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Critical scaling of whole-brain resting-state
dynamics
Adrián Ponce-Alvarez 1,2✉, Morten L. Kringelbach 3,4,5 & Gustavo Deco 1,6

Scale invariance is a characteristic of neural activity. How this property emerges from neural

interactions remains a fundamental question. Here, we studied the relation between scale-

invariant brain dynamics and structural connectivity by analyzing human resting-state (rs-)

fMRI signals, together with diffusion MRI (dMRI) connectivity and its approximation as an

exponentially decaying function of the distance between brain regions. We analyzed the rs-

fMRI dynamics using functional connectivity and a recently proposed phenomenological

renormalization group (PRG) method that tracks the change of collective activity after suc-

cessive coarse-graining at different scales. We found that brain dynamics display power-law

correlations and power-law scaling as a function of PRG coarse-graining based on functional

or structural connectivity. Moreover, we modeled the brain activity using a network of spins

interacting through large-scale connectivity and presenting a phase transition between

ordered and disordered phases. Within this simple model, we found that the observed scaling

features were likely to emerge from critical dynamics and connections exponentially decaying

with distance. In conclusion, our study tests the PRG method using large-scale brain activity

and theoretical models and suggests that scaling of rs-fMRI activity relates to criticality.
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Interesting phenomena in biological systems are often collec-
tive behaviors emerging from the interactions among their
constituents. Growing evidence indicates that large-scale

spontaneous brain activity is an emergent phenomenon con-
tinuously generating patterned activity at multiple spatiotemporal
scales1–3. How patterned activity arise from the brain’s con-
nectivity is a fundamental question in neuroscience. A hallmark
of spontaneous, or resting-state (rs), whole-brain activity is scale
invariance. Indeed, scale-free (power-law) power spectrum has
been reported in human brain dynamics acquired using fMRI4,5,
electrocorticography6, LFPs7, and MEG8. Moreover, scale-
invariance of propagating clusters of activity (neuronal ava-
lanches) has been observed in human fMRI recordings9, M/EEG
fluctuations10,11, and zebrafish whole-brain calcium imaging12.
These works add up to a large body of studies showing scale-
invariant neuronal avalanches at the microcircuit level13–18.

In physical systems, scale-invariance is observed at critical
points. Thus, the observation of power-law statistics in neural
activity has contributed to support the idea that spontaneous
neural activity operates close to a phase transition19. Several
studies have shown that critical neural systems maximize infor-
mation transmission, storage, and processing12,20–22. Interest-
ingly, it has been shown that brain activity deviates from critical-
like behavior in different brain states and neuropsychiatric
disorders23–29. For instance, using fMRI30,31 and voltage
imaging32, it has been shown that awake resting state displays
critical-like dynamics, yielding maximal information capacity and
transmission, while anesthesia states depart from criticality. For
these reasons it is believed that critical dynamics are a char-
acteristic of healthy, awake spontaneous neural activity.

Because the critical behavior of a physical system is governed
by fluctuations that are statistically self-similar, its statistics are
re-scaled after gradual elimination of the correlated degrees of
freedom. This is achieved through the Renormalization Group
(RG) procedure. This method tracks the change of the joint
probability distribution of the system variables after successive
coarse-graining at different scales. In the case of critical systems at
equilibrium, probability distributions are scale-invariant under
iterated coarse-graining and represent fixed points of the RG. In
the case of neural activity, to account for the (unknown) topology
of interactions, a phenomenological renormalization group
(PRG) procedure has been proposed in which maximally corre-
lated variables are grouped together33, instead of locally grouping
variables that are spatially close as in most applications of RG.
This method successfully revealed scaling features in local single-
neuron recordings from the mouse hippocampus33,34 and,
recently, in other areas of the mouse brain35. The method has
been previously tested on theoretical models36, but it remains to
be tested at the large scale and combining theoretical models
and data.

Moreover, how the scaling properties of brain dynamics relate
to structural principles remains unclear. Previous investigations
using retrograde tract tracing methods in mice and nonhuman
primates’ cortices37–39 have shown that the probability of a
connection existing between two given cortical areas declines with
distance. An exponential decay with interareal distance, known as
exponential distance rule (EDR), has been proposed as a simple,
geometrically-constraint wiring principle38–41. Nevertheless, a
recent study using fluorescent mapping of neuronal projections
found that a power law decay was a marginally better fit than
exponential decay42. Special attention has been paid to long-range
connections that deviate from simple connection decay as a
function of distance, in terms of their impact on wiring-cost43

and on dynamics of oscillator models44,45.
Here, we studied how scale-invariance of brain dynamics

relates to structural connectivity. For this, we examined the

relation between human rs-fMRI signals and diffusion MRI
(dMRI) structural connectivity, focusing on spatial anatomical
constrains. Next, we studied the scaling properties of rs-fMRI
dynamics using the correlation function and the PRG method.
Finally, using a simple spin model with a geometrically-constraint
connectivity, we showed that scaling in rs-fMRI signals is sug-
gestive of critical behavior.

Results
Linear prediction of fMRI signals from structural connections.
We analyzed fMRI signals in a parcellation of N = 1000 regions
of interest (ROIs) or nodes. The dataset was composed of 1003
individual scans of nF ¼ 1200 time frames. Structural con-
nectivity was obtained using dMRI and probabilistic tractography
in the same parcellation, resulting in a N ´N coupling matrix C
(see “Methods”). The data was obtained from the Human Con-
nectome Project (HCP) public database. In this section, we stu-
died the relation between fMRI dynamics and structural
couplings.

