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Abstract

The study of states of arousal is key to understand the principles of consciousness. Yet, how different brain states emerge
from the collective activity of brain regions remains unknown. Here, we studied the fMRI brain activity of monkeys during
wakefulness and anesthesia-induced loss of consciousness. We showed that the coupling between each brain region and
the rest of the cortex provides an efficient statistic to classify the two brain states. Based on this and other statistics, we
estimated maximum entropy models to derive collective, macroscopic properties that quantify the system’s capabilities to
produce work, to contain information, and to transmit it, which were all maximized in the awake state. The differences in
these properties were consistent with a phase transition from critical dynamics in the awake state to supercritical
dynamics in the anesthetized state. Moreover, information-theoretic measures identified those parameters that impacted
the most the network dynamics. We found that changes in the state of consciousness primarily depended on changes in
network couplings of insular, cingulate, and parietal cortices. Our findings suggest that the brain state transition underlying
the loss of consciousness is predominantly driven by the uncoupling of specific brain regions from the rest of the network.
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Introduction
Interesting phenomena in biological systems are usually
collective behaviors emerging from the interactions among
many constituents. Large-scale brain activity is not an excep-
tion: The brain’s network continuously generates coordinated
spontaneous patterns of activity among brain regions at
multiple spatiotemporal scales (Biswal et al. 1995; Fox and
Raichle 2007; Chang and Glover 2010). Changes in spontaneous
brain activity are observed in different brain states; the study
of which is essential to understand the organizing principles
of brain activity. For instance, anesthesia has been used to
transiently induce loss of consciousness and to investigate
the neural correlates of the awake state. Previous studies
showed that different anesthetics, acting on different molecular
targets (Alkire et al. 2008), similarly impact the strength
and the structure of functional correlations (Greicius et al.
2008; Ferrarelli et al. 2010; Boly et al. 2012; Guldenmund
et al. 2013; Barttfeld et al. 2015; Uhrig et al. 2016), and their
dependence on interareal anatomical connections (Barttfeld
et al. 2015; Uhrig et al. 2018). However, how changes in local
regions and subnetworks combine to affect the collective
brain dynamics and to lose consciousness remains largely
unknown. To answer this question, it is essential to precisely
characterize the collective properties of different brain states
and their dependence on parameters at the system’s level. This
dependence is likely not straightforward since, as for many
complex systems, the system’s behavior could be differently
affected by changes in its parameters. In such a case, while
some parameters can largely vary without affecting the system’s
behavior (the so-called sloppy parameters), even small changes
in some others can significantly modify it (Machta et al. 2013;
Panas et al. 2015; Ponce-Alvarez et al. 2020).

In recent years, statistical mechanics has proven to be more
and more useful to describe collective neural activity. Statistical
mechanics shows that the behaviors of complex systems can
be captured by macroscopic properties, which emerge from
the collective activity of the units, in a way largely indepen-
dent of the microscopic details of the system. These emergent
(macroscopic) behaviors can be classified into qualitatively dif-
ferent ordered or disordered phases. Of particular interest are
dynamics poised close to phase transitions, or critical points,
where order and disorder coexist. Theoretical reasoning shows
that complex dynamics and optimal information processing
are expected at critical points, making criticality a candidate-
unifying principle to account for the brain’s inherent complexity
necessary to process and represent its environment (Chialvo
2010; Shew et al. 2011; Shew and Plenz 2013; Hidalgo et al. 2015).
Following this view, studies of whole-brain and local circuit
dynamics have proposed that anesthesia shifts the dynamics
from the critical point (Tagliazucchi et al. 2016; Fekete et al.
2018). This is supported by the reduction of several measures
of brain dynamics complexity under anesthesia (Casali et al.
2013; Hudetz et al. 2015; Schartner et al. 2015; Solovey et al.
2015). The global mechanisms underlying different conscious
states have been recently investigated using an anatomically
constrained dynamical model with a global coupling parameter
in combination with EEG recordings (Lee et al. 2019). However,
it remains unknown which are the macroscopic properties and
the relevant local/global parameters describing the transition of
collective activity from the awake to anesthetized states. Indeed,
different local/global network parameters are likely to jointly
determine the different brain states and to differently contribute
to the state transitions.

In this study, we addressed these questions by analyzing the
brain’s collective activity in different levels of arousal, that is,
during wakefulness and under anesthesia. Specifically, we ana-
lyzed resting-state fMRI dynamics of awake and anesthetized
macaque monkeys (Uhrig et al. 2018). Five different anesthe-
sia protocols, involving three different anesthetics (propofol,
ketamine, and sevoflurane), were used to induce moderate seda-
tion or deep anesthesia. First, we derived efficient statistics that
distinguished between awake and anesthetized brain states.
Second, we used these statistics and the maximum entropy
principle to model the brain’s activity and to derive important
emergent properties that described the different brain states.
These emergent properties provided information about the sys-
tem’s physical state and about its capability to produce work, to
contain information, and to transmit it. Finally, we investigated
the dependence of collective activity on the different model
parameters.

Materials and Methods
Animals

This study included a total of five rhesus macaques (Macaca
mulatta; four females, one male, 5–8 kg; 8–12 years of age). All
procedures were conducted in accordance with the European
convention for animal care (86–406) and the National Institutes
of Health’s Guide for the Care and Use of Laboratory Animals.
Animal studies were approved by the institutional Ethical Com-
mittee (Comité d’Ethique en Expérimentation Animale, proto-
cols #10–003 and #12–086).

Experimental Procedures

Monkeys received anesthesia either with propofol, ketamine,
or sevoflurane (Uhrig et al. 2018). The details of the anesthe-
sia protocols are described in the Supplementary Information.
Monkeys were scanned on a 3-T horizontal scanner (Siemens
Tim Trio; TR, 2400 ms; TE, 20 ms; and 1.5-mm3 voxel size; 500
brain volumes per scan session). Before each scanning session,
a contrast agent monocrystalline iron oxide nanoparticle (MION)
was injected into the monkey’s saphenous vein. MION isolates
the regional cerebral blood volume (rCBV) component of the
functional activity, with higher contrast-to-noise ratio as com-
pared with blood-oxygen-level-dependent (BOLD) imaging (Van-
duffel et al. 2001). Acquisition and preprocessing of functional
images followed the standard steps described in (Barttfeld et al.
2015) and in the Supplementary Information. Time series were
obtained for N = 82 previously defined cortical regions of interest
(ROIs) (CoCoMac Regional Map parcellation).

Data Binarization

fMRI time series were binarized to study the data statistics and
to learn two different families of maximum entropy models
(MEMs). While binarization was required to construct the MEMs,
transformation of continuous fMRI signals into discrete point
processes has proven to effectively capture and compress fMRI
large-scale dynamics (Tagliazucchi et al. 2012). Importantly, the
fluctuations that cross the threshold do not merely represent
noise. Indeed, it has been shown that the point process resulting
from signal thresholding largely overlaps with deconvoluted
fMRI BOLD signals using the hemodynamic response function
and preserves the topology of the resting-state networks (RSNs)
(Tagliazucchi et al. 2012). We here discretized the signals as
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follows. For each scan, the z-scored time series of each ROI, xi(t)
(1 ≤ i ≤ N), was binarized by imposing a threshold θ = −1.
The threshold has opposite sign compared with the one used by
Tagliazucchi et al. (2012) because, in contrast to the BOLD signal,
functional activations lead to increased rCBV that manifests a
decrease in MION-based fMRI signal (Schölvinck et al. 2010). Two
binarization procedures were used. The first method detects the
threshold crossings: The binarized activity is σi(t) = 1 if xi(t) < θ

and xi(t − 1) > θ, and σi(t) = 0 otherwise. The second method
assigns the values 1 and −1 to all time points below or above
the threshold, respectively: σi(t) = 1 if xi(t) < θ, and σi(t) = −1
otherwise. The first and the second procedure result in sparse
and dense binary activity, respectively. We used the sparse and
dense methods to construct coupling-MEMs and pairwise-MEM,
respectively. This was to meet the assumptions of the model
inference (see Supplementary Information).

k-Means Classification

We used k-means clustering to classify the scans based on
different statistics. Let v(i) be a vector calculated from scan i, for
example, the vector containing all pairwise correlations among
the ROIs. We used k-means to partition the collection of v(i)

into a prespecified number (k) of clusters. k-means minimizes
the within-cluster variation, over all clusters. We used k = 2 to
evaluate how well the scans corresponding to the awake state
and those corresponding to the anesthetized states (indepen-
dent of the anesthetic protocol) could be classified based on
vectors v(i). To classify the six different experimental conditions,
we used k = 6. The classification performance was given by
the proportion of correctly clustered scans. We used 100 random
initial conditions of the k-means algorithm to obtain the average
classification performance and its uncertainty.

