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The effect of turbulence in brain dynamics
information transfer measured with
magnetoencephalography
Gustavo Deco 1,2✉, Samuel Liebana Garcia3, Yonatan Sanz Perl1,4, Olaf Sporns5,6,7,8 &

Morten L. Kringelbach9,10,11✉

Fast, efficient information transfer is essential for the brain to ensure survival. As recently

shown in functional magnetic resonance imaging with high spatial resolution, turbulence

appears to offer a fundamental way to facilitate energy and information transfer across

spatiotemporal scales in brain dynamics. However, given that this imaging modality is

comparably slow and not directly linked with neuronal activity, here we investigated the

existence of turbulence in fast whole-brain neural dynamics measured with magnetoence-

phalography (MEG). The coarse spatial observations in MEG necessitated that we created

and validated a empirical measure of turbulence. We found that the measure of edge-centric

metastability perfectly detected turbulence in a ring of non-local coupled oscillators where

the ground-truth was analytically known, even at a coarse spatial scale of observations. This

allowed us to use this measure in the spatially coarse, empirical large-scale MEG data from

89 human participants. We demonstrated turbulence in fast neuronal dynamics and used this

to quantify information transfer in the brain. The results demonstrate that the necessary

efficiency of brain function is dependent on an underlying turbulent regime.
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The biophysics of the brain shows surprisingly slow infor-
mation transfer between neurons, the brain’s fundamental
computational units. Starting with the Nobel prizewinning

research of Hodgkin and Huxley1, researchers have meticulously
demonstrated that information transfer between neurons is slow
with cortical latencies of around 10–20 ms2, arising from the fact
that the electrical signals in the myelinated fibres have to be
converted to a chemical signal at the synaptic junction and back
to electrical signal3. This slow process poses significant challenges
in terms of how the brain manages to solve the difficult com-
putational problems necessary for survival. Paradoxically, how-
ever, the wetware of brain is often much better at solving
problems than the much faster silicon-based computers. This
raises the unsolved physical problem of how the brain overcomes
the limitations of speed for information transfer across spacetime.

Here we propose that efficient information transfer across the
whole brain depends on turbulence, and we demonstrate turbu-
lence in fast neuronal brain dynamics directly measured with
magnetoencephalography. Originally coined “turbolenza” by
Leonardo DaVinci over 500 years ago4, turbulence has shown to
be ubiquitous in nature as an essential dynamical regime facil-
itating energy and efficient information transfer across spatio-
temporal scales5. The spatial power scaling law is a hallmark of
turbulence6,7, revealing the underlying key mechanisms of fluid
dynamics, namely the energy cascades that balance kinetics and
viscous dissipation. Turbulence is not, however, limited to fluids
but also found in many other physical systems including coupled
oscillators8. This has been used to show turbulence in the brain in
signals from functional magnetic resonance (fMRI)9,10, demon-
strating the existence of a similar power law in the turbulent core,
similar to the ‘inertial subrange’ found in fluid dynamics, and
which similarly appear to be homogeneous isotropic, i.e. with
average properties that are both independent of position and
direction. This strongly suggest the presence of a cascade of
efficient information processing across scales.

Further bolstering these findings, we have also showed that the
brain is turbulent using a measure from the theory of coupled
oscillators, namely the ‘local metastability’ measure proposed by
Kuramoto and colleagues. This extends the very important
research carried out by Kuramoto, showing that coupled oscil-
lators can be used to capture turbulence in many other systems8.
The Stuart-Landau model of a single oscillator provides the
simplest non-linear extension of a linear oscillator that mathe-
matically describes the onset of spontaneous oscillations (i.e.
bifurcation from fixed-point dynamics towards a limit cycle),
which has been used to model many physical systems, going from
the simplest linear, harmonic oscillator to non-linear oscillators11.
Changes in oscillation amplitudes can be brought about by small
perturbations to linear oscillators, while small perturbations to
non-linear oscillators, such as the Stuart-Landau oscillator, lead to
self-regulating relaxation and return to the same region in phase
space. This is highly convenient given that the dynamics of the
brain can be described by a whole-brain model of coupled
oscillators9,12, using the Hopf whole-brain model, named in
honour of the German mathematician Eberhard Hopf who
described the normal form of the Hopf bifurcation, which
describes the behaviour of a Stuart-Landau non-linear oscillating
system13. In neuroscience, the Hopf whole-brain model has been
shown to be remarkably effective at modelling the mesoscopic
dynamics of brain regions and capture the regularities of
empirical neuroimaging data12,14,15, as well for modelling the
turbulence found in fMRI dynamics4,9,10,16.