We first note that the relation between the connectivity weight
between two nodes and the Euclidean spatial distance between
those nodes was approximately a power law (Fig. 1a), indicating
the presence of long-range connections. To evaluate the
importance of long-range connections, we compared the dMRI
connectivity to a model connectivity based on EDR, i.e.,

Cij / expð�γrijÞ, where rij ¼ ~xi �~xj

��� ���, and ~xi and ~xj are the

positions in 3D space of the centers of ROIs i and j, respectively.
Using least squares and for distances <50 mm, we obtained: γ ¼
0.106 ± 0.007 mm−1. Notably, the value of γ is consistent with the
extrapolation to human brain based on the relation between the
EDR and the brain volume39. We noted that the EDR fit was
higher for intra-hemispheric connections than for the long-range
inter-hemispheric ones (Fig. 1b): the correlation between EDR
and dMRI connectivities was equal to 0.69 and 0.49 for intra- and
inter-hemispheric connections, respectively. By construction,
dMRI and EDR connectivity matrices are symmetric.

We next tested the linear signal prediction of both connectivity
matrices. Let X be the N ´ nF data matrix containing the fMRI
signals. Assuming linear couplings, we calculated the predicted
signals as Xpred ¼ CX (i.e., the prediction of each signal given

the rest of the network and couplings C). The goodness of the
linear prediction was given by the Pearson correlation between
XpredðtÞ and XðtÞ for all nodes and all subjects. Correlation

coefficients were remarkably similar for the dMRI and the EDR,
with means equal to 0.51 ± 0.01 and 0.49 ± 0.01, respectively
(Fig. 1c, d). These average values were significantly higher
(p < 0.001, Welch’s t-test) than the one obtained using a shuffled
connectivity that preserves the distribution of dMRI weights but
destroys their spatial organization (mean correlation: 0.32 ± 0.01).
Consistently, we noted that nodes for which the linear prediction
was the lowest were those nodes that were weakly connected to
the network, i.e., nodes with low node strength, where the
strength of node i is the sum of the weights of its connections
with other nodes in the network, i.e., ∑j≠iCij (Fig. 1e). Finally, we
also tested (i) the linear prediction of each signal given the rest of
signals from the same hemisphere and intra-hemispheric
couplings and (ii) the linear prediction of each signal given the
signals from the contralateral hemisphere and inter-hemispheric
couplings (Supplementary Fig. S1). We found that, although
inter-hemispheric predictions were reduced with respect to intra-
hemispheric ones, they remained significant and were practically
indistinguishable using the dMRI and the EDR connectivity
matrices. Altogether, we concluded that both the dMRI and the
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EDR connectivity matrices were equally good linear predictors of
the fMRI signals.

Correlation function and phenomenological renormalization-
group. We next evaluated the relation gðrÞ between functional
correlations of pairs of ROIs and their distance. As required for
the modelling in the next section, we used binarized fMRI signals
(see “Methods”). Briefly, for each scan, the z-scored time-series of
each ROI, ziðtÞ (1≤ i≤N), was binarized by imposing a threshold
θ ¼ 1. Thus, at each time frame t, the collective activity was
described by a binary vector ~σ ¼ σ1; ¼ ; σN

� �
, with σ i ¼ 1 if

ziðtÞ>θ and σ i ¼ 0 otherwise. Binarization of time-series has
proven to effectively capture and compress fMRI large-scale
collective dynamics9,31,46.

Consistent with previous work47, we found that the average
functional correlation, across all ROI pairs and all subjects, was
approximately power-law, i.e., gðrÞ � r�~η, with a power exponent
equal to ~η ¼ 0.513 ± 0.009 (Fig. 2a–c). For each individual scan,
we tested the power-law hypothesis against an exponential
alternative by calculating the ratio between explained variances
(REV ) of least-squares fits using the two competing regression
models. We found a ratio of �1.2 of explained variances
systematically in favor of the power-law hypothesis (Fig. 2d).

The exact value of the exponent ~η depends on the cutoffs
rmin; rmax

� �
used to constrain the power-law fitting, but for a large

region in the rmin; rmax

� �
plane we found a good fitting of the

power law (explained variance R2> 0.95) and an exponent around
0.52 (Fig. 2e, f).

Power-law correlations are a hallmark of critical systems, but
neither a necessary nor a sufficient condition. Recently, a PRG
approach has been proposed to identify scale-invariant activity in
neural systems33. Within this method, the collective activity is
iteratively coarse-grained by grouping maximally correlated
variables (see “Methods”). At each coarse-graining step
k ¼ 0; 1; ¼ ; kmax, clusters of size K ¼ 2k are built, resulting in
a system of N=K coarse-grained variables and successively
ignoring degrees of freedom. We calculated several observables
of the coarse-grained variables and studied their evolution as a
function of K .

We found that the variance V of coarse-grained variables
scaled as a power of the cluster size, i.e., V � K~α, with an average
exponent ~αh i ¼ 1.574 ± 0.002 across subjects (Fig. 3a). This
exponent lies in the region between linear (~α ¼ 1) and quadratic
growth (~α ¼ 2), corresponding to uncorrelated and fully-
correlated systems, respectively. The distribution of the value of
the exponents ~α from individual scans is shown in Fig. 3e.

Fig. 1 Linear prediction of fMRI signals using dMRI and EDR coupling matrices. a dMRI weights as a function of the distance between pairs of nodes
(blue) and the exponential approximation (red). The thickness of the blue trace indicates SEM. b Large-scale connectivity matrices: dMRI (left), EDR
(right). Connectivity weights are presented in logarithmic scale. Portions of the matrices corresponding to intra- and inter-hemispheric connections are
highlighted in red and blue, respectively. c Three example fMRI signals and their corresponding linear predictions using the EDR connectivity, i.e.,
Xpred ¼ CX. The correlation between the actual and the predicted signals is also indicated. d Distributions of signal predictions using the dMRI
connectivity (blue), the EDR (red), and a shuffled connectivity that preserves the distribution of dMRI weights but destroys the spatial organization (gray)
(n= 1000 × 1003). e Average signal prediction as a function of the strength of the nodes of the EDR connectivity. Each dot represents a node (n= 1000);
the blue trace represents the average relation. Error bars indicate SD.
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Individual exponents ~α had low uncertainty: on average, the
exponent estimation error was equal to 0.03 (Fig. 3f), correspond-
ing to an average relative estimation error equal to 1.99%
(Fig. 3g). Moreover, the ratio between explained variances of
least-square fits of VðKÞ using a power law vs. an exponential
distribution systematically favored the power-law hypothesis
( REV

