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Memory for sequences is a central topic in neuroscience, and decades of studies have investigated the neural mechanisms underlying
the coding of a wide array of sequences extended over time. Yet, little is known on the brain mechanisms underlying the recognition
of previously memorized versus novel temporal sequences. Moreover, the differential brain processing of single items in an auditory
temporal sequence compared to the whole superordinate sequence is not fully understood. In this magnetoencephalography (MEG)
study, the items of the temporal sequence were independently linked to local and rapid (2–8 Hz) brain processing, while the whole
sequence was associated with concurrent global and slower (0.1–1 Hz) processing involving a widespread network of sequentially
active brain regions. Notably, the recognition of previously memorized temporal sequences was associated to stronger activity in the
slow brain processing, while the novel sequences required a greater involvement of the faster brain processing. Overall, the results
expand on well-known information flow from lower- to higher order brain regions. In fact, they reveal the differential involvement of
slow and faster whole brain processing to recognize previously learned versus novel temporal information.
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Introduction
Over the years, understanding memory for sequences has been a
central topic in neuroscience and cognitive science (Förstl et al.
2006; Kumar and Anand 2015), as reviewed in a key paper by
Dehaene et al. (2015). Here, the authors propose a taxonomy of
the processing mechanisms for temporal sequences, arranged in
five categories of increasing complexity: (i) transition and timing
knowledge between subsequent items of the sequence, (ii) chunk-
ing of contiguous items of the sequence, (iii) ordinal knowledge of
which item comes first, (iv) algebraic patterns capturing complex
regularities within a sequence, and (v) nested tree structures
based on abstract symbolic rules.

The first category refers to the processing of the transition from
one item of the sequence to the next. This research has identi-
fied several automatic event related potentials/fields (ERP/F) to
standard and deviant sounds, such as the well-known N100 and
mismatch negativity (MMN), demonstrating that the brain can
rapidly detect changes in the regularity of sequences (Garrido
et al. 2009; Lijffijt et al. 2009; Vuust et al. 2012; Bonetti et al.
2017, 2018; Bonetti, Brattico, Carlomagno, et al. 2021a; Bonetti,
Bruzzone, Sedghi, et al. 2021b; Bonetti, Brattico, Vuust, et al.
2021c).

Chunking refers to the ability of grouping contiguous items into
a larger single unit.

Previous studies at the single-cell level have shown that chunk-
ing occurs during acquisition of motor habits (Fujii and Graybiel
2003; Smith and Graybiel 2013; Jin et al. 2014).

Similar studies with functional magnetic resonance imaging
(fMRI) confirmed these results, suggesting a hierarchical organi-
zation in chunking when motor temporal sequences are learned
(Koechlin and Jubault 2006). The neural correlates of auditory
chunking were further investigated by additional studies. For
instance, Kalm et al. (2012) used fMRI to explore the auditory
encoding of grouped and ungrouped lists of letters, highlighting
that a large activation of auditory cortex, premotor and prefrontal
brain areas was associated with exceeded memory span during
encoding. Additionally, using electroencephalography (EEG), Ding
et al. (2018) discovered that neural encoding of individual audi-
tory events (i.e. syllables) was automatic, while knowledge-based
construction of temporal chunks (i.e. words) relied on attention.

Beyond chunking, ordinal knowledge describes the capacity of
learning and remembering which item comes first, second, and so
on, in the temporal sequence. Previous studies have demonstrated
that the ordinal arrangement of a series of items is encoded by the
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brain within the intraparietal and dorsolateral prefrontal cortices
(Terrace et al. 2003; Berdyyeva and Olson 2010; Crowe et al. 2014).

Algebraic patterns refer to the abstract schemas stored in
the brain, which enable the capture of sequential regularities
underlying a sequence of items. Previous research suggested that
the brain processes the algebraic patterns of sequences, under-
standing a higher level of abstract regularities than elementary
sequences with sensorial deviations (Endress et al. 2009; Wang
et al. 2015).

Finally, nested tree structures are generated by symbolic rules,
which are often embedded within each other. Previous studies
have highlighted the following network of brain regions involved
in processing complex linguistic patterns organized in nested
structures: left superior temporal sulcus (STS), middle temporal
gyrus (MTG), temporal poles (TP) inferior frontal gyrus (IFG), and
temporo-parietal junction (TPJ) (Mazoyer et al. 1993; Saur et al.
2010; Friederici 2011; Rolheiser et al. 2011; Tyler et al. 2011).

Other relevant contributions on how the brain processes tem-
poral sequences came from research in auditory and speech pro-
cessing. This proposed simultaneous brain mechanisms under-
lying the understanding of sounds and human languages. For
instance, Teng et al. (2017) showed the simultaneous role of theta
and gamma frequency bands during auditory processing, coher-
ently with the “asymmetric sampling in time” (AST) hypothesis
proposed by Poeppel (2003). In another study that investigated
speech processing, authors revealed that while theta activity was
restricted to the auditory cortex, delta band originated in down-
stream auditory regions, and was modulated by the uncertainty
of the stimuli (Donhauser and Baillet 2020).

Altogether, these excellent studies provided a detailed but
non-exhaustive review of the brain mechanisms underlying pro-
cessing of temporal sequences and patterns. In particular, while
the review demonstrated how items are chunked and organized
in abstract rules through simultaneous mechanisms, it did not
conclusively investigate cases where the temporal order of the
single items gives rise to a new, superordinate object (sequence)
characterized by a novel perception and meaning, which can
be encoded and subsequently retrieved or recognized. Musical
melodies are ideal examples of such sequences since, depending
on the combination of their sounds (items) over time, they are
perceived as novel objects conveying meanings that could not be
carried by the single sounds alone (Cooke 1959).