Maximum Entropy Models (MEMs)

MEMs estimate the probability distribution of all possible binary
patterns, P(σ), that matches the expectation of a set of data
observables. Let O1(σ), . . . ,OL(σ) be the set of L data observables
we seek to preserve. For example, if we were interested only on
activation rates, 〈σi〉, we would need to consider N observables
σ1, . . . , σN. Under the model distribution P(σ), the observables’
expectations are given as:

〈Oi〉model =
∑
{σ}

P (σ)Oi (σ) , (1)

and should fit those of the data, 〈Oi〉data = 1
n
∑n

t=1Oi(σt), where
σt is the observed pattern at time t (1 ≤ t ≤ n). We search
for the model distribution P(σ) that does fewer assumptions,
that is, the one that has maximal entropy S = ∑

{σ}P(σ) ln P(σ).
Thus, the problem is equivalent to maximizing a function (the
entropy) given some constraints on the expectation values of
the observables, a problem that can be generally solved using
Lagrange multipliers. The maximum entropy distribution has
the general form:

P (σ) = 1
Z

exp

⎛
⎝

L∑
i=1

�iOi (σ)

⎞
⎠ = 1

Z
exp (−E (σ )) , (2)

Where � = [�1, . . . , �L] are the Lagrange multipliers enforcing
the constraints, E(σ) = − ∑L

i=1 �iOi(σ) represents the energy of

the pattern, and the normalizing factor Z = ∑
{σ} exp(−E(σ))

is the partition function (see Supplementary Information). We
estimated different MEMs built on different constrained data
observables.

Linear coupling-MEM
First, we considered the MEM that is consistent with the proba-
bility distribution P(K), the average activations 〈σi〉, and the linear
coupling between σi and K, that is, 〈σiK〉 (which relates to zi). As
shown in Gardella et al. (2016), the resulting energy function is
given as: E(σ) = − ∑N

i=1(αi + βK + γiK)σi. The model parameters
α = [α1, . . . , αN], β = [β0, . . . , βN], and γ = [γ1, . . . , γN] are Lagrange
multipliers associated to the constrained observables 〈σi〉, P(K),
and 〈σiK〉, respectively. The model has 3N + 1 parameters.

Nonlinear coupling-MEM
The above model can be extended to include the nonlinear
coupling between σi and K. The complete coupling between σi

and K is provided by the joint probability distributions of σi

and K, that is, P(σi, K), which is the target observable of the
nonlinear coupling-MEM. In this case, the energy is given as
E(σ) = − ∑N

i=1 Hi,K(σ)σi (Gardella et al. 2016), where K(σ) is the
number of active ROIs in pattern σ and the parameters Hi,K(σ) are
associated to the constrained observables 〈σiδK,k〉, where P(K =
k) = 〈δK,k〉 and δK,k is the Kronecker’s delta. The parameters
Hi,K(σ) represent the tendency of ROI i to activate when K(σ) ROIs
are active. Relaxing the linearity assumption makes the model
more complex, as it has N(N + 1) parameters. Moreover, in the
nonlinear model, parameters jointly represent the interaction
between K and σi, whereas the linear model allows to separate
the terms related to global dynamics (K), local dynamics (σi), and
their interaction. Indeed, the linear model is a special case of the
nonlinear model with Hi,K(σ) = αi + βK + γiK.

Pairwise-MEM
The third model we considered is the one that targets the acti-
vation rates (< σi >) and the pairwise correlations (< σiσj >) of
the data. The resulting energy function of the maximum entropy
distribution is given as E(σ) = − ∑N

i=1 hiσi − 1
2

∑N
i=1

∑N
j=1 Jijσiσj

(Schneidman et al. 2006; Tkačik et al. 2015). The model parame-
ter hi, called intrinsic bias, represents the intrinsic tendency of
neuron i toward activation (σi = +1) or silence (σi = −1) and
the parameter Jij represents the effective interaction between
neurons i and j.

The parameters of the coupling-MEMs and pairwise-MEMs
were estimated from the data using likelihood (Gardella et al.
2016) and pseudolikelihood (Ezaki et al. 2017) maximization,
respectively (see Supplementary Information).

Macroscopic Quantities

The analysis of the learned MEMs provides relevant properties
of the collective activity. These quantities derive from the Boltz-
mann distribution and they are interpretable in the framework
of statistical physics. The description and calculation of these
quantities are presented in the Supplementary Information in
detail. Briefly, we studied the system’s Helmholtz free energy,
susceptibility, and heat capacity. The free energy F is given by
the difference between the average energy and the entropy,
that is, F = 〈E〉 − S = − ln(Z); it quantifies the useful energy
that is obtainable from the system. The susceptibility χ relates
to the diversity of population states, that is, χ = var(K), but,
importantly, it also relates to the system’s response to intrinsic
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or external inputs (see Supplementary Information). The heat
capacity Ch quantifies the diversity of accessible energy states,
that is, Ch = var(E). The heat capacity measures the size of the
dynamic repertoire of the system. Furthermore, a parameter T,
which scales all model parameters (� → �/T), can be introduced
to study the effect of a change in the system’s disorder (“tem-
perature”) on the repertoire of accessible energy states, that is,
the function Ch(T) = var(E)/T2. This function is informative of
the state of the system in terms of criticality: A maximum of
the heat capacity close to Tmax = 1 suggests that the observed
system is likely to be close to a critical state, whereas Tmax < 1
and Tmax > 1 indicate supercritical and subcritical dynamics,
respectively (Tkačik et al. 2014, 2015; Hahn et al. 2017) (see
Supplementary Information and Supplementary Fig. 7).

Fisher Information Matrix

We were interested in detecting which parameters have the
strongest effect on the collective activity. For this, we studied
the Fisher information matrix (FIM, noted G) of the learned
MEMs. The FIM represents the curvature of the log-likelihood
of the model, log P(σ|�), with respect to the model parameters;
that is, it quantifies the sensitivity of the model to changes in
parameters. It is given as:

Gkl = −
∑
{σ}

P (σ|�)
∂2 ln P (σ|�)

∂�k∂�l
. (3)

Where 1 ≤ k, l ≤ L, where L is the number of parameters. As
shown in Supplementary Information, the FIM is given by the
second derivatives of the free energy:

Gkl = ∂2 ln Z
∂�k∂�l

= − ∂2F
∂�k∂�l

. (4)

To quantify the sensitivity of the different parameters, we
decomposed the FIM into eigenvectors, noted ν1, . . . , νL, and
measured the sensitivity of a given parameter i by its absolute
contribution to the first eigenvector, that is, |ν1(i)|.