� � ¼ 1.34; Fig. 3h).
Another interesting observable is the probability of silence

activity Psilence, i.e., time frames in which all signals within a
cluster are below their activation threshold. Assuming that the
probability distribution of the collective activity in a cluster of size
K is a Boltzmann distribution and that the configuration of
complete silence has a null energy, Psilence Kð Þ relates to the
partition function of the distribution, i.e., Psilence Kð Þ ¼ Z�1

K .
Thus lnPsilence can be associated to an effective free energy
F Kð Þ ¼ �lnZK

34: The effective free energy F ¼ lnPsilence scales

with the cluster size, i.e., F � �K
~β, with an average exponent

~β
D E

¼ 0.673 ± 0.002 across subjects (average relative estimation

error: 2.27%; REV

� � ¼ 1.38; Fig. 3b, e–h).
The last observable that we studied was the eigenvalue spectra

of coarse-grained variables. For this, for each cluster of size K , we
decomposed the covariance matrix into eigenvectors and studied
the behavior of eigenvalues λ as a function of their relative rank.
Consistent with Meshulam et al.33,34, we found that the spectra in
clusters of different size K collapsed when the rank was
normalized, i.e., rank=K , and a power-law scaling of the
eigenvalues as a function of their rank, i.e., λ � rank=K

� ��μ
,

with an average exponent μ
� � ¼ 0.328 ± 0.001 across subjects,

followed by exponential truncation due to finite size effect
(average relative estimation error: 1.88%; REV

� � ¼ 1.21; Fig. 3c,
e–h). The estimated least-squares exponent μ stabilized for K> 8
(Fig. 3d).

We further compared the measured PRG exponents to those
obtained from shuffled data for which the correlations between

Fig. 2 Correlation function. a Correlation function of fMRI signals as a function of the distance between nodes. Error bars indicate SEM. The correlation
function of fMRI signals was approximately power-law, i.e., gðrÞ � r�eη. The power law was fitted in the distance interval r 2 10; 90½ � mm. b Distribution of
the estimated power exponent for single-subject scans (n= 1003). c Distribution of the relative estimation error of exponent eη, i.e., Δeη=eη, where Δeη is the
least square estimation error of exponent eη. Note that the average relative estimation error is <3%. d The power law fit was compared the one obtained
using an exponential function by calculating the ratio between the explained variance of the competing regression models. Ratios larger than 1 favor the
power law hypothesis. e, f When fitting the power law to gðrÞ in the distance interval r 2 rmin; rmax

� �
, for several combinations of rmin and rmax, we found a

large region in the rmin; rmax

� �
plane with high explained variance R2 (e) yielding power exponents eη � 0.52 (f, the blue dotted line indicates the region for

which R2> 0.95).
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signals were destroyed. To do this, the time frames of the
binarized fMRI signals were randomly permuted, independently
for each ROI. The PRG method applied to the shuffled data
yielded exponents that were significantly different than those
obtained using the original data (see Supplementary Fig. S2).
Indeed, shuffled data yielded exponents ~α and ~β that approach 1
(as expected for independent signals) and showed no evidence of
scaling of the eigen-spectrum. Finally, we examined whether the
number of ROIs affect the PRG scaling. For this, we built
subsampled systems by randomly selecting a fraction of the N
ROIs and we applied the PRG method to the subsampled data.
We found that PRG exponents from subsampled data converged

to those obtained using the full-size original data when the
fraction of selected ROIs was larger than � 0:7N (see
Supplementary Fig. S3).

In conclusion, using the correlation function and the PRG
method we were able to describe the scale invariance of collective
fMRI binarized activity by means of four power-law exponents ~η,
~α, ~β, and μ.

Connectivity-based phenomenological renormalization-group.
The above PRG approach was designed to study scale-invariance
in neural systems when information about the neural connectivity

Fig. 3 Phenomenological renormalization-group. a Variance V of coarse-grained variables as a function of cluster size K, average over subjects (black
points; error bars indicate SD over subjects, n= 1003). The solid black line indicates least squares power law fit, i.e. V ¼ Keα. Dashed lines indicate linear
(eα ¼ 1) and quadratic (eα ¼ 2) growths, corresponding to uncorrelated and fully correlated systems, respectively. eαh i indicates the average exponent across
subjects. b Silence log-probability, F ¼ lnPsilence, of coarse-grained variables as a function of cluster size, average over subjects (black points; error bars
indicate SD over subjects, n= 1003). The solid black line indicates least squares power law fit, i.e. F ¼ �K

eβ. The dashed line indicates the prediction for
uncorrelated variables (eβ ¼ 1). In (a) and (b), the variance and the silence log-probability were normalized by their corresponding values at coarse-graining
step k ¼ 0 (original system).