Specifically, within the framework of coupled oscillators, tur-
bulence can be characterised as the variability across space and
time of the ‘local metastability’, which measures the local level of
synchronisation of the coupled oscillators9,10. This

characterisation is a generalisation of the concept of
metastability17–21, which has been used in neuroscience to mea-
sure the variability across time of the global level of synchroni-
sation of the whole system, commonly known as the global
Kuramoto order parameter of a dynamical system. This suggest
that the turbulent regime with its underlying coupled oscillators
could sustain optimal information transmission22.

This, however, poses the outstanding problem of whether
turbulence is also found in fast whole-brain dynamics. Previous
research has demonstrated turbulence in the fast dynamics of
local neuronal circuits23 but showing turbulence in fast global
brain dynamics is a crucial step, which has not been answered by
the previous research using fMRI which is both relatively slow
with a timescale of seconds due to haemodynamic response24 and
not directly measuring neural dynamics. To solve this problem,
we used MEG, a neuroimaging modality directly measuring fast
neuronal dynamics at the whole-brain level25. However, we
needed to overcome the problem that MEG has less good spatial
resolution than fMRI, which means that we cannot use the
existing method for demonstrating turbulence, which requires
high spatial resolution using a fine parcellation of around 1000
regions.

In order to solve this problem, here we propose an ‘edge
metastability’ measure to overcome these challenging physical
spatiotemporal problems and detect turbulence in fast brain
dynamics. As the name suggests, this method relies on using the
spatiotemporal variability of edge time series, recently introduced
to capture fine-scale dynamics in fMRI recordings26–28. In con-
trast to existing methods, this method can capture turbulence
with high temporal precision in a coarse-grained ring of coupled
oscillators, where the level of turbulence can be exactly analyti-
cally determined22.

Results
First, we tested our measure in a ring of Stuart-Landau (SL)
oscillators with non-local coupling (Fig. 1a), where, crucially,
there is a known analytical solution to where the turbulent regime
is found22 (see Methods for the equations governing this system).
Then we tested this measure in empirical MEG data (see Methods
for details on empirical data) to demonstrate the existence of
turbulence.

Results using ring model. We studied empirical measurements
of turbulence for different levels of coarse-graining in a ring of SL
oscillators. First, we performed simulations of this ring using
norg ¼ 10; 000 oscillators (Fig. 1b). The fine parcellation corre-
sponds to observations of the phase dynamics at this level, while
the coarse parcellation (Fig. 1c) is divided into groups of nobs ¼
100 neighbouring SL oscillators to emulate the natural coarse-
graining obtained with MEG, and use the mean of the phase in
these oscillators. Fig. 1d shows an example of the temporal evo-
lution of the phases of the coarse parcellation in the maximal
point of the turbulent regime (D ¼ 0:0524, see below), which is
given by the analytical solution for this system provided by
Kawamura and colleagues22 (see Methods).

Fig. 1e shows the bifurcation diagram for the analytical
analysis. Here, the blue curve represents the border between the
oscillatory and turbulent regimes, while the red line represents the
Hopf bifurcation curve, and the green line the well-known
Benjamin-Feir criticality, which is a hallmark of the complex
Ginzburg-Landau equation. Specifically, the Benjamin-Feir criti-
cality line demarcates the transition to turbulence, given that the
spatially uniform oscillation of the complex Ginzburg-Landau
equation becomes unstable and spatiotemporal chaos develops
when the Benjamin-Feir instability condition is satisfied.
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The stippled blue line represents the results of running the
simulation with α ¼ 1:2036, i.e., β ¼ 2:6. This allows us to
identify two points, A and B, which demarcates the transition
from the oscillatory to turbulent and turbulent to noisy regimes,
respectively. Point A is found at D ¼ 0:025 and point B is found
at D ¼ 0:18. Given that we know the ground truth for the
turbulent regime in these simulations, we can check our measures
of turbulence against this analytical solution (shown by the solid
blue bar at the top of bifurcation diagram).