Statistical Analysis

We used one-way ANOVA followed by Tukey’s post hoc analy-
sis to compare the means of three or more distributions and
Wilcoxon rank sum test to compare the medians of two distribu-
tions. We measured the dissimilarity between two distributions
(i.e., data vs. model distribution) through the Jensen-Shannon
divergence. Correlation matrices were analyzed using standard
PCA. Statistical models (i.e., maximum entropy models) were
estimated using likelihood and pseudolikelihood maximization.

Results
We analyzed the resting-state fMRI dynamics of five rhesus
macaques (Macaca mulatta) under different levels of arousal:
wakefulness (n = 24 scans), two levels of propofol sedation
(moderate, MPP, n = 21, and deep, DPP, n = 23), sedation through
ketamine (KETA, n = 22), and two types of sevoflurane anesthesia
(SEV2, n = 18, and SEV4, n = 11) (see Materials and Methods
and Supplementary Information). All the anesthesia protocols
used here induced loss of consciousness (Uhrig et al. 2018; see
also Supplementary Information). fMRI MION time series were

obtained for N = 82 previously defined ROIs (CoCoMac Regional
Map parcellation). Each scan was 20 min long and was acquired
in time frames of 2.4 s (i.e., 500 time frames).

Coupling to Population Reliably Distinguished between
Awake and Anesthetized Brain States

We were interested on collective patterns displayed among the
N ROIs, for the six different experimental conditions. For this,
we first binarized the z-scored time series of each ROI, xi(t),
by imposing a threshold θ = −1 (Fig. 1A,B, see Materials and
Methods). Binarization of time series has proven to effectively
capture and compress fMRI large-scale dynamics (Tagliazucchi
et al. 2012; Watanabe et al. 2013). We concentrated on different
statistics that described the resulting binary data: The activation
rate of each ROI, that is, 〈σi〉, the correlation between ROIs,
that is, Cij = corr(σi, σj), and the population activity, that is,

K(t) = ∑N
i=1 σi(t) (Fig. 1C). We were particularly interested on the

coupling of each ROI to the population activity, defined as:

zi = corr
[
σi(t), K �=i(t)

]
, (5)

Where K �=i(t) is the sum activity of all ROIs but ROI i: K�=i(t) =∑
j�=i σi(t). Recent findings showed that propofol anesthesia

affects the coupling to global signal in humans and rats (Tanabe
et al. 2020). In the following, we show that the statistics
z = [z1, . . . , zN] provides, with only N parameters, a compact
description of the binary collective activity and can be used to
classify the brain states.

The couplings to the population were highly predictive of the
functional correlations (Fig. 2A–C). Indeed, the product ηij = zi×zj

highly correlated with the functional correlation (FC) between
the fMRI time series of ROIs (i, j) (corr.: 0.65–0.78, P < 0.001).
Moreover, we found that the vector z correlated across scans
within the same experimental conditions, with the average
correlation coefficient being equal to 0.3 ± 0.01 (Fig. 2D, blue
distribution). This correlation was significantly higher (P < 0.001,
F(2,3533) = 976.5, one-way ANOVA followed by Tukey’s post hoc
analysis) than correlations obtained using the vectors repre-
senting the average activities and the correlations, that is, vec-
tors μ = [〈σ1〉, . . . , 〈σN〉] and ρ = [C1,2, C1,3, . . . , CN−1,N], respec-
tively (Fig. 2D, green and red distributions, corr.: 0.06 ± 0.01 and
0.11 ± 0.01).

Furthermore, we found that the coupling to the popula-
tion could be used to classify the awake and anesthesia states
with high accuracy (Fig. 3A). We tested this by using a classi-
fier based on k-means clustering (see Materials and Methods).
Based on the statistic z, we were able to classify the scans of
two categories, awake versus anesthesia (independently of the
anesthetic), with 96.6% of correct classifications (chance level:
50%). This classification performance was higher than the one
obtained using the statistics μ and ρ, yielding 74.0% and 74.8%
of correct classifications, respectively (Fig. 3B,C). Classification
among the six experimental conditions yielded lower perfor-
mances but was higher for statistic z than for μ and ρ: 38.3%,
33.2%, and 29.9%, respectively (chance level: 16.7%). Similar dif-
ferences in classification performances for population couplings
and functional correlations were obtained using continuous (not
thresholded) signals (Supplementary Fig. 1). Altogether, these
results show that the coupling to population is a reliable marker
to distinguish between awake and anesthetized brain states.
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Figure 1. Binarization and statistics. (A) MION fMRI signals were z-scored and binarized by imposing a threshold equal to minus the standard deviation, for each signal

(see Materials and Methods). (B) In each time bin of 2.4 s, the state of signal of ROI i, noted σi(t), was equal to 1 if the MION signal for this ROI was lower than minus its
standard deviation, or equal to 0 otherwise. The average activity of ROI i was 〈σi〉 = 1

n
∑n

t=1σi(t), where n is the number of time points. (C) The population activity was
defined as the sum of the binary activity of the N ROIs in each time bin t, that is, K(t) = ∑N

i=1σi(t).

To examine which ROIs contributed the most to distinguish
between the awake state and anesthesia based on z, we per-
formed PCA on the collection of z-scored vectors z. The first
principal component was sufficient to separate the awake and
anesthesia conditions (Fig. 3D). This component had strong coef-
ficients for brain regions located in the cingulate, parietal, intra-
parietal, insular cortices, and the hippocampus (Fig. 3E). Overall,
changes in average couplings to the population with respect to
awake values were similar for all anesthetics (Fig. 3F). We next
asked how these changes affect the collective properties of brain
dynamics.

Modeling Collective Activity Using Maximum Entropy
Models

Collective activity is ultimately described by the probability of
each of the binary patterns σ = [σ1, . . . , σN]. Estimating the
distribution P(σ) over the 2N possible binary patterns from the
data is impractical with limited amount of observations, since

for N = 82 there are more than 1024 possible patterns. A useful
technique to estimate P(σ) relies on the maximum entropy prin-
ciple. Maximum entropy models (MEMs) find P(σ) by maximizing
its entropy under the constraint that some empirical statistics
are preserved (see Materials and Methods). As shown above,
an interesting statistic for the present study is the coupling
between the state of each binary signal, σi, and the population
activity K. The maximum entropy distribution that is consistent
with the probability distribution P(K), the average activations 〈σi〉,
and the linear coupling between σi and K, that is, 〈σiK〉 (which
relates to zi), is given by the Boltzmann distribution P(σ) =
e−E(σ)/Z, where E(σ) represents the energy of the pattern σ, given
as (Gardella et al. 2016):

E (σ) = −
N∑

i=1

(αi + βK + γiK) σi. (6)

The model parameters αi, βK, and γi are Lagrange mul-
tipliers associated to the constrained observables 〈σi〉, P(K),
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Figure 2. Coupling to population predicts the functional connectivity and is consistent within experimental conditions. (A) Relation between population couplings
and pairwise correlations. Color map: The average functional connectivity (FC) is shown after ordering the ROIs according to zi averaged for each scan within a given

experimental condition (here for the awake condition). Top and right insets: ordered values of z. (B) Same as (A) but for the deep propofol (DPP) anesthesia condition. (C)
Relation between the elements of the FC and the corresponding products of coupling to population (zizj) (correlation: 0.78, P < 0.001). (D) Consistency of the different
statistics. We tested whether 〈σ〉, z, and FC were similar across scans within the same experimental condition. For example, for the statistic z, we calculate the correlation
of this N-dimensional variable for all pairs of scans belonging to the same experimental condition and computed the distribution of correlation coefficients (blue

distribution). High correlation coefficients indicate that, within experimental conditions, scans yielded similar vector z. The same can be done for the N-dimensional
variable 〈σ〉 (green distribution) and the vector of FC elements (N(N − 1)/2 dimensions; red distribution).

and 〈σiK〉, respectively. The normalizing constant Z is the
partition function, given by Z = ∑

{σ} e−E(σ), which contains
information about useful statistics predicted by the model
(see below). This model can be extended to include the
nonlinear coupling between σi and K, that is, by targeting the
joint probability distributions of σi and K (see Materials and
Methods).