�eβ� indicates the average exponent across subjects. c Eigenvalues λ of the covariance matrix as a function of their relative
rank, for clusters of different sizes, for one example subject. The solid black line indicates least squares power law fit, i.e. λ ¼ rank

K

	 
�μ
, for rankK <0:4. μ

� �
indicates the average exponent across subjects. d Estimated exponent μ for different cluster sizes. Error bars indicate the estimation error of the exponent
(for K> 8 error bars are smaller than the symbols). e Distribution of exponents eα, eβ, μ for single-subject scans (n= 1003). f Least square estimation errors
of PRG exponents. g Relative estimation error of exponents; e.g., Δeα=eα, where Δeα is the least square estimation error of exponent eα (n= 1003). White
circles indicate medians. h The power-law fits of VðKÞ, FðKÞ, and λ rank=K

� �
were compared to those obtained using an exponential function by calculating

the ratio between the explained variance of the competing regression models (REV). Ratios >1 favor the power law hypothesis. Violin plots represent the
distribution of ratios across subjects (n= 1003). White circles indicate medians.
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was unknown33. This method is based on the correlation matrix
(functional correlations) of variables at successive coarse-
graining. We here extended this method to incorporate infor-
mation about structural connectivity (see “Methods”) that, in our
case, was provided by the dMRI connectivity and its EDR
approximation. For this, one needs to coarse-grain the variables
and the connectivity at each coarse-graining step. When applying
this connectivity-based PRG to the fMRI data, we found that ~α, ~β,
and μ exponents computed based on the dMRI connectivity
strongly correlated with exponents computed based on the EDR
(correlation > 0.98; Fig. 4a, see also Supplementary Fig. S4).
Interestingly, the connectivity-based PRG exponents also strongly
correlate with the exponents obtained using the original version
of the PRG method, i.e., based on functional correlations (cor-
relation > 0.89, Fig. 4b). In fact, we found that connectivity-based
PRG exponents were shifted by a systematic bias from PRG
exponents equal to −0.161, 0.095, and 0.106 for exponents ~α, ~β,
and μ, respectively. We concluded that scaling exponents were
consistently and reliably estimated using the PRG based on
functional correlations or structural connections.

Whole-brain spin model. To test whether the observed scaling of
activity is a signature of criticality, we built a spin model based on
large-scale connectivity. The spin model is a canonical model
presenting a second-order phase transition between ordered and
disordered phases. Using the maximum entropy principle, the
spin model can be mapped to binary neural data such as spiking
activity (e.g. refs. 48,49) or binarized fMRI data (e.g. refs. 31,46,50).
In this model, at each time step, the state of each node is
described by a binary variable, i.e., σ i 2 �1;þ1½ �, and the col-
lective activity of the N nodes is given by a binary pattern
~σ ¼ σ1; ¼ ; σN

� �
. The probability of each pattern is given by the

Boltzmann distribution:

P ~σð Þ ¼ 1
Z
exp β ∑

i;j
Cijσ iσ j

� �
; ð1Þ

Where E ~σð Þ ¼ �β ∑
i;j
Cijσ iσ j represents the energy of the pattern;

Z is the partition function, i.e., Z ¼ ∑
~σf g
exp �E ~σð Þð Þ; and β is a

scaling parameter of the connectivity matrix C, equivalent to an
inverse temperature, i.e., β ¼ 1=T , which is the free parameter of
the model. The connectivity matrix C was given by the EDR or
the dMRI. Realizations of the spin model were obtained using
Monte Carlo Metropolis simulations (see “Methods”). For each
configuration ~σ, the population activity is defined as the average

node value:M ~σð Þ ¼ ∑iσ i=N . The average population activity Mh i
was obtained by averaging across simulation steps.

For temperatures lower than a critical value, Tc ¼ β�1
c , the spin

model is in an ordered phase and presents a spontaneous
population activity (i.e., Mh ij j>0) that vanishes in the disordered
phase for temperatures >Tc (Fig. 5a). A power-law correlation
function was observed around the critical point separating the
two phases (Fig. 5b; see also Supplementary Fig. S5), with a
critical exponent ~η that was close to the one measured in the data
for the EDR (~η= 0.515 ± 0.013; relative error from the empirical
exponent: Δ~η ¼ 0.4%), but slightly different for dMRI
(~η= 0.310 ± 0.009; Δ~η ¼ 39.6%). When fitting a power law to
the model correlation function gðrÞ for the full range of tested
temperatures, we found that the power exponent was the closest
to the empirical one around the critical point for the two
connectivity matrices (Fig. 5c).

We next applied the PRG method to the model activity. We
found that, for the EDR and close to the critical point, the scaling of
the variance and the covariance eigen-spectrum was similar to the
one measured in fMRI data: the critical exponents were equal to
~α ¼ 1.62 ± 0.01 and μ ¼ 0.30 ± 0.03 (Δ~α ¼ 2.9%, Δμ ¼ 8.5%;
Fig. 5d–g). Power-law scaling of the coarse-grained variance was
observed for all temperatures, while the eigen-spectrum scaled as a
power law of the rank for the supercritical and critical regimes, but
it exponentially decays in the subcritical regime (Supplementary
Fig. S5). For the dMRI connectivity, the ~α critical exponent was
similar to the one measured in the fMRI data, but the μ critical
exponent deviated from the data: ~α ¼ 1.53 ± 0.05 (Δ~α ¼ 2.9%) and
μ ¼ 0.26 ± 0.02 (Δμ ¼ 21.7%) (Fig. 5d–g). Thus, opposite to the
case of the EDR, in the case of the dMRI connectivity the empirical
exponents could not be simultaneously fitted using a unique
temperature parameter. Similarly, when using the connectivity-
based PRG to compare the scaling of the data and the model, we
found that the model’s critical exponents were remarkably close to
the empirical exponents when the EDR was used both to couple
and coarse-grain the spin variables (Δ~α ¼ 1.1%, Δμ ¼ 1.0%; see
Supplementary Fig. S6c, d), but deviated for the dMRI connectivity
(Δ~α ¼ 11.5%, Δμ ¼ 11.2%; see Supplementary Fig. S6a, b). We note
that, since spin variables are symmetric (−1 or 1), we cannot define
a silence probability to be associated to a free energy. Thus, the
exponent ~β could not be calculated for the model.

We concluded that, around its critical point, the spin model
approximates the fMRI correlations and their scaling features,
especially for the EDR, i.e., in the absence of long-range
connections.