Notably, although music neuroscience has rapidly expanded
over the last few decades, very little is known on the fast-scale
brain mechanisms underlying recognition of musical temporal
sequences. Conversely, research in neuroscience of musical mem-
ory has provided us with different, highly relevant knowledge. For
instance, in an fMRI study, Gaab et al. (2003) asked participants to
compare sounds characterized by different pitches. The authors
revealed activity especially in superior temporal, supramarginal,
and left inferior frontal cortices when participants successfully
completed the task. More recently, Kumar et al. (2016) showed
the relevant role of primary auditory cortex, hippocampus,
and inferior frontal gyrus as well as their connectivity to
perform auditory WM-tasks. Similarly, Sikka et al. (2015) asked
participants to recognize familiar or unfamiliar music, showing
that successful performance was associated to the activation of
right superior temporal, bilateral inferior and superior frontal, left
middle orbitofrontal, bilateral precentral, and left supramarginal
cortices. Besides fMRI, a few studies on musical memory have
been conducted using magnetoencephalography (MEG). For
instance, Albouy et al. (2013, 2017) investigated the brain activity
during memory retention, showing that theta oscillations in

the brain dorsal stream of participants predicted their abilities
to perform an auditory WM task. In a recent study, Bonetti,
Brattico, Carlomagno, et al. (2021a), Bonetti, Bruzzone, Sedghi,
et al. (2021b), Bonetti, Brattico, Vuust, et al. (2021c) showed that
the first 220 ms of sound encoding presented a large network of
connected brain areas such as Heschl’s and superior temporal
gyri, frontal operculum, cingulate gyrus, insula, basal ganglia,
and hippocampus. Notably, these brain areas were equally central
within the network, even if auditory cortex and insula presented
stronger activity than the other areas.

In conclusion, previous research has highlighted the brain
mechanisms underlying processing of several categories of tem-
poral sequences and musical sounds. However, these studies did
not investigate the recognition of previously learned temporal
sequences where the order of the single items gave rise to a new,
superordinate, global object characterized by novel perception
and meaning, arising from musical sequences. In particular, the
differential mechanisms associated with processing of the single
items of the sequence (local processing) and of memory recogni-
tion for the sequence as a whole, novel object (global processing)
remain not fully understood. In our study, benefitting from the
MEG data constrained by anatomical MRI, we addressed these
questions.

Materials and Methods
Data availability
The codes are available at the following links:

https://github.com/leonardob92/Brain_Recognition_Temporal_
Sequences_Differential_Simultaneous_Processing_Cerebral_Cortex.
git

https://github.com/leonardob92/LBPD-1.0.git.
The multimodal neuroimaging data related to the experiment

is available upon reasonable request.

Participants
The study comprised 70 volunteers: 36 males and 34 females
(age range: 18–42 years old, mean age: 25.06 ± 4.11 years). All
participants were healthy and reported no previous or current
alcohol and drug abuse. Moreover, they were not under any kind
of medication, declared that they did not have any previous
neurological or psychiatric disorder, and reported to have normal
hearing. Furthermore, their economic, educational, and social
status was homogeneous.

The experimental procedures were carried out complying
with the Declaration of Helsinki—Ethical Principles for Medical
Research and were approved by the Ethics Committee of the
Central Denmark Region (De Videnskabsetiske Komitéer for
Region Midtjylland) (Ref 1-10-72-411-17).

Experimental design and stimuli
To detect the brain signature of temporal sequence recognition,
we used an old/new paradigm (Kayser et al. 2003) auditory recog-
nition task during magnetoencephalography (MEG) recording.
First, participants listened to four repetitions of a MIDI version
of the right-hand part of the whole prelude BWV 847 in C minor
composed by J.S. Bach (total duration of about 10 min). Second,
they were presented with 80 brief musical excerpts lasting
1,250 ms each and were asked to state whether each excerpt
belonged to the prelude by Bach (“memorized” sequence (M),
old) or it was a novel musical sequence (“novel” sequence (N),
new) (Fig. 1A). Forty excerpts were taken from the Bach’s piece
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Fig. 1. Experimental design, source reconstruction and single-item contrasts. A) After listening to a full musical piece composed by J.S. Bach, participants
were presented with a set of melodic excerpts taken from the piece and a series of new melodies. Those excerpts represented temporal sequences
built by five items (musical tones) that were labeled by the participants as “previously memorized” (M) or “novel” (N) using a response pad. B) During
the task, participant’s brain activity was recorded with magnetoencephalography. Here we show a graphical depiction of the neural data that was
preprocessed, bandpass-filtered in different frequency bands and epoched. This figure depicts analyses for two frequency bands (0.1–1 and 2–8 Hz) since
we hypothesized that these two bands were associated to the local and global processing of the temporal sequences. C) Graphical depiction of source
reconstruction, computed independently for 0.1–1 and 2–8 Hz. Notably, 0.1–1 Hz indexed the recognition of the whole sequence (global processing),
while 2–8 Hz showed the neural responses to each item of the sequence (local processing). D). Contrasts revealed stronger brain activity for M versus
N in 0.1–1 Hz (red), especially for third, fourth and fifth items. Such difference was localized in a large brain network comprising cingulum, inferior
temporal cortex, frontal operculum, insula, and hippocampal areas. Conversely, contrasts for 2–8 Hz returned an overall stronger activity for N versus
M (blue), especially in the auditory cortex. The depicted values are t-values obtained by contrasting the brain activity of M versus N.

and 40 were novel. Importantly, the two categories of stimuli
(M and N) were created to be clearly distinguishable in the
recognition task (i.e. they were always composed of different
musical tones), although they were matched among several
variables, to prevent for potential confounds. In fact, M and N
were matched for volume, rhythm, timbre, meter, tempo, tonality,
entropy (H), and information content (IC). As mentioned above,
the memorized melodies consisted of excerpts of the Bach’s
prelude. In this case, we selected one excerpt per musical bar,
which corresponded to the first five tones of the bar. Then, we
composed the novel musical melodies by using melodic contour
and intervals between the notes of the melodies that differed from
the memorized musical sequences taken from the Bach’s prelude.
The 80 musical sequences are reported in musical notation in
Fig. S1.

Regarding IC and H, their estimation was done for each tone
of the memorized (mean IC: 5.70 ± 1.73, mean H: 4.70 ± 0.33) and
of the novel musical sequences (mean IC: 5.92 ± 1.81, mean H:
4.78 ± 0.35) by using Information Dynamics of Music (IDyOM)
(Pearce 2018). This method utilizes machine learning to compute

a value of IC for the target note based on a combination of the
preceding notes of the musical piece comprising the target note
and of a set of rules derived from a large array of prototypical
Western musical pieces. Thus, we made sure that the global IC
of the musical sequences of our two categories (M and N) was
the same.

On a formal level, the IC corresponds to the minimum number
of bits required to encode ei and is described by the following
equation (1):

IC
(
ei|ei−1

(i−n)+1

)
= log2

1

p
(
ei|ei−1

(i−n)+1

) (1)

where p(ei|ei−1
(i−n)+1) is the probability of the event ei given a previous

set of ei−1
(i−n)+1 events.