We first tested the standard empirical measure of turbulence22

(using the local Kuramoto order parameter, Eq. (6) in Methods).
In Fig. 1d, the solid red bar shows that using this measure on the
fine parcellation (norg ¼ 10; 000) perfectly identifies the turbulent
regime since Wilcoxon significance tests show that only in this
region the measure is larger than in the oscillatory and noisy
regions (p < 0.001). On the other hand, when this measure is used
on the coarse parcellation (nobs ¼ 100), it fails (see solid
pink bar).

In order to be able to empirically measure turbulence in the
coarse parcellation we introduce a definition of edge metast-
ability, which has not appeared in the literature before (Eq. (7) in
the Methods).

When applied to the coarse parcellation, this measure perfectly
identifies the turbulent regime given that Wilcoxon significance
tests show that only in this region the measure is larger than in
the oscillatory and noisy regions (p < 0.001). This is shown by the
solid green bar above bifurcation diagram in Fig. 1d.

Further investigating these and related measures, they were
applied to four points as shown in Fig. 2. The first point is placed
deep in the oscillatory regime (D= 0.0011). The second and third
point are placed in the turbulent regime with one at the

maximum of turbulence (D= 0.0524), while the other is in the
turbulent region but close to the edge of the noisy regime
(D= 0.1671). Finally, the fourth point is in the noisy regime at
the edge of turbulence (D= 0.1805).

Fig. 2a shows the boxplots for these four points (across 100
trials) using the mean value across time of the global Kuramoto
order parameter RG (see Eq. (8) in Methods). Fig. 2b shows the
boxplots of using global metastability, i.e., the standard deviation
across time of the global Kuramoto order parameter. As can be
seen, both measures are unable to detect turbulence. In contrast,
as already shown in Fig. 1d, Fig. 2c shows the boxplots at the four
points using the spatiotemporal metastability at the fine
parcellation. This measure closely tracks the presence of
turbulence since it is significantly higher in the turbulent regime
compared to the oscillatory and noisy regimes. Yet, when applied
to the coarse parcellation, Fig. 2d shows that this measure fails to
significantly detect turbulence.

For reference, Fig. 2e, f show the spacetime evolution in specific
trials of the simulation of R and snapshots of the phases,
respectively. Note how the two middle panels clearly indicate the
presence of turbulence, reflecting the vorticity of the local
synchronization.

We then demonstrate, as shown in Fig. 2g, that the measure of
edge metastability is able to perfectly capture the turbulent
regime. The added inset shows a close-up of the last three
boxplots across the 100 trials.

Further, we defined the Edge Spacetime Predictability (ESP) as
the information transfer correlation across space and time by
computing the predictability of the edge measure over space and
time (see Eq. 9 in Methods). This allowed to demonstrate the
efficiency of information transfer in the turbulent regime. Fig. 2h

Fig. 1 Edge metastability measure of turbulence. a Validation of turbulence measure in a ring of Stuart-Landau (SL) oscillators with non-local coupling
(first panel), where, crucially, there is a known analytical solution to where the turbulent regime is found. b The panel shows how we constructed the
spatially coarse observations by averaging over 100 neighbouring oscillators. c The panel shows an example of the phases of these coarse measurements
for simulations in the turbulent regime. d The panel shows the bifurcation diagram for the analytical analysis and the performance of the different measures
of turbulence. e The pipeline of pre-processing MEG data shows the sensor signals. f These signales are beamformed and a coarse DK68 parcellation was
used to extract the MEG signals. g The panel shows examples from each coarse parcel in the five classical bands (delta 1-3 Hz, theta 3.5-7 Hz, alpha 7.5-
13.5 Hz, beta 14–30.5 Hz, gamma 31–40 Hz). h The panel shows examples of the measures of empirical turbulence on representative successive timepoints
are rendered on sideways, midline and flat map renderings of the whole brain.
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shows the significant differences for this measure between the
turbulent and noisy regimes. Furthermore, the inset shows the
scatterplot in the turbulent regime between the fine spacetime
metastability and the coarse ESP, demonstrating the increase of
information transfer with the level of turbulence.