Fig. 4 Connectivity-based phenomenological renormalization group. a Connectivity-based PRG exponents calculated from the fMRI data assuming
structural connections given by dMRI or EDR. Each dot represents an individual scan (n= 1003). rc : correlation between corresponding exponents computed
based on dMRI and EDR. b Comparison between dMRI-based PRG exponents and those obtained using the original PRG method (based on functional
correlations, FC). Each dot represents an individual scan (n= 1003). rc : correlation between corresponding exponents computed based on dMRI and FC.
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Discussion
We have shown that rs-fMRI signals present scaling features in
the correlation function and as a function of coarse-graining
based either on functional or structural connectivity. Notably, we
found that the observed scaling can emerge from connections
following a simple EDR and critical dynamics, i.e., the scaling
exponents observed in the data were strikingly close to those
predicted by a critical system of spins interacting through the

EDR connectivity. Thus, our results suggest that criticality is the
link between the connectome’s structure and scale-invariant brain
dynamics.

Previous theoretical work has tested the PRG method in an
interacting particle system, the contact process, and the Ising
model, both in a regular 2D lattice and with nearest-neighbor
interactions36. The scaling of the contact process and Ising
models under PRG yields critical exponents that differ between

Fig. 5 Spin model. a Population activity as a function of β ¼ 1=T, relative to the critical point βc ¼ 1=Tc. For T>Tc, the system is disordered and the average
population activity is zero. For T<Tc, the system is ordered and a spontaneous population activity emerges and settles in either a negative or a positive
value (depending on the initial conditions). b At the critical point (blue), the correlation function is a power law, with a power exponent eη close to the one
measured in the fMRI data. The correlation function is shown for three example temperatures, also shown in (a) (red: supercritical; blue: critical; purple:
subcritical). c Exponent eη as a function of β=βc. d Variance V of coarse-grained variables as a function of cluster size K, for the three example temperatures.
e Exponent eα as a function of β=βc. f Eigenvalues of the covariance matrix as a function of their relative rank, at the critical point, for clusters of different
sizes. g Exponent μ as a function of β=βc. In (a), (b), (d) and (f), the connectivity used was the EDR. In (c), (e), and (g): filled symbols indicate explained
variance ratios favoring the power law model over the exponential model, i.e., REV>1 (see also Supplementary Fig. S5); exponent estimation errors are
smaller than the symbols; the horizontal line indicates the empirically measured exponent.
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3.4-27.2% from those measured from collective neuronal activity
of mouse hippocampus, which was the target of those
models33,36. Interestingly, critical exponents in the contact pro-
cess were found to be unchanged in the presence of long-range
interactions in small-world networks36. Our strategy, however,
was different since we modeled the system with a proxy of the
underlying brain connectivity, thus conserving both the size of
the network and the spatial distribution of the nodes. This
allowed us to map the scaling exponents observed in rs-fMRI data
to the phases of a model presenting a phase-transition. In our
case, using the EDR, the model’s critical exponents were
remarkably close to the exponents measured in rs-fMRI signals
(both using the PRG or the connectivity-based PRG; see Fig. 5
and Supplementary Fig. S6), suggesting that brain dynamics
operate close to a critical point in which order and disorder
coexist. This result is in line with previous works showing that rs-
fMRI signals display critical-like patterned activity detected using
other methods, such as neuronal avalanches9 and maximum
entropy models which are equivalent to spin models inferred
from data31,50. Since, the EDR has been previously observed in
different species (rodents and nonhuman primates), it would be
interesting to examine whether large-scale dynamics in these
animal models also scale under PRG and relate to criticality.

Overall, our study shows that combination of PRG, con-
nectomes, and models can be useful to distinguish the working
regime of the observed neural system. Since different behavioral
and pathological brain states deviate from critical dynamics23–32,
extending these analyses to different brain states could provide
new insights on phase transitions in neural systems. We hypo-
thesize that the PRG exponents change depending on the brain
state and could be used as biomarkers in clinical and fundamental
research. Indeed, in a recent study, Rocha et al.29 have shown that
criticality is lost in the case of stroke lesions, but it is recovered
over time as behavior improves. Thus, criticality signatures can
represent promising tools for translational research. Furthermore,
we note that the PRG method can be formalized using different
interaction measures (e.g., synchrony) and in Fourier space33,
which makes it suitable to study oscillatory dynamics recorded
using LFPs, MEG, or electrocorticography. However, notice that,
when applying the PRG method to finite data, both the cluster
size’s range on which scaling can be tested and the accuracy of
coarse-grained statistics (e.g., covariances) are limited by the
amount of data and the tradeoff between the spatial and temporal
resolutions of the used recording technique.

The dMRI is a non-invasive method to estimate the large-scale
brain connectivity, but it has methodological caveats and
limitations51. In particular, it estimates short-range intra-hemi-
spheric connections more reliably than inter-hemispheric ones.
On the contrary, at the mesoscale, invasive chemical tracers are
considered to be the gold standard for estimating the connecting
fibers with high accuracy. This technique has shown that con-
nection strength exponentially declines with distance. Here, we
showed that the EDR with a characteristic scale that was con-
sistent with the extrapolation to human brain given its volume39,
acheived a good linear prediction of fMRI signals, and yielded an
accurate, consistent prediction of scaling exponents of brain
activity using a critical whole-brain model. The whole-brain
model constraint with the dMRI connectivity did not fit all
scaling exponents neither at the critical point nor using a single
temperature different from Tc (see Fig. 5 and Supplementary
Fig. S6). We concluded that, at least within the framework of our
simple model, the EDR-based critical spin model represents a
more parsimonious description of the observed rs-fMRI
dynamics than the model based on dMRI connectivity (which
presents long-range connections departing from the EDR). Future
studies could explore the link between scaling features and

connectivity using different recording techniques and more rea-
listic models including interacting excitatory and inhibitory
neural populations.

In conclusion, we have shown that whole-brain dynamics
display scaling properties that emerge from exponentially
decaying connections and critical dynamics, which are two fea-
tures of connectivity and dynamics largely supported by fiber-
tracking research and studies of neural activity at different scales
and with different techniques.