The entropy provides a measure of the uncertainty/certainty of
the upcoming event given the previous set of ei−1

(i−n)+1 events and is
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computed by the following equation (2):

H
(
ei−1
(i−n)+1

)
=

∑
e∈A

p
(
ei|ei−1

(i−n)+1

)
IC

(
ei|ei−1

(i−n)+1

)
(2)

According to equation (2), if the probability of a given event ei

is 1, the probability of the other events in A will be 0. Thus, H will
also be equal to 0 (scenario of maximum certainty). Conversely,
if the events are equally probable, H will be maximum (scenario
of maximum uncertainty). In conclusion, IDyOM provides an
estimation of the predictability of each musical tone, and it has
been shown coherent with the human perception (Pearce 2018;
Sears et al. 2018).

In the MEG analysis, we used only the correctly recognized
trials (mean correct M: 78.15 ± 13.56%, mean reaction times
(RT): 1,871 ± 209 ms; mean correct N: 81.43 ± 14.12%, mean
RT: 1,915 ± 135 ms). Both prelude and excerpts were created
by using Finale (MakeMusic, Boulder, CO) and presented with
Presentation software (Neurobehavioral Systems, Berkeley, CA).
After the acquisition of the MEG data, in the same or another
day, participants’ brain structural images were acquired by using
magnetic resonance imaging (MRI).

Data acquisition
We acquired anatomical MRI and MEG data in two independent
sessions. The MEG data was acquired by employing an Elekta
Neuromag TRIUX system (Elekta Neuromag, Helsinki, Finland)
equipped with 306 channels. The machine was positioned in a
magnetically shielded room at Aarhus University Hospital, Den-
mark. Data were recorded at a sampling rate of 1,000 Hz with an
analogue filtering of 0.1–330 Hz. Prior to the measurements, we set
the sound level to 50 dB above the minimum hearing threshold
of each participant. Moreover, by utilizing a three-dimensional
digitizer (Polhemus Fastrak, Colchester, VT, USA), we registered
the participant’s head shape and the position of four headcoils,
with respect to three anatomical landmarks (nasion, and left and
right preauricular locations).

The location of the headcoils was registered during the entire
recording by using a continuous head position identification
(cHPI), allowing us to track the exact head location within the
MEG scanner at each time-point. We utilized this data to perform
an accurate movement correction at a later stage of the data
analysis.

The recorded anatomical MRI data corresponded to the struc-
tural T1. The acquisition parameters for the scan are reported as
follows: voxel size = 1.0 × 1.0 × 1.0 mm (or 1.0 mm3); reconstructed
matrix size 256 × 256; echo time (TE) of 2.96 ms and repetition
time (TR) of 5,000 ms and a bandwidth of 240 Hz/Px. At a later
stage of the analysis, each individual T1-weighted MR scan was
co-registered to the standard MNI brain template through an
affine transformation and then referenced to the MEG sensors
space by using the Polhemus head shape data and the three
fiducial points measured during the MEG session.

Data pre-processing
The raw MEG sensor data (204 planar gradiometers and 102 mag-
netometers) was pre-processed by MaxFilter (Taulu and Simola
2006) for attenuating the interference originated outside the scalp
by applying signal space separation. Within the same session,
Maxfilter also adjusted the signal for head movement and down-
sampled it from 1,000 to 250 Hz.

The data were converted into the SPM format and further
analyzed in Matlab (MathWorks, Natick, Massachusetts, USA) by
using OSL (OHBA Software Library), a freely available toolbox that
relies on a combination of FSL (Woolrich et al. 2009), SPM (Penny
et al. 2007) and Fieldtrip (Oostenveld et al. 2011), as well as in-
house-built functions. A notch filter (48–52 Hz) was applied to
correct for possible interference of the electric current. The data
was further downsampled to 150 Hz and few segments of the data,
altered by large artifacts, were removed after visual inspection.
Then, to discard the interference of eyeblinks and heart-beat
artifacts from the brain data, independent component analysis
(ICA) was used to decompose the original signal into independent
components. Then, the components that picked up eyeblink and
heart-beat activities were first isolated and then discarded. The
signal was rebuilt by using the remaining components (Mantini
et al. 2011) and then epoched in 80 trials (one for each musical
excerpt) lasting 3,500 ms each (with 100 ms of pre-stimulus time
that was used for baseline correction) (Fig. 1B).

Univariate tests and Monte-Carlo simulations
over MEG sensors
Although our primary focus was on the MEG source reconstructed
brain data, a first analysis on MEG sensors data was computed,
coherently with state-of-the-art recommendation for best prac-
tice in MEG analysis (Gross et al. 2013).

Thus, similar to a large number of MEG and electroencephalog-
raphy (EEG) task-related studies (Gross et al. 2013), we averaged
the trials over conditions, obtaining two final mean trials, for
M and N, respectively. Then, we combined each pair of planar
gradiometers by root sum square. Afterwards, we performed a
t-test for each time-point in the time-range 0–2.500 s and each
combined planar gradiometer, contrasting M versus N. To correct
for multiple comparisons, we computed Monte-Carlo simulations
(MCS) (Kroese et al. 2011) with 1,000 permutations on the clusters
of significant results emerged from the t-tests. We considered
significant the original clusters that had a size bigger than the
99.9% maximum cluster sizes of the permuted data. Additional
details on this widely used procedure can be found in Bonetti
et al. (2020), Bonetti, Brattico, Carlomagno, et al. (2021a), Bonetti,
Bruzzone, Sedghi, et al. (2021b), Bonetti, Brattico, Vuust, et al.
(2021c) and Fernàndez-Rubio, Brattico, et al. (2022a), Fernàndez-
Rubio, Carlomagno, et al. (2022b), Fernàndez-Rubio, Olsen, et al.
(2022c). This analysis returned a large and robust difference
between experimental conditions. Moreover, the brain activity
recorded over the MEG channels forming the significant cluster
outputted by the MCS analysis outlined a timeseries, which
presented two main frequency components. As shown in Fig. S2A,
the faster frequency component peaked after the presentation
of each of the items forming the sequence, while the slower
frequency component accompanied the whole sequence. This
evidence was further supported by the computation of complex
Morlet wavelet transform (Daubechies 1992) on all MEG sensor
data, which highlighted the main contribution of 1 and 4 Hz to
the MEG signal recorded during the task (Fig. S2B). In addition, this
analysis showed a noticeable yet weaker power around 10 Hz. To
be noted, the 10 Hz power was not time-locked to the onset-offset
of the musical sequence. Thus, our following analyses primarily
focused on two frequency bands defined around 1 and 4 Hz, since
they were the frequencies with the strongest power. These two
bands were 0.1–1 and 2–8 Hz. Furthermore, we conducted an
additional analysis on the frequency range defined around 10 Hz,
since it presented a reduced yet distinguishable power. Such band
was 8–12 Hz. Importantly, we hypothesized that the frequency
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bands 2–8 and 0.1–1 Hz indexed the two main processes involved
in our experimental task: processing of single items forming
the temporal sequence (i—local processing) and recognizing the
temporal sequence as a comprehensive superordinate object (ii—
global processing).