For both linear and nonlinear coupling-MEMs, the model
parameters were inferred from the single-scan data using max-
imum likelihood (Gardella et al. 2016) (see Materials and Meth-
ods). Notably, for the coupling-MEMs, the partition function can
be calculated directly—something that is generally not the case
for most MEMs, since its calculation involves summing over all
possible states.

We used these coupling-MEMs to fit the binary single-scan
fMRI data for the different experimental conditions. The models

accurately estimated the distribution of population activity P(K)
(average Jensen-Shannon divergence DJS between the model and
data distributions: DJS < 10−6 for both the linear and nonlinear
coupling-MEM; Fig. 4A and Supplementary Fig. 2). Moreover, the
models were able to moderately predict the covariances of the
data (Fig. 4B,C), which were not used to constrain the models.
Across the different datasets, the average correlation between
the data and predicted covariances was r = 0.31 ± 0.03 for the
linear coupling model and reached 0.44 ± 0.02 for the nonlinear
coupling model (see also Supplementary Fig. 2). Furthermore,
scan classification based on parameters γi yielded 86% and 45%
correct classifications between awake and anesthetized condi-
tions and among the six experimental conditions, respectively
(Supplementary Fig. 3A,B). Using parameters αi, the classifier
performance decreased to 75% and 28%, respectively (Supple-
mentary Fig. 3B). Thus, the learned linear coupling-MEM showed
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Figure 3. Coupling to population predicts the state of the brain. (A–C) Correlation matrix comparing the statistics z, 〈σ 〉, and FC among all scans. For example, in panel

(A), the element (k, l) of the matrix represents the correlation between the coupling to population vector z of scans k and l. Coupling to population clearly separated
awake and anesthesia data. Using k-means, we evaluated how well the different statistics could be used to classify the awake and anesthetized conditions (chance
level: 50%). The classification performance using the coupling to population statistic was 96.64%, which was significantly higher than using the mean activity (73.95%)
or the functional connectivity (74.79%). Classification of the six experimental conditions was generally lower, but higher for z than for 〈σ〉 and FC (38% vs. 33% and

29%, chance level: 16.67%). (D) PCA analysis showed that z vectors separated the awake and anesthetized conditions along the first principal component (PC1). Each
dot represents a scan. (E) The absolute coefficient of PC1 associated to each ROI. (F) During anesthesia, z was reduced compared with wakefulness for most of the
ROIs. Changes from awake baseline, �z(i) = z(Awake) − z(i), where z was averaged over scans, were highly correlated for the different anesthetics (with correlation
coefficients ranging from 0.85 to 0.93). The panel shows the comparison between �z(DPP) and �z(KET).

consistent variations in parameters γi (associated to zi) across
the different arousal states.

Collective Activity Indicated Reduced Free Energy,
Susceptibility, and Heat Capacity under Anesthesia

We can learn interesting features of collective activity using
the estimated models. One important quantity is the system’s
Helmholtz free energy, which is given by the difference between
the average energy (〈E〉) and the entropy (S), that is, F = 〈E〉 − S.
The free energy quantifies the useful energy that is obtainable
from the system. Using the Boltzmann distribution, the free
energy can be directly obtained from the partition function as
F = − ln(Z). Thus, since Z is tractable for the coupling-MEMs,
we can directly estimate F. We found that the free energy was
significantly higher for the awake state compared with all anes-
thetized conditions for both the linear (Fig. 4D) and the nonlin-
ear (Supplementary Fig. 4A) coupling-MEMs (P < 0.001, one-way
ANOVA followed by Tukey’s post hoc analysis). This result is both
interesting and reasonable because it indicates that more useful
energy can be extracted from the awake state than from the
anesthetized state.

Two other important statistical quantities can be derived
from the model, namely the “susceptibility” and the “heat capac-
ity”. The susceptibility χ relates to the diversity of population
states, while the heat capacity Ch quantifies the diversity of
accessible energy states. Specifically, the susceptibility and the

heat capacity of the model are given by the variances of the pop-
ulation activity and the energy, respectively, that is, χ = var(K)
and Ch = var(E). We found that χ and Ch were significantly higher
for the awake state compared with all anesthetized conditions
for both linear and nonlinear coupling-MEMs (linear model:
Fig. 4E,F, nonlinear model: Supplementary Fig. 4B,C; P < 0.001,
one-way ANOVA followed by Tukey’s post hoc analysis). This
indicates that the awake system had larger population fluctu-
ations and a larger repertoire of energy states than the system
under anesthesia.

We next extend these results by estimating MEMs con-
strained by pairwise correlations (Schneidman et al. 2006; Tkačik
et al. 2015). Pairwise-MEMs can be mapped to Ising models,
allowing to assess the state of the observed system in terms of
criticality and to study its response to external stimuli. To build
the models, we estimated the maximum entropy distribution
P(σ) under the constraint that the activation rates (< σi >) and
the pairwise correlations (< σiσj >) are preserved. The energy
of the Boltzmann distribution that is consistent with these
expectation values is given by (Schneidman et al. 2006; Tkačik
et al. 2015):

E (σ) = −
N∑

i=1

hiσi − 1
2

N∑
i=1

N∑
j=1

Jijσiσj. (7)

In this pairwise-MEM, the parameter hi, called intrinsic bias,
represents the intrinsic tendency of ROI i toward activation
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Figure 4. Maximum entropy models indicate higher free energy and heat capacity during wakefulness than during anesthesia. (A) Fitting of P(K) using the linear
coupling-MEM. Data and predictions from all scans from the awake condition. (B, C) Fitting of covariances using the linear coupling-MEM for the awake (B) and
ketamine (C) conditions. (D–F) The free energy, the susceptibility, and the heat capacity were derived using linear coupling-MEMs for the different conditions. Similar

results were obtained using the nonlinear model (see Supplementary Fig. 4). Squares and error bars indicate means and standard deviations across scans, respectively,
and the asterisks indicate significantly different values for the awake condition (P < 0.001 one-way ANOVA followed by Tukey’s post hoc analysis). (G–L) same as (A–F)
but using pairwise-MEMs. Error bars indicate standard errors across Monte Carlo simulations of the models. Asterisks indicate significantly different values for the
awake condition (P < 0.001, one-way ANOVA followed by Tukey’s post hoc analysis).

or silence and the parameter Jij represents the effective
interaction between ROIs i and j. The estimation of the model
parameters � = {h, J} was achieved through a pseudolikelihood
maximization (Ezaki et al. 2017) (see Materials and Methods).
Since this model requires the precise estimation of < σiσj >,
it cannot be fitted to single-scan data and, for this reason, we
used concatenated data from each experimental condition. The
pairwise-MEM accurately predicted the observed correlations

and, to a lower extend, it predicted the distribution of population
activity P(K) (average correlation fit: r = 0.985 ± 0.002; average
DJS = 0.006 ± 0.002; Fig. 4G–I and Supplementary Fig. 2)—
this is expected since P(K) was not used to constrain the
model. We found that biases and coupling parameters were
changed for different states, with some parameters increasing
or decreasing, and with a significant reduction of the variance of
couplings in the anesthetized states (Supplementary Fig. 5A–D).
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Figure 5. Population response to an external stimulus predicted by the pairwise-MEMs. (A) A global external stimulus was applied to the learned pairwise-MEMs. The
stimulus B added a term to the energy as: E(σ)+∑N

i=1Bσi. We performed Monte Carlo simulations (100 trials of 5.104 steps) for different values of B to examine the mean
population activity 〈K〉 as a function of the external stimulus. In this case, the work W produced by changing the external stimulus from B1 to B2, that is, W = −∫ B2

B1
〈K〉dB,

relates to the variation of the free energy �F (see Supplementary Information). (B) Variance of the population activity. In these simulations, inactive ROIs (σi = −1) were
set to 0, so that K represents the number of active ROIs. (C) As shown in equation (S4) in the Supplementary Information, the derivative of the population response
is equal to the variance of population activity, that is, χ = ∂〈K〉/∂B = var(K). Thus, the higher the population response to a stimulus, the higher the variability of the
population activity.