For illustration, Fig. 2i shows the evolution in time of the edge
metastability for one trial at each of the four timepoints. Note
how the second panel (at the peak of turbulence) shows a rich
edge metastability repertoire.

Results for empirical MEG data. Overall, these results used on
the ring model with a known true turbulent regime clearly
demonstrate the usefulness of our edge metastability measure for
detecting turbulence from coarse spatial observations. This pro-
vided us with the impetus to use this measure to detect turbulence
in spatially coarse but temporally fine MEG resting-state data
data from 89 participants from the openly available Human
Connectome Project. Fig. 1e–g show the pipeline of pre-
processing MEG data, which takes the sensor signals, beamform
these and use a coarse DK68 parcellation29 to extract the MEG
signal from each coarse parcel in the five classical bands (delta
1–3 Hz, theta 3.5–7 Hz, alpha 7.5–13.5 Hz, beta 14–30.5 Hz,
gamma 31–40 Hz) (see “Methods” for details). Please note that
due to constraints in the beamforming technique, it is not

possible to spatially reconstruct the signal at more than between
60 and 90 parcels. As shown in Fig. 1h, the empirical edge
metastability turbulence can then be visualised for successive
timepoints on lateral, midline and flat map renderings of
the whole brain.

For applying our edge metastability measure to MEG data,
which consists of broadband amplitude signals, we used the
standard definition of edge-centric used in fMRI26–28 (see Eq. 10
in the Methods).

As shown by the ring model simulations (where the ground
truth is known), the crucial issue for detecting turbulence is to use
the right reference regime, i.e. compare measures of turbulence
(local metastability and edge-centric metastability) in a turbulent
regime with a non-turbulent regime. While there is redundancy
in both turbulent and non-turbulent regimes, both measures can
detect the difference in turbulence even if highly redundant such
as the measure of edge-centric metastability. For the empirical
study, we compare this measure on both the empirical MEG and
surrogate data.

The results clearly show the existence of turbulence for all
bands (see Fig. 3a) compared to circular shifted surrogate
data30,31. In brief, this method generates 89 independent circular
time-shifted surrogates by separately resampling the signal for
each of the 89 participants. Specifically, for each timeseries of
each parcel, one independent random integers c is randomly

Fig. 2 Validation of an empirical measure of turbulence in a ring of coupled oscillators. The figure demonstrated the suitability of different measures for
capturing turbulence by using the same four points, where the first (D= 0.0011) is deep in the oscillatory regime, the second is at the maximum of
turbulence (D= 0.0524), the third is in the turbulent region but close to the edge of the noisy regime (D= 0.1671), while the fourth point is in the noisy
regime at the edge of turbulence (D= 0.1805). a The mean value across time of the global Kuramoto order parameter is not sensitive as shown from the
boxplots (across 100 trials). b Equally, global metastability is not able to capture turbulence. c In contrast, spatiotemporal metastability at the fine spatial
scale detect turbulence perfectly. d However, using this measure at the coarse spatial scale fails to significantly detect turbulence. e Examples of the
spacetime evolution in specific trials of the simulation of R, where the two middle panels clearly show turbulence, reflecting the vorticity of the local
synchronisation. f Spacetime evolution snapshots of the phases. g The measure of edge metastability perfectly captures the turbulent regime using only
coarse spatial observations, as shown in detail in the magnified inset showing a close up of the last three boxplots across the 100 trials. h The measure of
Edge Spacetime Predictability (ESP) characterises the information transfer correlation across space and time and shows significant differences between the
turbulent and noisy regimes. Furthermore, the inset shows the correlation in the turbulent regime between the fine spacetime metastability and the coarse
ESP. i Examples of the evolution in time of the edge metastability for one trial at each of the four timepoints. The error bars depict the standard error.
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generated within the interval [0.05n 0.95n] (where n is the
number of time points in the time series signal). Then the circular
time-shift is performed by moving the first c values of X ¼
½X1; ¼ ;Xn� to the end of the time series which creates the
surrogate sample X ¼ ½Xcþ1; ¼ ;Xn;X1; ¼ ;Xc�. This type of
surrogates does not assume Gaussianity and has been shown to
preserve the whole statistical structure of the original time series.
In Fig. 3b, we show an example of the edge matrix for 200 data
points derived from the MEG data of one participant and for the
corresponding surrogate data. There is clearly structure in the
edge matrix for MEG and not for the surrogate.