Source reconstruction
We used state-of-the-art source reconstruction methods to esti-
mate the sources, which generated the signal that we recorded
on the MEG sensors (Fig. 1C and Fig. 2A) (Huang et al. 1999;
Hillebrand and Barnes 2005). Importantly, the source reconstruc-
tion algorithm has been computed independently for the three
frequency bands involved in the study (0.1–1, 2–8 and 8–12 Hz),
to characterize the evoked responses to M and N in these three
different frequency bands. Specifically, the following steps were
implemented. First, the continuous data (before the epoching) was
band-pass filtered into the three frequency bands. Second, the
filtered data (independently for the three bands) was epoched.
Third, the epoched data were submitted to the source reconstruc-
tion algorithm described below.

Such algorithm involves two subsequent steps: (i) designing
a forward model and (ii) computing the inverse solution. The
forward model is a theoretical model that considers each brain
source as an active dipole and describes how the unitary strength
of such dipole would be reflected over all MEG sensors (in our
case, we utilized both magnetometers and planar gradiometers)
(Huang et al. 1999). Here, we employed an 8-mm grid that returned
3,559 dipole locations (voxels) within the whole brain. After co-
registering individual structural T1 data with fiducials (informa-
tion about head landmarks), the forward model was computed
by adopting a widely used method called “Single Shell,” pre-
sented in details by Nolte (2003). The output of such computa-
tion, also referred to as leadfield model, was stored in matrix L
(sources × MEG channels). In the few cases where structural T1
was not available, we performed the leadfield computation using
a template (MNI152-T1 with 8-mm spatial resolution).

The second step of the source reconstruction is to compute
the inverse solution (i.e. to estimate the generators of the neural
signal on the basis of the brain activity recorded with MEG). In our
study, we chose the beamforming, which is one of the most pop-
ular and effective algorithms available in the field (Huang et al.
1999; Hillebrand and Barnes 2005). This procedure uses a different
set of weights sequentially applied to the source locations for
isolating the contribution of each source to the activity recorded
by the MEG channels for each time-point (Hillebrand and Barnes
2005; Brookes et al. 2007). On a more technical level, the inverse
solution based on beamforming can be described by the following
main steps.

First, the data recorded by MEG sensors (B) at time t can be
described by the following equation (3):

B(t) = L ∗ Q(ni ,t) + ξ (3)

where L is the above-described leadfield model, Q is the dipole
matrix carrying the activity of each active dipole (q) over time
and ε is noise (see Huang et al. (2004) for more details). Thus,
to solve the inverse problem, we have to compute Q. Using the
beamforming, such procedure revolves around the computation
of weights that are applied to the MEG sensors at each time-point,
as shown for the single dipole q in equation (4):

q(t) = WT ∗ B(t) (4)

Indeed, to gain q, the weights W should be computed (the
subscript T refers to transpose matrix). To do so, the beamforming
relies on the matrix multiplication between L and the covari-
ance matrix between MEG sensors (C), computed on the concate-
nated experimental trials. Specifically, for each brain source n, the
weights Wn are computed as follows:

W(n) = (LT
(n) ∗ C−1 ∗ L(n))

−1 ∗ LT
(n) ∗ C−1 (5)

To be noted, the computation of the leadfield model was done
for the three main orientations of each brain source (dipole),
according to Nolte (Nolte 2003). However, before computing the
weights, the orientations have been reduced to one by using the
singular value decomposition algorithm on the matrix multipli-
cation reported in equation (6). This procedure is widely adopted
to simplify the beamforming output (Huang et al. 2004; Woolrich
et al. 2011).

L = svd(lT ∗ C−1 ∗ l)−1 (6)

Here, l represents the leadfield model with the three orienta-
tions, while L the resolved one-orientation model that was used
in (5).

Finally, as mentioned above, with regards to the coding imple-
mentation of such algorithms, we have used Matlab toolboxes
such as OSL, FieldTrip, SPM (functions for MEEG preprocessing and
SPM beamforming toolbox) and FSL. Moreover, those codes were
complemented by in-house-built scripts and functions.

Brain activity for each element of the temporal
sequence
First, we wanted to detect the brain activity underlying each item
of our temporal sequences (Fig. 1D, Figs. S3, S4, Table 1 and Table
S1). Here, we computed the absolute value of the reconstructed
timeseries since we were interested in the absolute strength of
the signal.

To perform first-level analysis for each participant, we
employed general linear models (GLMs). Such models were
computed on the source reconstructed data for each time-point
and brain source (Hunt et al. 2012). The GLMs returned the
main effect (contrasts of parameters estimate (COPEs)) of M
and N as well as their contrast. They were employed since they
allowed to obtain main effects that were crucially adjusted by
the variance across participants. These results were submitted
to a second-level analysis, employing one-sample t-tests with
spatially smoothed variance obtained with a Gaussian kernel
(full-width at half-maximum: 50 mm) (Huang et al. 2004).

Here, we were interested in observing the different brain activ-
ity underlying recognition of M versus N temporal sequence,
independently for each frequency band and item (musical tone)
forming the sequence. Thus, we computed 15 (5 tones × 3 fre-
quency bands) cluster-based Monte-Carlo simulations (MCS) on
the second-level (group-level) analysis results averaged over the
five time-windows corresponding to the duration of the musical
tones. The MCS analysis comprises 1,000 permutations and a
cluster forming threshold of P < 0.05 (from the second-level t-
tests). Specifically, the MCS test consisted of detecting the spatial
clusters of significant values in the original data. Then, such
data were permuted, and the spatial clusters of the permuted
significant values were detected. This procedure was computed
several times (e.g. 1,000) and gave rise to a reference distribution
of cluster sizes detected for each permutation. Finally, the original
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Fig. 2. Methods figure showing a graphical depiction of the source reconstruction, k-means functional clustering, and contrasts. A) Graphical depiction
of the source reconstruction. B) A functional parcellation of the brain based on the activity recorded during the task was estimated. First, k-means
clustering was computed on functional information of each brain voxel timeseries. Regarding 0.1–1 Hz (indexing the global processing of the sequence),
clustering was computed on the time indices of the maximum values of the voxels. Conversely, for 2–8 Hz, indexing the local processing of each object
of the sequence), clustering was performed on the maximum values of the voxels. This procedure returns a set of functional parcels. C) A second series
of k-means clustering was computed on the spatial properties of each of the functional parcels described in (B). Here, for illustrative purposes, we
show only one functional parcel (outlined by the red bracket). Such procedure returned a set of new final parcels with the corresponding timeseries
considering both functional and spatial information of each of the brain voxels. D) Contrasts between memorized (M) and novel (N) temporal sequences
were computed for each parcel and frequency band.
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Table 1. Peak brain activity underlying recognition of each item (musical tone) of the temporal sequences