Moreover, coupling parameters (J) showed a higher correlation
with the anatomical connectivity (or brain connectome) in the
anesthetized states than in the awake state (Supplementary
Fig. 5E).

Using this model, we calculated the collective statistical
quantities for the different experimental conditions. Since in
the pairwise-MEM the partition function is not tractable, we
calculated F, χ, and Ch using Monte Carlo simulations (see Mate-
rials and Methods). Consistent with the above results obtained
for coupling-MEMs, we found that the awake system had larger
available energy (free energy, Fig. 4J, see also Supplementary
Fig. 6), larger population fluctuations (susceptibility, Fig. 4K), and
larger repertoire of states (heat capacity, Fig. 4L) than the system
under anesthesia. Thus, the different versions of the MEM
used here indicate the same results concerning the statistical
properties of awake and anesthetized states.

As shown in detail in the Supplementary Information, the
susceptibility can be viewed as a measure of the network
response to a stimulus. Indeed, if an external global perturbation
B adds a term to the energy, that is, E(σ) + ∑N

i=1Bσi, the
susceptibility is given by the derivative of 〈K〉 with respect to B,
that is,χ = ∂〈K〉/∂B (Fig. 5A–C). It can be shown that χ = ∂〈K〉/∂B =
var(K) (see Supplementary Information); thus, the higher the
network response to a variation of the external stimulus, the
higher its variability (Fig. 5C). We found that application of an
external stimulus elicited larger and more diverse responses for
the pairwise-MEM corresponding to the awake state than for
the models corresponding to the anesthetized states.

Awake Collective Activity Displayed Critical Dynamics
that Were Shifted to a Supercritical Regime under
Anesthesia

The pairwise-MEM can be used to assess the physical state
of the system. Indeed, by introducing a scaling parameter T,
analogous to the temperature in statistical physics, one can
obtain relevant features of the collective dynamics. For this, we
scaled all model parameters as � → �/T and calculated the

heat capacity as a function of T, given by Ch(T) = var[E]/T2.
The “temperature” T controls the level of disorder and its effects
can be understood by examining the system’s energy levels
(Supplementary Fig. 7). Briefly, at low temperatures, interactions
dominate over fluctuations making the system predominantly
silent and ordered. In contrast, at high temperatures, the system
is disordered and relatively uncoupled because fluctuations
dominate over interactions. Both low and high temperatures
lead to a low Ch. However, for a specific temperature Tmax,
order and disorder coexist in the system and Ch is maximal as
expected for critical dynamics (Tkačik et al. 2014; Hahn et al.
2017). Thus, a maximal heat capacity at Tmax = 1 (corresponding
to the model learned from the data) suggests that the system
operated close to a critical state (whereas Tmax < 1 and Tmax > 1
indicates supercritical and subcritical dynamics, respectively).

We found that the heat capacity curve was maximal for a
temperature equal to 1 for the awake state, while it peaked at
Tmax < 1 for the anesthetized conditions (Fig. 6). These results
suggest that the awake state displayed critical dynamics, while
dynamics under anesthesia were supercritical, which indicates
that the anesthetics had a disconnection effect.

Couplings to Population Relate to the Sensitive
Parameters of the System

We next evaluated how the different parameters affected the
model’s collective behavior. In general, changes in parameters
can differently affect the system’s behavior, with some param-
eters (called “stiff” parameters) effectively modifying it, while
others have little effect on it (“sloppy” parameters) (Machta et al.
2013). We used an information-theoretical approach based on
the Fisher Information Matrix (FIM, noted G) to detect the param-
eters that have a strong effect on the collective activity (see
Materials and Methods). The FIM measures the change in the
model log-likelihood P(σ|�) with respect to changes in the model
parameters �. As demonstrated in the Supplementary Informa-
tion, the FIM relates to the second derivatives of the free energy
with respect to the model parameters, that is, Gij = − ∂2F

∂�i∂�i
.
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Figure 6. Heat capacity as a function of temperature. Heat capacity curves Ch(T)
were calculated for varying temperature parameter T for each condition. The

peak of heat capacity for T = 1 indicates critical dynamics during wakefulness.
The heat capacity peaked at T < 1 for the anesthetized conditions, indicating
supercritical dynamics during anesthetized states.

This relation provides a direct link between a macroscopic quan-
tity (the free energy) describing the collective dynamics of the
different brain states and the underlying model parameters.
For the linear model, the parameters that contributed the most
to the FIM were the parameters γi (Fig. 7A). This explains how
changes in couplings to population, as observed between awake
and anesthetized states, effectively change the collective state
of the system, leading to the observed shift from critical to
supercritical dynamics.

To evaluate the importance of each of the parameters, we
defined the parameter’s sensitivity as its absolute contribution
to the first eigenvector of the FIM (see Materials and Methods).
The regions with the largest associated sensitivity for param-
eter γ were located in the cingulate, parietal, and insular cor-
tices (Fig. 7B). Those that contributed the least were visual and
prefrontal cortices. Interestingly, the regions presenting larger
reductions of γ between awake and anesthesia tended to be
those with higher associated sensitivity (corr: 0.74, P < 0.001;
Fig. 7C).

We further examined how changes in pairwise correlations
between awake and anesthesia related to changes in parameters
of different sensitivity. We analyzed the average difference of
correlation (�C) between awake and anesthesia. The matrix �C
was decomposed into eigenvectors. Two groups of ROIs were
clearly separated according to their positive or negative con-
tribution to the first eigenvector of the matrix �C, respectively
(Fig. 7D). Those that contributed positively were prefrontal and
visual cortices, and those that contributed negatively were the
cingulate, parietal, and insular cortices (Fig. 7E). Both groups
presented a reduction of correlations under anesthesia; how-
ever, we found that the ROIs belonging to different groups were
related to parameters that differently impacted the network
dynamics. Indeed, prefrontal and visual cortices were related
to parameters of significantly lower sensitivity than cingulate,
parietal, and insular cortices (Fig. 7F,G, P < 0.001, Wilcoxon rank
sum test). Hence, although prefrontal and visual areas changed
their correlations, these changes were related to parameters that
had a low impact on collective dynamics.

Finally, we found that the sensitivity of the ROIs was predic-
tive of the response of the entire network to a local external

stimulation (see Supplementary Fig. 8). Indeed, when exter-
nally stimulating single ROIs, we found the network response
increases with the associated sensitivity of the locally stimu-
lated ROI.

Discussion
In this study, we analyzed the fMRI binary collective activity of
monkeys during wakefulness and under anesthesia. We showed
that the coupling between each brain region and the rest of
the population provides an efficient statistic that discriminates
between awake and anesthetized states. We built MEMs based
on this and other statistics to derive macroscopic properties that
described the different brain states, such as the free energy F,
the susceptibility χ, and the heat capacity Ch. All these quan-
tities were maximized in the awake state. By studying the heat
capacity curve Ch(T) as a function of a scaling parameter control-
ling the disorder of the system, we showed that awake critical
dynamics were shifted to supercritical ones under anesthesia.
Finally, using the FIM, we showed that changes in brain state
were primarily dependent on changes in the couplings to pop-
ulation that were associated to sensitive model parameters and
to specific brain regions.