Figure 3c shows the reliability and the robustness of the edge-
centric metastability by plotting the average of the edge-centric
metastability as a function of the length of the MEG data time
series. The asymptotic behaviour found for all five bands clearly
demonstrates the robustness of the measure for a time series

larger than around 140 seconds, when the edge-centric metast-
ability is converging on the value for the full time series.

Figure 3d shows visualisations for a single participant of the
edge turbulence for the five different bands for successive
timepoints rendered on sideways, midline and flat map render-
ings of the whole brain.

Figure 3e shows the ESP measure on the MEG data (compared
with surrogate data) and demonstrates significant differences for
all bands. Figure 3f shows an example for the delta band in a
specific participant of the evolution of the seven different
predictions (different coloured curves, τ ¼ 1::7½ � in Eq. 9, see
Methods) as function of the Euclidean distance between parcels
(x-axis). Applying ESP to the MEG data shows clear spacetime
predictability, while applying this to the surrogate data shows no
predictability. This suggests the efficiency of the turbulent regime
for information transfer.

Fig. 3 Turbulence in fast, neuronal whole-brain dynamics measured with magnetoencephalography (MEG) in human participants. a The measure of
edge-centric metastability shows clear turbulence for all five bands of MEG data compared to circular shifted surrogate data. b An example of the edge
matrix for 200 data points the MEG data of one participant and for the corresponding surrogate data. c The robustness of the edge-centric metastability is
demonstrated by the asymptotic behaviour of the average of the edge-centric metastability as a function of the length of the MEG data time series. The
figure shows this asymptotic behaviour for all five bands with the shadow reflecting the standard error. d Visualisations for a single participant of the edge
turbulence for the delta band for three successive timepoints rendered on 3D views (sideways and midline) as well as flat map renderings of the whole
brain. e Using measure of Edge Spacetime Predictability (ESP) on MEG data (compared with surrogate data), shows significant differences for all five
bands, suggesting the efficiency of the turbulent regime for information transfer. f An example for the delta band in a specific participant of the evolution of
the seven different predictions (different coloured curves, τ ¼ 1::7½ � in Eq. 9) as function of the Euclidean distance between parcels (x-axis). The error bars
depict the standard error.
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Conclusions
Overall, here we created and validated a measure of turbulence
suitable for spatially coarse observations in the well-controlled
environment of a ring of coupled SL oscillators. This allowed us
to demonstrate turbulence in the fast brain neuronal dynamics
measured with MEG in a large group of human participants.

The present findings of turbulence in MEG data include only
cortical regions similar to the previous findings of turbulence in
fMRI4,9,10,16. It would be of considerable interest to include
subcortical regions but this poses unique challenges for MEG
given the challenges of the source reconstruction from deep
sources32. We expect that subcortical regions will also contribute
to the generation of turbulence given the findings of Maurer and
colleagues of turbulence in the rodent local field potential
recordings from the hippocampus23. It would also be of con-
siderable interest to apply the present measure of turbulence to
such data.