0.1–1 Hz 2–8 Hz

Brain area Hemisphere t MNI coordinates Brain area Hemisphere t MNI coordinates

x y z x y z

Tone 1
Rolandic Ope R 4.44 42 −30 16 Cing Mid R 4.48 2 2 40
Heschl R 4.26 42 −30 8 Cing Mid R 4.23 2 10 40
Temporal Sup R 4.16 50 −30 16 Cing Mid L 4.17 −6 2 40
Temporal Sup R 4.04 42 −38 16 Cing Mid R 4.16 2 10 32
Tone 2
Frontal Sup L 4.00 −14 34 40 Tempr Pol Sup R −3.88 34 10 −32
Frontal Sup L 3.98 −14 34 32 Tempr Pol Sup R −3.46 26 10 −32
Frontal Sup L 3.92 −14 26 40 Front Inf Ope L −3.45 −38 2 24
Frontal Sup L 3.78 −14 42 40 Tempr Pol Mid R −3.37 42 10 −32
Tone 3
Precuneus R 3.89 2 −46 48 Temporal Sup R −3.30 50 −22 8
Cing Mid R 3.80 2 −38 48 Temporal Sup R −3.19 58 −22 8
Cing Mid R 3.62 2 −22 48 Temporal Sup R −2.78 50 −22 0
Cing Mid R 3.60 2 −30 48 Heschl R −2.67 42 −22 8
Tone 4
Temporal Mid L 5.05 −46 −6 −16 ParaHippocamp L −3.89 −22 −30 −16
Insula L 4.93 −38 −6 −8 ParaHippocamp L −3.86 −30 −30 −16
Temporal Mid L 4.81 −46 −14 −16 Tempr Pol Mid L −3.74 −46 10 −32
Cing Mid R 4.76 2 −6 40 Tempr Pol Mid L −3.70 −38 10 −32
Tone 5
Insula L 5.48 −38 2 −8 Front Inf Tri R 3.41 42 26 24
Putamen L 5.27 −30 2 −8 Putamen R 3.36 34 2 0
Temporal Mid L 5.26 −46 −6 −16 Insula R 3.28 42 10 0
Temp Pol Mid L 5.24 −46 2 −16 Postcentral Gyr R 3.23 34 −30 48

Brain areas refer to the automatic anatomic labelling (AAL) parcellation labels, while t indicates the t-value obtained by contrasting known versus unknown
temporal sequences.

cluster sizes were compared to the reference distribution. The
original clusters were considered significant if the cluster sizes
of the permuted data were bigger than the original cluster sizes
less times than the MCS α level. In this case, since we computed
the analysis 15 times, we corrected for multiple comparisons by
dividing the standard MCS α level (=0.05) by 15, resulting in an
updated MCS α = 0.003 (i.e. original clusters were significant if
their sizes were larger than the 99.7% of the permuted cluster
sizes).

Since one of the frequency ranges used in this study was rather
low (0.1–1 Hz), we recomputed the source reconstruction and the
contrasts between M and N for 0.1–1 Hz using three different
baselines (500, 1,000, and 2,000 ms). This was done to demonstrate
that our original results were not driven by the length of the
baseline. The results of this procedure are depicted in Fig. S5 and
reported in detail in Table S2.

K-means functional clustering
To complement our previous results and provide a more detailed
description of the spatial extent of the active brain sources as well
as their activity over time, we defined a functionally based par-
cellation of the brain. We adopted a so-called k-means functional
clustering, consisting of a series of k-means clustering algorithms.
Sinaga and Yang (2020) performed on functional and spatial
information of each of the reconstructed brain sources (voxels)
timeseries. This approach has been followed for the two frequency
bands that returned the strongest results in our previous analyses
and that were associated either to the single items of the sequence
or to the whole sequence, namely 0.1–1 and 2–8 Hz.

Specifically, as a first step the k-means functional clustering
algorithm computed a clustering on basic functional parameters
such as peak values and the corresponding indices of the voxels
timeseries. We refer to this step as functional clustering. This
procedure returned a set of independent parcels grouped accord-
ing to the functional profiles of the brain voxels. Indeed, such
parcels could either contain voxels that peaked approximately
at the same time (Fig. 2B, left) or with similar absolute strength
(Fig. 2B, right). As conceivable, clustering on the maximum time-
series indices is suggested when the brain activity is localized in
different regions at different times. Conversely, when the activity
is highly correlated over most of the brain voxels, clustering
should be done on maximum timeseries values and would help to
identify the core generators of the neural signal. In this study, 0.1–
1 Hz (global processing of the sequence) presented different peaks
of activity shifted over time and thus was clustered considering
the time-indices of such peaks. Differently, 2–8 Hz (local process-
ing of the sequence) showed very correlated activity and was
therefore clustered using the absolute values of such peak activity.
As widely done in clustering analysis (Garcia-Dias et al. 2019), also
in our case it was beneficial to compute the clustering algorithm
on a sequential set of k clusters (from k = 2 to 20). Then, the
best clustering solution was decided on the basis of well-known
evaluation strategies (heuristics) such as the elbow method/rule
(Liu and Deng 2021) and the silhouette coefficient (Al-Zoubi and
Al Rawi 2008). The elbow method consists in plotting the sum of
squared errors (SSE) of the elements belonging to the clusters with
respect to the cluster’s centroids, as a function of the progressively
more numerous cluster solutions. Then, the method suggests to
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visually identify the “elbow” of the curve as the number of clusters
to use. The silhouette coefficient is a value (ranging from −1 to
+1) showing the similarity of an element with its own cluster
(cohesion) when compared to other clusters (separation). A high
silhouette coefficient value indicates that the element is well
matched to its own cluster and poorly to the neighboring clusters.