Methods
Neuroimaging ethics. The Washington University–University of Minnesota
(WU-Minn HCP) Consortium obtained full written informed consent from all
participants to study procedures and data sharing outlined by HCP, and research
procedures and ethical guidelines were followed in accordance with Washington
University institutional review board approval.

Functional MRI data. In this study we analyzed publicly available rs-fMRI data
from the Human Connectome Project (HCP), from 1003 participants. The parti-
cipants were scanned on a 3 T connectome-Skyra scanner (Siemens). The rs-fMRI
data was acquired for ~15 min, with eyes open and relaxed fixation on a projected
bright cross-hair on a dark background. The HCP website (https://www.
humanconnectome.org/) provides the details of participants, the acquisition pro-
tocol and preprocessing of the functional data. Briefly, the fMRI data was pre-
processed using standardized methods using FSL (FMRIB Software Library),
FreeSurfer, and the Connectome Workbench software52,53. This preprocessing
included correction for spatial and gradient distortions and head motion, intensity
normalization and bias field removal, registration to the T1 weighted structural
image, transformation to the 2 mm Montreal Neurological Institute (MNI) space,
using the FIX artefact removal procedure53,54. The head motion parameters were
regressed out and structured artefacts were removed by ICA+ FIX processing55,56.
Preprocessed timeseries of all grayordinates are in HCP CIFTI grayordinates
standard space and available in the surface-based CIFTI file for each participant. A
custom-made Matlab script, using the ft_read_cifti function from the Fieldtrip
toolbox57, was used to extract the average timeseries of all the grayordinates in each
region of the Schaefer parcellation, which are defined in the HCP CIFTI grayor-
dinates standard space. Sequence and imaging parameters: Sequence: Gradient-
echo EPI; TR: 720 ms; TE: 33.1 ms; flip angle 52 deg; FOV: 208 × 180mm (RO x
PE); Matrix: 104 × 90 (RO x PE); Slice thickness: 2.0 mm, 72 slices, 2.0 mm iso-
tropic voxels; Multiband: factor 8; Echo spacing: 0.58 ms; BW: 2290 Hz/Px.

Structural connectivity using dMRI. Structural connectivity was estimated from
diffusion spectrum and T2-weighted imaging data from 32 participants from the
HCP database, scanned over 89 min. Acquisition parameters are described in detail
in the HCP website58. The freely available Lead-DBS software package (http://
www.lead-dbs.org/) provided the preprocessing which is described in detail in
Horn and colleagues59 but, briefly, the data was processed using a generalized
q-sampling imaging algorithm implemented in DSI studio (http://dsi-studio.
labsolver.org). Segmentation of the T2-weighted anatomical images produced a
white-matter mask and co-registering the images to the b0 image of the diffusion
data using SPM12. In each HCP participant, 200,000 fibers were sampled within
the white-matter mask. Fibers were transformed into MNI space using Lead-
DBS60. We used the standardized methods in Lead-DBS to produce the structural
connectomes for the Schaefer 1000 parcellation scheme61. The connectivity weight
Cij ¼ Cji was given by the number of fibers connecting two brain regions. To have
values between 0 and 1, we normalized the weights by dividing them by the largest
value, i.e., maxðCÞ. Diffusion MRI parameters: Sequence: Spin-echo EPI; TR:
5520 ms; TE: 89.5 ms; flip angle: 78 deg; refocusing flip angle: 160 deg; FOV:
210 × 180 (RO x PE); matrix: 168 × 144 (RO x PE); slice thickness: 1.25 mm,
111 slices, 1.25 mm isotropic voxels; Multiband factor: 3; Echo spacing: 0.78 ms;
BW: 1488 Hz/Px; Phase partial Fourier: 6/8; b-values: 1000, 2000, and 3000 s/mm2.

Schaefer parcellation. Schaefer and colleagues created a publicly available
population atlas of cerebral cortical parcellation based on estimation from a large
data set (n= 1489)61. They provide parcellations of 400, 600, 800, and 1000 areas
available in surface spaces, as well as MNI152 volumetric space. We used here the
Schaefer parcellation with 1000 areas and estimated the Euclidean distances from
the MNI152 volumetric space and extracted the timeseries from HCP using the
HCP surface space version.

Data binarization. The rs-fMRI time-series were binarized to study the data sta-
tistics and to compared them to those predicted by the spin model. For each scan,
the z-scored time-series of each ROI, ziðtÞ (1≤ i≤N), was binarized by imposing a
threshold θ ¼ 1. The binarized activity was σ i tð Þ ¼ 1 if zi tð Þ>θ and σ i tð Þ ¼ 0
otherwise. Transformation of continuous signals into discrete point processes has
proven to effectively capture and compress fMRI large-scale dynamics9.
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Importantly, the fluctuations that cross the threshold do not merely represent
noise, since the resulting point process largely overlaps with deconvoluted fMRI
signals using the hemodynamic response function and preserves the topology of
the resting state networks9. Furthermore, using maximum entropy models to
estimate the probability distribution of binarized activity, it has been shown that
binarized rs-fMRI data is poised close at a critical point31.

Correlation function. We calculated the average correlation gðrÞ as a function of
the Euclidean distance r between ROIs. For this, we calculated the average corre-
lation among pairs of nodes that were separated by distances between r and r þ Δr,
with Δr= 0.43 mm, i.e.:

g rð Þ ¼ 1
Nr

∑
rij2 r;rþΔr½ �

cij; ð2Þ

where Nr is the number of pairs of ROIs ði; jÞ such that rij 2 r; r þ Δr½ �, and rij and
cij denote the distance and the Pearson correlation between ROIs i and j, respec-
tively. Distances between ROIs range between 4.28 mm and 173.16 mm.

Phenomenological renormalization-group method. We here review the recently
proposed PRG approach to study scale-invariance in neural systems33. Within this
method, the collective activity is iteratively coarse-grained by grouping together the
variables that are maximally correlated.