We also showed efficient information transmission across the
whole brain in the turbulent regime. This provides further insight
into how turbulence is the skeleton underlying efficient spatio-
temporal information transfer required for survival. This measure
is an excellent candidate for having the specificity and sensitivity
for differentiating between different brain states as for example
wakefulness, sleep, cognitive tasks (for example, decision making
and working memory), drugs (anaesthesia and psychedelics) and
disease (coma and neuropsychiatric disorders). The measure
should also be useful for identifying moments of high informa-
tion transfer/turbulence in extended time series, individual dif-
ferences, and differences between normal and clinical
populations.

Methods and experimental data
Modelling of non-local coupled oscillators in ring structure.
First, we tested this measure in a ring of Stuart-Landau (SL)
oscillators with non-local coupling, where, crucially, there is a
known analytical solution to where the turbulent regime is
found22. This system can be described by the following equations:

∂tWðx; tÞ ¼ ð1þ iω0ÞW � ð1þ iβÞjWj2W þ KSWðx; tÞ þ ffiffiffi

σ
p

ηWðx; tÞ
ð1Þ

and

SWðx; tÞ ¼
Z 1

�1
dx0Gðx� x0ÞWðx0; tÞ ð2Þ

The nonlocal coupling, G, is given by GðxÞ ¼ 0:5e� xj j. Derived
as a normal form of the supercritical Hopf bifurcation, the SL
oscillator is the simplest limit-cycle oscillator8. Each oscillator
state is here described by a complex amplitude, W, and where the
coupling term SW and the noise ηW are also complex variables.
The parameters β and σ are controlled by the parameters ω0 ¼
βþ 1:0 and K ¼ 0:05. The values of the parameter β was chosen
in such a way that the spatially uniform oscillation is stable and
the system is nonturbulent in the absence of noise22.

As shown by Kuramoto and colleagues8,22, for the Stuart-
Landau oscillator, mapping from the complex amplitudeW to the
generalized phase is analytically given as

ϕ ¼ argW � β ln Wj j ð3Þ

Analytical solution to ring model. Applying the standard phase
reduction method to this system allowed Kuramoto and collea-
gues to derive an approximate equation consisting of only the
phase variable from the original dynamical equations in multiple

variables, given by

∂tϕ x; tð Þ ¼ eω� K
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2
q

Z 1

�1
dx0G x� x0ð Þsin ϕ x; tð Þ � ϕ0 x0; tð Þ þ α

� �þ
ffiffiffiffiffi

eD
p

ξðx; tÞ

ð4Þ
where the natural frequency eω ¼ ω0 � β; the effective noise
intensity eD ¼ σð1þ β2Þ and α ¼ argð1þ iβÞ. The noise ξ x; tð Þ is
a real scalar spatiotemporally white Gaussian noise satisfying

ξðx; tÞ� � ¼ 0; ξðx; tÞξðx0; t0Þ� � ¼ 2δðx � x0Þδðt � t0Þ:
Furthermore, the equation can be simplified by changing the

time scale, yielding

∂tϕ x; tð Þ ¼ ω�
Z 1

�1
dx0G x� x0ð Þsin ϕ x; tð Þ � ϕ x0; tð Þ þ α

� �þ
ffiffiffiffiffi

D
p

ξðx; tÞ

ð5Þ

where the rescaled noise intensity is given by D ¼ σ
ffiffiffiffiffiffiffiffi

1þβ2
p

K . The
analytical solution is obtained by transforming the Langevin
phase equation to an equivalent Fokker Planck equation - for
details consult Kawamura and colleagues22.

Defining spatiotemporal metastability. We extended the stan-
dard empirical measure of turbulence22, spatiotemporal metast-
ability, namely the variability across spacetime of the local
Kuramoto order parameter R given by:

R x; tð ÞeiΘðx;tÞ ¼
Z 1

�1
dx0G x� x0ð Þeiϕðx0;tÞ ð6Þ

Definition of edge metastability. In order to be able to empiri-
cally measure turbulence in the coarse parcellation we introduce a
definition of edge metastability, which is the standard deviation of
the edge centred matrix E, which is defined as follows. Each
column corresponds to a timepoint t, where the column is
defined as vector combining all pairwise combinations of the
differences of the phases’ state at time t. With N parcels this
results in NðN�1Þ

2 pairs. The difference of the phase state at a given
timepoint t for the different pairs are given by

Ei;j tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðϕiðtÞÞ � cosðϕjðtÞÞ
� �2

þ sinðϕiðtÞÞ � sinðϕjðtÞÞ
� �2

r

ð7Þ

Where i; j are the parcels in a given parcellation. In other
words, the edge metastability is the standard deviation across
space and time of the edge-centric measure.