Once the best functional clustering solution is decided, a sec-
ond clustering with regards to spatial information should be com-
puted (spatial clustering, Fig. 2C). Indeed, brain activity is mainly
described by two parameters, spatial locations, and variation over
time. Clustering the original brain voxels into distinct functional
parcels may return large parcels involving a network of spatially
separated brain areas that are e.g. active at the same time. Thus, to
define a better parcellation, it is beneficial to conduct clustering
analysis also on the spatial coordinates of each of the functional
parcels. In our study, we considered the three-dimensional spatial
coordinates (in MNI space) of the voxels forming each of the
functional parcels. This clustering computation was performed
for a sequential set of k clusters solutions (from k = 2 to 10), for one
parcel at a time. As for the functional clustering, we evaluated the
best solution for the spatial clustering by using the elbow rule and
the silhouette coefficient. The k-means functional clustering was
complete once this procedure was performed on all functional
parcels, suggesting an effective parcellation for the experimental
task based on both functional and spatial information (examples
are reported in Fig. S7, Tables S3 and S4 for 0.1–1 Hz and Fig. S8,
Tables S5, S6 and S7 for 2–8 Hz). As a last step, the timeseries of
the brain voxels belonging to each parcel were averaged together
to provide a final timeseries for the parcel. Additional information
on the k-means functional clustering is reported in the Supple-
mentary Materials.

Contrasts over time for each parcel
Here, the k-means functional clustering was performed on the
group-level main effects of M and N averaged together. Then, to
obtain the main effect of M and N for each parcel and participant,
we averaged the first-level main effect of M and N (from the GLMs)
over the brain voxels belonging to each of the functional parcels.
This resulted in a new timeseries for each participant, functional
parcel, and experimental condition (M and N). Such timeseries
were submitted to univariate contrasts (M versus N; Fig. 2D, meth-
ods, and Figs. S9 and S10, results). Specifically, for each parcel
and time-point, we computed one two-sample t-test (threshold
P < 0.05) contrasting the main effect of M versus N. Then, we
corrected for multiple comparison by using a two-dimensional
MCS approach with 1,000 permutations (MCS P < 0.001). More
details on this widely adopted statistical procedure can be found
in Bonetti et al. (2020), Bonetti, Brattico, Carlomagno, et al. (2021a),
Bonetti, Bruzzone, Sedghi, et al. (2021b), Bonetti, Brattico, Vuust,
et al. (2021c). As done for the other analyses, such operation was
observed for the two main frequency bands investigated in the
study (Fig. 3 and Table S8).

Results
Experimental design and MEG sensors analysis
In the first place, after preprocessing the MEG data (see Fig. 1A
and B and Materials and Methods for details), we contrasted
the brain activity underlying recognition of M versus N, which
was recorded by the MEG sensors. This procedure returned a
large significant cluster (P < 0.001, cluster size k = 2,117, mean t-
value = 3.29, time = 0.547–1.180 s), showing stronger brain activity
for M versus N. Moreover, the brain activity recorded over the MEG

channels forming such significant cluster outlined a timeseries,
which presented two main frequency components. As shown in
Fig. S2A, the faster frequency component peaked after the presen-
tation of each of the items forming the sequence, while the slower
frequency component accompanied the whole sequence. This
evidence was further supported by the computation of complex
Morlet wavelet transform on the evoked responses recorded by
all MEG sensor data, which highlighted the main contribution of
1 and 4 Hz to the MEG signal recorded during the task (Fig. S2B).
Thus, our following analyses primarily focused on two frequency
bands defined around 1 and 4 Hz, which were 0.1–1 and 2–
8 Hz. Importantly, we hypothesized that the frequency bands 2–
8 and 0.1–1 Hz indexed the two main processes involved in our
experimental task: processing of single items forming the tempo-
ral sequence (i—local processing) and recognizing the temporal
sequence as a comprehensive superordinate object (ii—global
processing).

Source reconstructed brain activity and
single-item analysis
We contrasted the reconstructed brain activity underlying M ver-
sus N sequences (see Materials and Methods for details). Different
results emerged for the main two frequency bands (0.1–1 and
2–8 Hz). Brain activity for 0.1–1 Hz was stronger for M versus
N, especially during processing of the last three items of the
sequence. As depicted in Fig. 1D, Figs S3–S5, such activity delin-
eated a widespread brain network underlying the global process-
ing of the sequence, involving brain regions related to memory
and evaluative processes such as cingulate gyrus, hippocampus,
insula, frontal operculum, and inferior temporal cortex (MCS
P < 0.001). Conversely, brain activity for the 2–8 Hz band was over-
all stronger for N versus M and mainly involved auditory cortices
(MCS P < 0.001). Statistics of the peak significant brain voxels
for frequencies 0.1–1 and 2–8 Hz are reported in Table 1, while
extensive results for the three frequency bands are described in
Tables S1 and S2.

Contrasts on functionally derived ROIs
To fully characterize the spatiotemporal unfolding of brain activ-
ity over time, we defined a functionally based parcellation of
the brain using k-means functional clustering (see Materials and
Methods and Fig. 2 and Fig. S6 for details), independently for 0.1–1
and 2–8 Hz frequency bands. This resulted in a new timeseries for
each participant, functional parcel, and experimental condition
(M and N), which were submitted to univariate contrasts (M versus
N) (Fig. 3) and corrected for multiple comparisons using cluster-
based MCS.

Similar to our previous analysis, the strongest brain activity
in the slower band was detected for M. Remarkably, expanding
on our first analysis, these new results highlighted a series of
sequentially active brain parcels accompanying the processing of
the temporal sequence. As shown in Fig. 3A, the brain presented
an initial activity in the right auditory cortex characterized by a
slightly stronger power for M versus N (Fig. 3A, parcel 1: P < 0.001,
cluster size k = 39; mean t-value = 2.72; time from first object
onset: 0–0.25 s). Next, we observed neural activity in the left audi-
tory cortex but no significant differences between experimental
conditions (Fig. 3A, parcel 2). Starting between the second and
third items and peaking during the fifth item of the temporal
sequence, we observed a burst of activity in the cingulate gyrus,
which was stronger for M versus N (Fig. 3A, parcel 3: P < 0.001,
k = 92; t-value = 2.73; time: 0.45–1.05 s). With a slight delay, a
similar profile emerged for a larger brain parcel comprising insula,
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Fig. 3. Contrasts between M versus N temporal sequences for the main functionally derived ROIs. A) Timeseries and contrasts between M (red line)
versus N (blue line) temporal sequences for the main functional brain parcels (global processing—0.1–1 Hz). The plots show a stronger activity for M
over N in a network of sequentially recruited ROIs (B). Timeseries and contrasts between M (red line) versus N (blue line) temporal sequences for the
main functional brain parcels (local processing—2-8 Hz). The plots illustrate a stronger activity for N over M in nearly all ROIs. The graphical depiction of
musical tones indicates the onset of the objects forming the temporal pattern, while the “+” shows the mean reaction time of participants’ response. The
colourbars refer to the t-values obtained from second-level analyses. The gray shadows indicate the time-windows of significant differences between
M and N timeseries.