Population Couplings and Network Sensitivity

Previous research at the microcircuit level showed that neurons
differ in their coupling to the population activity, with neurons
that activate most often when many others are active and
neurons that tend to activate more frequently when others are
silent (Okun et al. 2015). Using the FIM analysis to detect sloppy
and stiff parameters, it has been shown that these different
types of neurons have a different impact on the network activity,
different stimulus response properties, and different involve-
ment in cortical state transitions (Ponce-Alvarez et al. 2020).
Similar to these previous observations at the microcircuit level,
we here showed that brain regions coupled differently to the
rest of the whole-brain network, that these couplings primarily
determined the collective activity (i.e., they were associated to
the stiff parameters of the model), and that they were consis-
tently different during wakefulness and anesthesia. Notably, the
couplings with largest associated sensitivity, or “stiffness,” were
those that changed the most between brain states (Fig. 7C). Thus,
we proposed that population couplings and their associated
sensitivity are key to understand state transitions of neural
activity at different scales.

Using principal components, we detected the combination
of ROIs that contributed the most to distinguish between the
awake and the anesthetized states based on their population
couplings. The brain regions that changed their population cou-
pling from the awake state to the anesthetized state were the
cingulate, parietal, and insular cortices (Fig. 3E). Notably, the
model parameters associated to the couplings of these regions
were among those impacting the most the collective dynamics
(Fig. 7B,C). Our results suggest that anesthesia modified some
important local/global parameters that effectively induced a
change of brain state. Our results highlight the key role of
the parietocingulate cortex in the mechanism of anesthesia-
induced loss of consciousness. Previous studies have shown that
the parietal cortex (Kaisti et al. 2002; Uhrig et al. 2016) and the
cingulate cortex (Luppi et al. 2019) are most strongly affected
by anesthetics. These cortices also present alterations in brain
injury–induced unconsciousness in humans (Juengling et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/32/2/298/6316621 by Bodleian Libraries of the U

niversity of O
xford user on 04 April 2022

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data


308 Cerebral Cortex, 2022, Vol. 32, No. 2

Figure 7. Model sensitivity to the different parameters. (A) Fisher information matrix (FIM) calculated using the linear coupling-MEM built using the data

concatenated across scans from the awake condition. The FIM measures how much the model log-likelihood changes with respect to changes in the model parameters,
that is, � = {α, β, γ} for the linear coupling-MEM. (B) Parameter sensitivity associated to population couplings. For each scan, we decomposed the FIM in eigenvectors and
the mean contribution to first eigenvector of parameters γ was represented on the brain’s image. This represents the sensitivity of collective activity on the parameters
γ associated to the different ROIs. (C) The ROIs with larger reduction of parameter γ in anesthetized states with respect to the awake state were those with strongest

sensitivity. (D) Change of pairwise correlations between awake and anesthetized states: �C = Cawake − 〈Canesth〉. ROIs were ordered according to their contribution to
the first eigenvector of �C (top and right insets). Two groups of ROIs were detected according to their positive (labeled in blue in the insets) or negative (labeled in
brown in the insets) contribution to this eigenvector, respectively, with both groups reducing the correlation between awake and anesthesia (red colors indicate pairs of
nodes for which �Cij > 0; blue colors indicate pairs of nodes for which �Cij < 0). (E) First eigenvector of �C represented in the brain; ROIs with positive contribution to

the first eigenvector are labeled in blue, those with negative contribution to it are labeled in brown. (F, G) The two groups of ROIs had significantly different associated
sensitivity (P < 0.001, Wilcoxon rank sum test), as measured by the FIM values associated to parameters γ.

2005; Luppi et al. 2019). Moreover, consistent with our results,
it has been shown that the insula plays an important role in
awareness and is a potential neural correlate of consciousness
(Craig 2009).

Interestingly, although some brain regions, such as visual and
prefrontal cortices, had different correlations between awake
and anesthesia, they were associated to parameters with low
impact on collective activity. This highlights the importance of
studying not only the change in statistics between brain states
but also their sensitivity on network dynamics. Consistent with
our findings, a recent study of neuronal activity from several
brain regions and in different arousal states (Afrasiabi et al. 2021)
shows that parietobasal ganglia circuits predicted the state of
consciousness, while prefrontal activity failed. In addition, it
has been proposed that the prefrontal cortex is mostly involved

in the report of consciousness, rather than in the conscious
experiences per se (Storm et al. 2017).

Macroscopic “Thermodynamic” Quantities

Using the MEMs, we learned interesting collective properties
describing the different brain states. We measured the suscep-
tibility that quantifies the diversity of spontaneous population
fluctuations. The susceptibility can be also viewed as a measure
of the network response to a vanishing global stimulus (Fig. 5,
see also the Supplementary Information). Thus, the higher
susceptibility observed in the awake state, compared with the
anesthetized states, is consistent with transcranial magnetic
stimulation (TMS) studies showing that stimulation elicits a
more diverse and complex response in the awake state than in
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low-level states of consciousness, such as sleep, anesthesia,
and coma (Massimini et al. 2012; Napolitani et al. 2014; Sarasso
et al. 2014, 2015). Moreover, our study predicts that localized
stimulation of ROIs with strong associated parameter sensitivity
would elicit a large network response (Supplementary Fig.
8). This model prediction could be experimentally tested
by combining intracranial stimulation and the present FIM
analysis.

The models also allowed the estimation of the system’s heat
capacity, a measure that quantifies the extent of the accessible
dynamical repertoire. Indeed, a maximal heat capacity not only
indicates that the system can display a large number of energy
states but also that these energy states are distinguishable
(Supplementary Fig. 7). Thus, a large heat capacity indicates a
large capacity to represent information in numerous separable
states. The observed reduction of heat capacity in the anes-
thetized states is consistent with previous studies showing that
the repertoire of correlation states is limited during anesthesia
(Uhrig et al. 2018) and maximized in conscious states (Gue-
vara Erra et al. 2016; Perez Velazquez et al. 2019). Furthermore,
by varying a scaling parameter analogous to temperature, the
resulting heat capacity curves suggest that awake dynamics
were critical, while anesthetized dynamics were supercritical,
consistent with previous predictions (Tagliazucchi et al. 2016;
Fekete et al. 2018). The model used here gives an intuitive
interpretation of the transition between critical to supercritical
dynamics. Indeed, in the pairwise-MEM, supercritical dynamics
are associated with a regime in which random fluctuations
dominate over interactions, which is consistent with a discon-
nection of effective couplings. It is important to note that the
scale parameter T is only introduced to assess the state, that
is, subcritical, critical, or supercritical, of the observed system
(the one given for T = 1, for which the pairwise-MEM fits the
data). This does not mean that differences between awake and
anesthetized states are due to a global reduction of interactions
and biases; instead, different arousal states yielded different
biases and couplings (Supplementary Fig. 5), which, in combi-
nation, resulted in a change of the system’s state. This means
that the anesthesia reconfigured the system and not only scaled
its parameters. Interestingly, we observed a significant reduction
of the variance of pairwise couplings in the anesthetized states
(Supplementary Fig. 5A–D), which is consistent with previous
work showing that the number configurations of functional
connections are maximized in conscious states (Guevara Erra
et al. 2016; Perez Velazquez et al. 2019). Moreover, we found
that effective couplings correlated more with the anatomical
connections for the anesthetized states than for the awake state
(Supplementary Fig. 5E), an effect that has been observed in
empirical data (Barttfeld et al. 2015; Uhrig et al. 2018) and cannot
be explained by changes in global connectivity alone (Lee et al.
2019).

Lastly, we measured the Helmholtz free energy of the esti-
mated models. The free energy measures the useful energy that
can be extracted from the system to the environment, that is,
its ability to produce work. Reasonably, the awake state led
to higher free energy than the anesthetized states. Another
important property of free energy is that its change with respect
to the model parameters is equal to the Fisher information
and, thus, it relates to the sensitivity of collective dynamics on
these parameters. This result provides a direct link between
the sensitivity of parameters and the change of a macroscopic
quantity, the free energy, the behavior of which is known to
characterize the phase transition (Ginzburg and Landau 1965).

