
(RSN) membership according the Yeo 7-Network parcellation (Yeo et al., 2011; see legend), for functional harmonics 8 (k8,
panel a), 9 (k9, panel b), and 10 (k10, panel c). a: In functional harmonic 8 (k8), the distances within the ventral attention
network (vATT) are very small, as well as distances between regions belonging to the vATT and the frontal parietal network
(FPN). As shown in Figure 4d, we observe a strong retinotopic gradient across regions V1-V4, which is reflected by high
distances within the visual RSN. b: In functional harmonic 9 (k9), most RSNs show small within-network distances,
particularly the somatosensory/motor, dorsal and ventral attention, as well as default mode networks. Small distances also
occur between the somatosensory/motor and default mode networks. The default mode network (Raichle et al., 2001) is
delineated in the positive polarity of this functional harmonic (borders of the DMN as defined by Yeo et al. (2011) are overlaid
on functional harmonic 9 (k9) in Figure 2i). c: In functional harmonic 10 (k10, Figure 3c), only the ventral attention and limbic
networks exhibit small within- (but not between-) network distances. d Correlation between the degree to which areas are
related to auditory regions (Glasser et al., 2016) and the value of functional harmonic 10 (k10), averaged within each of the
360 parcels. The color code is taken from the parcellation in Glasser et al. (2016), see also Figure 1d. The functional
harmonics were derived from the HCP’s dense functional connectivity matrix, which is an average over 812 subjects.



Supplemental Figure 4. Reconstruction performance of functional harmonics (solid lines) compared to control basis
function sets. Related to Figure 5a-g. a: Reconstruction performance of functional harmonics compared to their rotations, b:
eigenvectors of the adjacency matrix, c: eigenvectors of the dense FC matrix, d: principal components (PCs), e: independent
components (ICs; dashed lines). Shaded areas show the range (minimum and maximum) of reconstructions errors and (first
row of each panel) correlations (second row of each panel) across all tasks in this group. All basis sets were derived from
matrices which are averages over the same 812 subjects. The task activity maps (Cohen’s D activation contrast maps) are
based on 997 subjects.
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