the anterior part of the inferior temporal cortex, hippocampus,
and frontal operculum. Once again, M was largely stronger than
N (Fig. 3A, parcel 4: P < 0.001, k = 77; t-value = 2.79; time: 0.69–
1.19 s). Finally, peaking just before the mean reaction time for
participants’ categorization of the pattern, a stronger activity
in post-central gyrus and sensorimotor cortex was observed for
M versus N (Fig. 3A, parcel 5, main cluster: P < 0.001, k = 142;
t-value = 2.68; time: 0.94–1.88 s).

Conversely, the analysis for 2–8 Hz band showed several
significant clusters of stronger activity for N versus M around
the sharp peaks of the timeseries. Notably, compared to our
first analysis for the 5 items of the temporal sequence, this
second procedure clearly outlined the temporal extent of such
difference, which corresponded to the last three tones of the

temporal sequences. Specifically, such differences involved right
(Fig. 3B, parcel 1, main cluster I: P < 0.001, k = 11, t-value = 3.51;
time: 0.89–0.95 s; II: P < 0.001, k = 11; t-value = 2.22; time: 1.21–
1.28 s) and left primary auditory cortices (Fig. 3B, parcel 2, main
cluster I: P < 0.001, k = 12, t-value = −3.70; time: 0.74–0.81 s; II:
P < 0.001, k = 12; t-value = 3.09; time: 0.87–0.95 s; III: P < 0.001,
k = 9; t-value = 2.90; time: 0.64–0.69 s). With a reduced strength,
similar clusters of activity have been observed for right (Fig. 3B,
parcel 3, main cluster I: P < 0.001, k = 13, t-value = 3.08; time: 1.19–
1.27 s; II: P < 0.001, k = 12; t-value = 3.61; time: 0.89–0.96 s) and left
secondary auditory cortex and hippocampal areas (Fig. 3B, parcel
4, main cluster I: P < 0.001, k = 12, t-value = −2.97; time: 0.74–0.81 s;
II: P < 0.001, k = 10; t-value = 2.86; time: 0.87–0.93 s) and cingulate
(Fig. 3B, parcel 5, main cluster I: P < 0.001, k = 10, t-value = 3.03;
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Fig. 4. Focus on local processing (main ROIs). Deepening on three main parcels (primary auditory cortex (PAC), secondary auditory cortex and
hippocampal areas (SAC) and cingulate) of the local processing. The image highlights the different behavior of PAC versus SAC and Cingulate, especially
in the right hemisphere. It shows that higher-order areas (SAC and Cingulate) are more implicated than lower order ones (PAC) in the generation of the
P300 component in response to each sound of the pattern (as outlined by the red squares). The graphical depiction of musical tones indicates the onset
of the objects forming the temporal pattern, while the “+” shows the mean reaction time of participants’ response. Colourbars refer to the t-values
obtained from second-level analyses.

time: 0.90–0.96 s; II: P < 0.001, k = 9; t-value = −2.29; time: 0.79–
0.84 s). Additional details on these contrasts are reported in Tables
S8, and extensively depicted in Figs. S9 and S10.

In conclusion, Fig. 4 qualitatively illustrates an interesting phe-
nomenon. While the “wavelet” response to the first sound showed
very similar activity over primary (parcel i) and secondary audi-
tory cortices, insula, hippocampal areas (parcel ii), and cingulate
(parcel iii), the peaks for the following sounds showed a different
trend, especially in response to the third and fourth items of the
sequence. In this case, secondary auditory cortices, insula, hip-
pocampal areas, and cingulate seemed to peak before the primary
auditory cortex. However, contrary to what it may appear initially,
this may not indicate a faster response of those areas. Indeed,
looking, for example, at the peaks around 0.5 s (first red square
in Fig. 4), the first peak (mainly occurring for secondary audi-
tory cortices, insula, hippocampal areas and cingulate) should
correspond to the P300 component to the second sound of the
pattern, while the second peak (mainly occurring for primary
auditory cortex) may be the P50 to the third sound. An analogous
phenomenon happened for the following items of the sequence
(as outlined by the other red squares). This may suggest that while
the contribution of the primary auditory cortex was stronger for
the first components (i.e. P50 and N100), which indexed lower-
level processes, later components such as P300 may be mainly
generated by higher order areas such as secondary auditory cor-
tices, insula, hippocampal areas, and cingulate cortices. In the
current state, this is only a qualitative observation that calls for
future studies aiming to specifically and quantitively investigate
this phenomenon.

Discussion
This MEG study using musical sequences revealed the dual simul-
taneous processing in the brain associated with the recognition of
auditory temporal sequences. On the one hand, the presentation
of local, single items forming the sequence was linked to a rapid,

oscillatory, local processing driven by sensorial cortices. This pro-
cessing was stronger for the recognition of the sounds forming
the novel versus memorized musical sequences. On the other
hand, the processing of the global, whole temporal sequence was
associated with a simultaneous global, slow processing involving
a widespread network of sequentially active high-order brain
areas. In this case, the brain activity was largely stronger for
memorized versus novel sequences.

This dual simultaneous processing was particularly evident
in correspondence to the presentation of the last three tones
of the sequence, suggesting that at least two or three tones are
required by the brain to start the recognition process. Here, the
brain recruited a widespread network of areas largely related
to memory, attention, audition, and decision-making. Such brain
areas were hippocampus (Knierim 2015), cingulate gyrus (Rolls
2019; Pando-Naude et al. 2021; Criscuolo et al. 2022), inferior
temporal cortex (Conway 2018), frontal operculum (Indefrey et al.
2001; Behroozmand et al. 2015), insula (Uddin 2015), and primary
and secondary auditory cortex (Elhilali et al. 2004). Notably, both
processes (global and local) involved approximately the same
brain regions but depended on different frequencies of the neural
evoked responses. Furthermore, the local processing relied mainly
on sensorial cortices (e.g. auditory cortex), while the global pro-
cessing presented a wider recruitment of higher order brain areas
such as cingulate, inferior temporal cortex and hippocampus.