For the linear coupling-MEM, we showed that the couplings to
population (z) were associated to the parameters that have the
strongest impact on collective activity. Consistently, we found
that z was an efficient observable to classify the arousal states
that collective dynamics were qualitatively different (in terms
of criticality and supercriticality). Thus, these results give a
coherent theoretical justification of the relevance of the statistic
z to characterize the brain states and to estimate their free
energy. Altogether, our findings represent a significant step in
the understanding of brain states, resulting in a coherent expla-
nation of the transition from awake to anesthesia: The phase
transition between brain states is driven by those parameters
that change the free energy, which are the “stiff” parameters of
the systems and which relate to population couplings.

Implications for Studies on Pathological Low-Level
States of Consciousness

The present study reports different fMRI statistics and derived
model properties for awake and anesthesia states. Notably, we
obtained similar results for the different anesthetic agents used
here. Specifically, we found that population couplings in the
different anesthesia conditions were very homogeneous (Fig. 3
and Supplementary Fig. 1), that is, fairly independent of the
anesthesia protocol. This homogeneity was also observed in the
derived macroscopic quantities (Fig. 4D–F and J–M). Since all the
anesthesia protocols used here induced loss of consciousness
(Uhrig et al. 2018; see also Supplementary Information), this sug-
gests that our findings relate to the state of (un)consciousness
rather than to the specific anesthetic agents.

An interesting extension of this work could be to study
brain dynamics in coma using the present statistical mechanics
framework. Loss of consciousness due to anesthesia or coma
shares common features: Complexity of dynamics and neural
communication are generally reduced in low-level states of con-
sciousness (Sitt et al. 2014; Schartner et al. 2015). Consequently,
estimates of complexity of human brain activity have been used
to assess the depth of anesthesia (Zhang et al. 2001; Singh et al.
2017) and to predict the recovery of consciousness in vegetative
patients (Sarà et al. 2011). Reduction of complexity is consistent
with a deviation from critical dynamics when consciousness is
lost. Deviations from criticality can be quantified using pairwise
MEMs, although these models can only be estimated using
concatenated data from multiple scans. On the other hand,
an important advantage of coupling-MEMs is that they can be
fitted to single scans and, thus, they can evaluate interindividual
differences by analyzing the resulting parameters. Moreover,
the tractability of the partition function of these models allows
to directly calculate the free energy. We believe that combina-
tion of the models presented here, together with the measure
z, represents promising tools to study different disorders of
consciousness.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.

Author Contributions
A.P.A. designed research, analyzed the data, studied the mod-
els, and wrote the manuscript; L.U. performed the experiments
and curated the data; N.D. studied the implementation of the

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/32/2/298/6316621 by Bodleian Libraries of the U

niversity of O
xford user on 04 April 2022

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab209#supplementary-data


310 Cerebral Cortex, 2022, Vol. 32, No. 2

models; C.M.S. curated data; M.K. analyzed the data and pro-
vided data visualization codes; B.J. designed and supervised
the experiments; G.D. designed and supervised research. All
authors discussed the results and contributed to the editing of
the manuscript.

Notes
A.P.A., B.J., and G.D. received funding from the FLAG-ERA
JTC (PCI2018-092891). G.D. acknowledges funding from the
European Union’s Horizon 2020 FET Flagship Human Brain
Project under Grant Agreement 785907 HBP SGA1, SGA2, and
SGA3, the Spanish Ministry Research Project PSI2016-75688-
P (AEI/FEDER), the Catalan Research Group Support 2017 SGR
1545, and AWAKENING (PID2019-105772GB-I00, AEI FEDER EU)
funded by the Spanish Ministry of Science, Innovation and
Universities (MCIU), State Research Agency (AEI) and European
Regional Development Funds (FEDER). M.L.K. is supported by
the ERC Consolidator Grant: CAREGIVING (n. 615539), Center
for Music in the Brain, funded by the Danish National Research
Foundation (DNRF117), and Centre for Eudaimonia and Human
Flourishing funded by the Pettit and Carlsberg Foundations.
BJ received funding from Fondation Bettencourt-Schueller,
Université Paris-Saclay (UVSQ), Fondation de France, Collège
de France and from INSERM. CMS was supported by Comisión
Nacional de Investigación Ciencia y Tecnología (CONICYT,
currently ANID) through Programa Formacion de Capital
Avanzado (PFCHA), Doctoral scholarship Becas Chile: CONICYT
PFCHA/DOCTORADO BECAS CHILE/2016—72170507. Conflict of
interests: No competing interests declared.

References
Afrasiabi M, Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S,

Raz A, Haun AM, Saalmann YB. 2021. Consciousness depends
on integration between parietal cortex, striatum, and thala-
mus. Cell Syst. 12(4):363–373.

Alkire MT, Hudetz AG, Tononi G. 2008. Consciousness and anes-
thesia. Science. 322:876–880.

Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S. 2015.
Signature of consciousness in the dynamics of resting-state
brain activity. Proc Natl Acad Sci USA. 112:887–892.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Func-
tional connectivity in the motor cortex of resting human
brain using echo-planar MRI. Magn Reason Med. 34(4):
537–541.

Boly M, Moran R, Murphy M, Boveroux P, Bruno M-A, Noirhomme
Q, Ledoux D, Bonhomme V, Brichant J-F, Tononi G, et al.
2012. Connectivity changes underlying spectral EEG changes
during propofol-induced loss of consciousness. J Neurosci.
32:7082–7090.

Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali
KR, Casarotto S, Bruno M-A, Laureys S, Tononi G, et al.
2013. A theoretically based index of consciousness indepen-
dent of sensory processing and behavior. Sci Transl Med. 5:
198ra105.

Chang C, Glover GH. 2010. Time-frequency dynamics of resting-
state brain connectivity measured with fMRI. Neuroimage.
50:81–98.

Chialvo D. 2010. Emergent complex neural dynamics: the brain
at the edge. Nat Phys. 6:744–750.

Craig AD. 2009. How do you feel — now? The anterior insula and
human awareness. Nature Reviews Neuroscience. 10:59–70.

Ezaki T, Watanabe T, Ohzeki M, Masuda N. 2017. Energy land-
scape analysis of neuroimaging data. Philos Trans R Soc A.
375:20160287.

Fekete T, Omer DB, O’Hashi K, Grinvald A, van Leeuwen C,
Shriki O. 2018. Critical dynamics, anesthesia and information
integration: lessons from multi-scale criticality analysis of
voltage imaging data. Neuro Image. 183:919–933.

Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA,
Angelini G, Tononi G, Pearce RA. 2010. Breakdown in corti-
cal effective connectivity during midazolam-induced loss of
consciousness. Proc Natl Acad Sci USA. 107:2681–2686.

Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imag-
ing. Nat Rev Neurosci. 8:700–711.

Gardella C, Marre O, Mora T. 2016. A tractable method for describ-
ing complex couplings between neurons and population rate.
eNeuro. 3(4):0160–0115.

Ginzburg VL, Landau LD. 1965. On the theory of superconductors.
Zh Eksp Teor Fiz. 20:1064–1082.

Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta
S, Reiss AL, Menon V. 2008. Persistent default-mode net-
work connectivity during light sedation. Hum Brain Mapp.
29(7):839–847.

Guldenmund P, Demertzi A, Boveroux P, Boly M, Vanhau-
denhuyse A, Bruno M-A, Gosseries O, Noirhomme Q,
Brichant J-F, Bonhomme V, et al. 2013. Thalamus, brain-
stem and salience network connectivity changes during
propofol-induced sedation and unconsciousness. Brain Con-
nect. 3(3):273–285.