Let σð0Þi be the binary activity of ROI i for i ¼ 1; ¼ ;N , with σð0Þi 2 0; 1f g. The
superscript 0 indicates that the data is not coarse-grained. In the first coarse-
graining step, we seek for the pair of variables i�; j�


 �
with maximal correlation

and sum them:

σð1Þi0 ¼ σð0Þi� þ σð0Þj� ; ð3Þ

where i0 ¼ 1; ¼ ;N=2. We repeat this procedure for the second maximally
correlated pair among the remaining variables, i.e., from the set
i; j 2 1; ¼ ;Nf g : i; j=2 i�; j�


 �
 �
, and so on until all pairs are used. This process is

iterated for coarse-grained variables σðkÞi , resulting in clusters of size
K ¼ 2; 4; ¼ ; 2k . The size of the system is equal to Nk ¼ N= 2k

� �
at each coarse-

graining step.
Along the coarse-graining procedure, several statistics of σðkÞi are calculated and

their change at different coarse-graining steps are examined. A first observable is
the variance of coarse-grained variables:

V Kð Þ ¼ 1
Nk

∑
Nk

i¼1
σðkÞi

	 
2
� �

� σðkÞi

D E2
: ð4Þ

For calcium imaging recordings in the mouse hippocampus, it has been shown
that the variance scales with the cluster size, V / K~α33; with a power-law exponent
that lies between linear (~α ¼ 1) and quadratic growth (~α ¼ 2), corresponding to
uncorrelated and full-correlated systems, respectively.

A second quantity is the probability of silence, Psilence Kð Þ ¼ Pðσ kð Þ
i ¼ 0Þ for all

i. Assuming that the probability distribution PK

�
~σðkÞ

�
of the collective activity in a

cluster of size K is a Boltzmann distribution and that the configuration of complete
silence has null energy, Psilence Kð Þ relates to the partition function of the
distribution, i.e., Psilence Kð Þ ¼ Z�1

K . Thus lnPsilence Kð Þ can be associated to a free
energy F Kð Þ ¼ �lnZK . In calcium imaging recordings in the mouse hippocampus,

it has been shown that the free energy scales with the cluster size as F / �K
~β34;

with an exponent <1, which is the expected value for independent variables.
A third quantity is the spectrum of the covariance matrix inside a cluster of size

K . Let λ denote the eigenvalues of the covariance matrix. The eigenvalues are
ordered from the highest eigenvalue, rank ¼ 1, to the lowest, rank ¼ K . It has been
shown that, at the fixed point of RG, one expects that the eigen-spectrum scales
with the relative rank33:

λ / rank
K

� ��μ

: ð5Þ

Notice that the eigen-spectrum presents scaling in two senses: the spectra in
clusters of different size K collapse when the rank is normalized, i.e., rank=K , and
the eigenvalues have a power-law decay as a function of rank, followed by
exponential truncation due to finite size effect33.

Spectral properties of covariance matrices often depend on the ratio between
the number of samples and the number of variables. For this reason and following
Meshulam et al.34, we studied the eigen-spectrum for cluster sizes for which we
have >10 times more samples than variables. In our case, with 1200 time frames per
scan we required K ≤ 26 ¼ 64. Throughout this article, we coarse-grained the
activity up to six times and evaluated the PRG power-laws of VðKÞ and FðKÞ for
1≤K ≤ 64. The eigen-spectrum was computed for K ≤ 64 and its power-law fit was
evaluated for K�1 < rank=K < 0.4 to avoid the finite-size truncation36.

In a D-dimensional system with translational invariance and a power-law
correlation function gðrÞ � r�~η (as expected for a critical system), the exponent μ is
related to ~η. In this case, the eigenvalues are given by the Fourier transform of the

correlation function62:

λ ~k
	 


¼
Z

dDr g rð Þei~k:~r � 1

~k
��� ���D�~η : ð6Þ

Since the rank scales as rank � ~k
��� ���D , one has: μ ¼ D� ~η

� �
=D. However, the ~η

exponent does not satisfy this relation neither in the critical spin model nor in the
fMRI data. This might indicate that the system is not translational invariant.

Connectivity-based phenomenological renormalization-group method. Given
that, in our case, we have information about the structural connectivity, we can
extend the PRG method to coarse-grain the collective fMRI activity based on this
structural connectivity matrix C. Here, the matrix C is given by the dMRI or the
EDR. Note that in both cases, the connectivity matrix is symmetric. In the
connectivity-based PRG (CBPRG) method, we grouped the variables that are
maximally connected. In the first coarse-graining step, we seek for the pair of
variables i�; j�


 �
with maximal connection Cð0Þ

i� j� , where C
ð0Þ¼C, and sum them as

in Equation (3). This was repeated for the second maximally connected pair among
the remaining variables and so on until all pairs are used. Let m0 and n0 be two
indices corresponding to two groups formed in the first step from variables i; j


 �
and k; lf g, i.e.:

σð1Þm0 ¼ σð0Þi þ σð0Þj ; ð7Þ

σð1Þn0 ¼ σð0Þk þ σð0Þl ; ð8Þ
Where i; j; k; l 2 1; ¼ ;Nf g and m0; n0 2 1; ¼ ;N=2


 �
. A new connectivity matrix

of size N=2
� �

´ N=2
� �

is defined as follows:

Cð1Þ
m0n0 ¼

1
4

Cð0Þ
ik þ Cð0Þ

il þ Cð0Þ
jk þ Cð0Þ

jl

h i
: ð9Þ

This connectivity matrix Cð1Þ was then used to group the variables at step 2. As
above, the process was iterated to obtain coarse-grained variables σðkÞi , built by

grouping variables σðk�1Þ
i based on their connectivity Cðk�1Þ , resulting in clusters of

size K ¼ 2; 4; ¼ ; 2k . Notice that the weights of matrix CðkÞ result from averaging
4k connectivity weights from the original connectivity matrix.