Strikingly, auditory temporal sequence recognition was asso-
ciated with a cascade of progressively slower events rewiring a
chain of low- to high-order brain regions. This evidence, observed
for the 0.1–1 Hz band, may indicate that the brain tracks and pro-
gressively constructs a meaningful understanding of the unfold-
ing temporal sequence by recruiting a hierarchical pathway of
subsequently active regions. Conversely, activity in the 2–8 Hz
band showed a complementary profile, which peaked slightly
after each item of the temporal sequence. Such evidence suggests
that, while the 0.1–1 Hz band may be implicated in achieving
a comprehensive understanding of the whole sequence (global
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processing), the 2–8 Hz band may elaborate independently on
the single items (local processing). However, our results cannot
conclusively tell whether such bands represented internal brain
mechanisms or were simply stimulus driven. Future research will
be needed to address this important question.

The main novelty of our results relates to the differential
strength of the brain signal observed for the two frequency bands
in relation to our experimental conditions (M and N). Indeed, while
the 0.1–1 Hz band presented a stronger power for the memorized
sequences, the 2–8 Hz band showed greater responses for the
novel ones. This finding may be seen in light of the predictive
coding theory (Friston 2012; Vuust et al. 2012; Koelsch et al. 2019),
which posits that the brain is constantly updating internal models
to predict environmental information. Here, when the brain is
recognizing the temporal sequences (e.g. around tones number
two and three of our sequences), it might formulate better predic-
tions of the upcoming, previously memorized, items completing
the sequences. Thus, such items would require a lower local
processing, as we observed experimentally. Interestingly, although
mainly localized in primary auditory cortex, the neural sources
of 2–8 Hz band activity were also placed in hippocampal areas,
secondary auditory cortex, insula, and cingulate. As previously
mentioned, this evidence suggests that roughly the same brain
regions generated two simultaneous frequency bands character-
ized by a very different functional profile, indexing the local and
global processing of the temporal sequence. On top of this, with
regards to local processing, our results show that the elaboration
of each sound gave rise to a wavelet-like timeseries with three
main peaks (components). Here, the lower level elaboration of
the sounds indexed by the first components (i.e. P50 and N100
(Coles and Rugg 2008)) originated mainly in the primary auditory
cortex. Conversely, later components such as P300 (Coles and
Rugg 2008) were generated especially by higher order areas such
as secondary auditory cortices, insula, hippocampal regions, and
cingulate. Remarkably, such phenomenon became more evident
following the unfolding of the temporal sequence, suggesting that
a progressively more refined elaboration of the single items may
be essential for the brain to comprehend the meaning of the whole
temporal sequence.

On another note, several previous studies described global and
local processing in terms of different locations of the neural signal
(i.e. primary sensorial cortices preceded higher-order brain areas
in the elaboration of incoming stimuli (Qiu and Von Der Heydt
2005). Conversely, in our study we showed that the same brain
regions operated these 2 processes (global and local) at the same
time, using two concurrent frequency bands, perhaps suggestive
of complex multiplexing. These results are coherent with previ-
ous research, which showed concurrent brain processes of the
same items in auditory perception and language comprehension
(Giraud and Poeppel 2012). In addition, some of the previous
studies that investigated auditory processing and memory for
sound information reported slow evoked responses similar to our
slow, global processing. For instance, Picton (1978) provided evi-
dence of auditory sustained electric potential in the human brain
in response to sounds. More recently, Bidet-Caulet et al. (2007),
using intracranial EEG, showed that selective attention for sound
information was associated with sustained evoked responses in
secondary auditory brain regions. Similarly, Grimault et al. (2014),
studying auditory short-term memory, reported sustained brain
activity in frontal, temporal and parietal regions when several
auditory items were held in memory. In line with these findings,
Albouy and colleagues showed slow evoked responses when par-
ticipants were asked to perform auditory working memory tasks.

They reported the slow, sustained brain responses especially in
relation to retention and manipulation of auditory stimuli (Albouy
et al. 2013, 2017).

Finally, our findings related and expanded concepts of the well-
known two-stream hypothesis of the brain (Goodale and Milner
1992; Whitwell et al. 2014). Such conceptualization proposed 2
main pathways for high-order elaboration of visual and auditory
information. On the one hand, the ventral stream leads from
sensorial areas (e.g. visual and auditory cortices) to the medial
temporal lobe, processing features mainly associated to object
recognition (Goodale and Milner 1992; Weiller et al. 2021). On
the other hand, the dorsal stream brings information from sen-
sory cortices to the parietal lobe, elaborating spatial features
of the stimuli (Arbib 2017). Coherent with this hypothesis, our
results highlighted several brain regions of the ventral stream
that are implicated in recognition processes, such as hippocampal
areas, frontal operculum, and inferior temporal cortex. Remark-
ably, however, our results further expanded previous knowledge
on the two-stream hypothesis by providing at least three cru-
cial, conclusive remarks. (i) The brain recognition of temporal
sequences presented unique spatial–temporal features, which
were not shared with the identification of single items or syn-
chronous patterns. (ii) In addition to the brain regions involved
in the two-stream hypothesis, our findings showed the privileged
role of cingulate gyrus to achieve auditory temporal sequence
recognition. (iii) Finally, the recognition of sequences unfolding
over time involved a dual simultaneous processing of the same
items, which the brain interpreted concurrently as individual
pieces of information (local processing) and elementary parts of
a larger whole (global processing). Notably, our study showed that
the local processing was highly relevant for the novel auditory
information, while the previously memorized musical sequences
were recognized through a strong involvement of the brain global
processing.

Future research is called to further investigate this topic by
studying the brain mechanisms underlying recognition of non-
musical temporal sequences (e.g. sequences of numbers, words,
and visual elements). In addition, based on the well-known dif-
ferences in cognitive abilities among diverse categories of people
(e.g. older versus younger adults (Fernàndez-Rubio, Brattico, et al.
2022a; Fernàndez-Rubio, Olsen, et al. 2022c), musicians versus
non-musicians (Criscuolo et al. 2019; Bonetti, Brattico, Vuust,
et al. 2021c), and healthy individuals versus patients (Valenzuela
and Sachdev 2006)), future studies should explore the impact of
age and clinical conditions on the brain mechanisms underlying
temporal sequences recognition.
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