Guevara Erra R, Mateos DM, Wennberg R, Velazquez JP. 2016.
Statistical mechanics of consciousness: maximization of
information content of network is associated with conscious
awareness. Physical Review E. 94(5):052402.

Hahn G, Ponce-Alvarez A, Monier C, Benvenuti G, Kumar A,
Chavane F, Deco G, Frégnac Y. 2017. Spontaneous cortical
activity is transiently poised close to criticality. PLoS Comput
Biol. 13(5):e1005543.

Hidalgo J, Grilli J, Suweis S, Muñoz MA, Banavar JR, Mari-
tan A. 2015. Information-based fitness and the emergence
of criticality in living systems. Proc Natl Acad Sci USA.
111:10095–10100.

Hudetz AG, Liu X, Pillay S. 2015. Dynamic repertoire of intrinsic
brain states is reduced in propofol-induced unconsciousness.
Brain Connect. 5(1):10–22.

Juengling FD, Kassubek J, Huppertz HJ, Krause T, Els T. 2005.
Separating functional and structural damage in persistent
vegetative state using combined voxel-based analysis of 3-D
MRI and FDG-PET. J Neurol Sci. 228(2):179–184.

Kaisti KK, Metsähonkala L, Teräs M, Oikonen V, Aalto S,
Jääskeläinen S, Hinkka S, Scheinin H. 2002. Effects of
surgical levels of propofol and sevoflurane anesthesia
on cerebral blood flow in healthy subjects studied with
positron emission tomography. Anesthesiology. 96(6):
1358–1370.

Lee H, Golkowski D, Jordan D, Berger S, Ilg R, Lee J, Mashour
GA, Lee U, ReCCognition Study Group. 2019. Relationship
of critical dynamics, functional connectivity, and states of
consciousness in large-scale human brain networks. Neuro
Image. 188:228–238.

Luppi AI, Craig MM, Finoia P, Williams GB, Naci L, Menon DK,
Emmanuel A. 2019. Consciousness-specific dynamic inter-
actions of brain integration and functional diversity. Nat
Commun. 10(1):4616.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/32/2/298/6316621 by Bodleian Libraries of the U

niversity of O
xford user on 04 April 2022



Phase Transition of Anesthetized Brain States Ponce-Alvarez et al. 311

Machta BB, Chachra R, Transtrum MK, Sethna JP. 2013. Param-
eter space compression underlies emergent theories and
predictive models. Science. 342(6158):604–607.

Massimini M, Ferrarelli F, Sarasso S, Tononi G. 2012. Cortical
mechanisms of loss of consciousness: insight from TMS/EEG
studies. Arch Ital Biol. 150(2–3):44–55.

Napolitani M, Bodart O, Canali P, Seregni F, Casali AG, Laureys
S, Rosanova M, Massimini M, Gosseries O. 2014. Transcranial
magnetic stimulation combined with high-density EEG in
altered states of consciousness. Brain Inj. 28(9):1180–1189.

Okun M, Steinmetz NA, Cossell L, Iacaruso MF, Ko H, Barthó P,
Moore T, Hofer SB, Mrsic-Flogel TD, Carandini M, et al. 2015.
Diverse coupling of neurons to populations in sensory cortex.
Nature. 521(7553):511–515.

Panas D, Amin H, Maccione A, Muthmann O, van Rossum M,
Berdondini L, Hennig MH. 2015. Sloppiness in spontaneously
active neuronal networks. J Neurosci. 35(22):8480–8492.

Perez Velazquez JL, Mateos DM, Guevara Erra R. 2019. On a
simple general principle of brain organization. Front Neurosci.
13:1106.

Ponce-Alvarez A, Mochol G, Hermoso-Mendizabal A, de la Rocha
J, Deco G. 2020. Cortical state transitions and stimulus
response evolve along stiff and sloppy parameter dimen-
sions, respectively. Elife. 9:e53268.

Sarà M, Pistoia F, Pasqualetti P, Sebastiano F, Onorati P, Rossini
PM. 2011. Functional isolation within the cerebral cortex in
the vegetative state: a nonlinear method to predict clinical
outcomes. Neurorehabil. Neural Repair. 25(1):35–42.

Sarasso S, Rosanova M, Casali AG, Casarotto S, Fecchio M, Boly M,
Gosseries O, Tononi G, Laureys S, Massimini M. 2014. Quan-
tifying cortical EEG responses to TMS in (un)consciousness.
Clin EEG Neurosci. 45:40–49.

Sarasso S, Boly M, Napolitani M, Gosseries O, Charland-Verville
V, Casarotto S, Rosanova M, Casali AG, Brichant J-F, Boveroux
P, et al. 2015. Consciousness and complexity during unre-
sponsiveness induced by propofol, xenon, and ketamine. Curr
Biol. 25:3099–3105.

Schartner M, Seth A, Noirhomme Q, Boly M, Bruno M-A, Lau-
reys S, Barrett A. 2015. Complexity of multi-dimensional
spontaneous EEG decreases during Propofol induced general
anaesthesia. PLoS One. 10(8):e0133532.

Schneidman E, Berry MJ, Segev R, Bialek W. 2006. Weak pairwise
correlations imply strongly correlated network states in a
neural population. Nature. 440:1007–1012.

Schölvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA, Scholvinck
ML, Maier A, Ye FQ, Duyn JH, Leopold DA, et al. 2010. Neural
basis of global resting-state fMRI activity. Proc Natl Acad Sci
USA. 107:10238–10243.

Shew WL, Yang H, Yu S, Roy R, Plenz D. 2011. Information capac-
ity and transmission are maximized in balanced cortical
networks with neuronal avalanches. J Neurosci. 31:55–63.

Shew WL, Plenz D. 2013. The functional benefits of criticality in
the cortex. Neuroscientist. 19:88–100.

Singh S, Bansal S, Kumar G, Gupta I, Thakur JR. 2017. Entropy
as an indicator to measure depth of anaesthesia for laryn-
geal mask airway (LMA) insertion during sevoflurane and
propofol anaesthesia. J Clin Diagn Res. 11:UC01–UC03.

Sitt JD, King J-R, El Karoui I, Rohaut B, Faugeras F, Gramfort
A, Cohen L, Sigman M, Dehaene S, Naccache L. 2014. Large
scale screening of neural signatures of consciousness in
patients in a vegetative or minimally conscious state. Brain.
137(8):2258–2270.

Solovey G, Alonso LM, Yanagawa T, Fujii N, Magnasco MO, Cecchi
GA, Proekt A. 2015. Loss of consciousness is associated with
stabilization of cortical activity. J Neurosci. 35:10866–10877.

Storm JF, Boly M, Casali AG, Massimini M, Olcese U, Pennartz
CMA, Wilke. 2017. Consciousness regained: disentangling
mechanisms, brain systems, and behavioral responses. J
Neurosci. 37:10882–10893.

Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. 2012. Criti-
cality in large-scale brain fMRI dynamics unveiled by a novel
point process analysis. Front Physiol. 3:15.

Tagliazucchi E, Chialvo DR, Siniatchkin M, Amico E, Brichant
JF, Bonhomme V, Noirhomme Q, Laufs H, Laureys S. 2016.
Large-scale signatures of unconsciousness are consistent
with a departure from critical dynamics. J R Soc Interface.
13(114):20151027.

Tanabe S, Huang Z, Zhang J, Chen Y, Fogel S, Doyon J, Wu
J, Xu J, Zhang J, Qin P, et al. 2020. Altered global brain
signal during physiologic, pharmacologic, and pathologic
states of unconsciousness in humans and rats. Anesthesiol-
ogy. 132:1392–1406.

Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry MJ
II. 2014. Searching for collective behavior in a large network
of sensory neurons. PLoS Comput Biol. 10:e1003408.
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