The global Kuramoto order parameter. The global Kuramoto
order parameter RG is defined according to

RG tð ÞeiΘGðtÞ ¼
Z 1

�1
dx0eiϕðx

0;tÞ ð8Þ

Edge Spacetime Predictability (ESP). The Edge Spacetime Pre-
dictability (ESP) is defined as the information transfer correlation
across space and time by computing the predictability of the edge
measure over space and time. ESP is defined as the mean value
over all pairs of the mean value of the shifted correlations across
time shift τ ¼ 1::7½ �: For each pair i; j the shifted correlation for a
given τ is defined as

Ci;jðτÞ ¼
∑t

eEi;jðt � τÞeEi;jðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eEi;jðt � τÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

eEi;jðtÞ
2

q ð9Þ

Where eEi;j is the de-meaned version of Ei,j.
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Ethics for experimental data. The Washington
University–University of Minnesota (WU-Minn HCP) Con-
sortium obtained full informed consent from all participants, and
research procedures and ethical guidelines were followed in
accordance with Washington University institutional review
board approval (Mapping the Human Connectome: Structure,
Function, and Heritability; IRB # 201204036).

Neuroimaging acquisition for MEG HCP. We used the human
non-invasive resting state magnetoencephalography (MEG) data
publicly available from the Human Connectome Project (HCP)
consortium, acquired on a Magnes 3600 MEG (4D NeuroIma-
ging, San Diego, USA) with 248 magnetometers. The resting state
data consist of 89 participants (mean 28.7 years, range 22–35, 41 f
/ 48 m, acquired in 3 subsequent sessions, lasting 6 min each).

Preprocessing and extraction of MEG data timeseries. For each
participant, the MEG data were acquired in a single continuous
run comprising resting state. As a starting point we used the
preprocessed MEG data from the HCP database. At this level of
preprocessing, removal of artefactual independent components,
bad samples and channels has already been performed. Following
the preprocessing pipeline detailed in ref. 33, MEG data were then
downsampled to 250 Hz using an anti-aliasing filter, filtered out
frequencies below 1 Hz, performed the co-registration with the
head models provided by the HCP, and source-reconstructed
using LCMV beamforming32 to the 68 cortical regions of the
Desikan-Kahilly parcellation29. For each region, a single time
series was computed as the first principal component of the
voxels within that parcel. Each region’s time series was then
standardized to have mean equal zero and standard deviation
equal one, so that the amount of variance was always the same
regardless of the depth of the region. In order to project the
results to brain space, we used a weighted mask, where each
region had its maximum value at the centre of gravity.

Measuring turbulence in MEG analysis. For applying our edge
metastability from the ring model to MEG data, which consists of
broadband amplitude signals, we used the standard definition of
edge-centric used in fMRI:26–28

Ei;j tð Þ ¼ Zi tð ÞZj tð Þ ð10Þ
Where Z is the z-scored Hilbert envelope of the filtered MEG

signals. Please note that Eq. (10) differs from Eq. (7), in that this
equation uses the Hilbert envelopes of the empirical signals rather
than the phases which are explicitly given by the ring simulation
but not in the empirical data. Much of the current MEG analysis
is based on using envelopes21,34,35, and we therefore preferred to
use Eq. (10) when analysing the MEG data. However, we did also
compute the phase version for the MEG data and the results were
qualitatively identical.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The multimodal neuroimaging data are freely available from HCP: https://www.
humanconnectome.org/.

Code availability
The code used to run the analysis from the HCP data is available on GitHub (https://
github.com/decolab/megturbulence).
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