Whole-brain spin model. To relate the observed fMRI statistics to critical
dynamics, we built a spin model based on large-scale connectivity. In this model,
the state of each node is described by a binary variable or “spin”, i.e., σ i 2 �1;þ1½ �,
and the collective activity of the N nodes is given by a binary pattern or config-
uration ~σ ¼ σ1; ¼ ; σN

� �
. The probability of each pattern is given by the Boltz-

mann distribution:

P ~σð Þ ¼ 1
Z
exp �E ~σð Þ½ �; ð10Þ

where E ~σð Þ represents the energy of the pattern and is given as:

E ~σð Þ ¼ �β ∑
i;j
Cijσ iσ j: ð11Þ

Z is the partition function, i.e., Z ¼ ∑
~σf g
exp �E ~σð Þð Þ. Spins interact through the

connectivity matrix C. β is a scaling parameter of the connectivity matrix C; it is
equivalent to an inverse temperature, i.e., β ¼ 1=T , which is the free parameter of
the model.

For each configuration~σ, the population activity is defined as the average node
value: M ~σð Þ ¼ ∑iσ i=N . The average population activity Mh i was obtained by
averaging across simulation steps. The model presents a second-order phase
transition that can be detected by examining the behavior of Mh i as a function of
the temperature parameter. For temperatures lower than a critical value, Tc ¼ β�1

c ,
the spin model presents a spontaneous population activity, i.e., Mh ij j>0 (subcritical
regime), that vanishes for temperatures >Tc (supercritical regime).

Realizations of the spin model were obtained using Monte Carlo Metropolis
simulations. The algorithm starts with an initial random configuration of N spins,
then flips the spin of a randomly chosen node, and calculates the change in energy
ΔE induced by the spin flip. If ΔE<0, the spin flip is accepted, otherwise it is
accepted with probability expð�βΔEÞ. For each tested value of β, we ran 5
realizations (with different initial conditions) of 50; 000 ´N simulation steps. The
system’s configuration was stored every N flip attempts. To avoid dependences on
initial conditions, simulations started with extra 500,000 steps without storing the
configurations. The population activity, the correlation function, the coarse-grained
variance, and the coarse-grained eigen-spectrum were averaged over realizations,
for each β.

Note that, using the maximum entropy principle, the spin model (and its
extensions) can be mathematically map to binary data. This has been done using
spiking data at the microcircuit level (e.g. refs. 48,49) but also using binarized fMRI
data at the large-scale level (e.g. refs. 31,46,50). Briefly, within the framework of
maximum entropy models, to estimate the probability distribution P ~σð Þ of binary
patterns, one seeks for the distribution that matches some statistics of the data and
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has maximum entropy. It is known that the maximum entropy distribution that
preserves the pairwise correlations of the data is P ~σð Þ ¼ 1

Z expð∑i;iJ ijσ iσ jÞ, where Jij
is the effective connectivity between the variables σ i and σ j

49: The resulting
maximum entropy distribution is thus equivalent to the Boltzmann distribution of
the present spin model.

Power law fit. We fitted power laws using least squares on log-log scattered data.
Note that we were unable to use a maximum likelihood estimation (MLE)
approach which applies only to probability distributions. MLE, together with
Kolmogorov–Smirnov (KS) statistics63,64 or log-likelihood ratios (LLR) between
the candidate heavy-tailed distributions65, are commonly used to study critical
power-law behavior in neural systems12,66,67. However, this approach is only
applicable to probability densities. For this reason, we here used least squares to fit
power laws and we evaluated the goodness of fit by comparing the explained
variance of the least-squares fit using the power law and the one obtained using an
exponential function. Specifically, we calculated the ratio REV ¼ R2

PL=R
2
Exp , where

R2
PL is the explained variance (or coefficient of determination) of the linear

regression model logY ¼ a logX þ b (power law) and R2
EV is the explained var-

iance of the linear regression model logY ¼ cX þ d (exponential). Ratios REV > 1
favor the power law hypothesis against the exponential alternative. The estimation
error Δa of the power-law exponent was given by the error of the slope a of the
linear regression model logY ¼ a logX þ b. The relative error was defined as:
100 ´Δa=a.

Statistics and reproducibility. The goodness of the linear prediction Xpred ¼ CX
was given by the Pearson correlation between XpredðtÞ and XðtÞ for all nodes and
all subjects (n= 1000 × 1003), where C denotes the dMRI or the EDR connectivity
matrices and X denotes the data signals (Fig. 1d). The distributions of correlation
coefficients were compared to the one obtained using a shuffled connectivity. These
comparisons were done using a Welch’s t-test, after Fisher z-transformation of the
correlation coefficients.

For each subject, shuffled data were built by randomly permuting the time
frames of binarized fMRI signals for each ROI separately. Next, the PRG method
was applied to the resulting shuffled data (Supplementary Fig. S2). The
distributions of the PRG exponents ~α, ~β, μ from the original data and the shuffled
data were compared using Wilcoxon tests (n= 1003 for each distribution).

MATLAB (R2021a) software was used to perform all analyses and to simulated
the model. Numerical simulations were performed in a 50-nodes computer cluster
(Intel® Xeon® E5-2684 at 2.1 Ghz, 256 GB RAM, 1 TB disk).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We used a publicly available dataset of fMRI data from the Human Connectome Project
(HCP), from 1003 participants selected from the March 2017 public data release from the
Human Connectome Project (HCP). The HCP dataset is available at https://www.
humanconnectome.org/study/hcp-young-adult. Source data for main figures presented in
this study are provided as Supplementary Data 1–5.

Code availability
The codes to perform the PRG analysis and to simulate the model are available at https://
github.com/adrianponce/Scaling-of-whole-brain-resting-state-dynamics, https://doi.org/
10.5281/zenodo.796210968.
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