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The INSIDEOUT framework provides precise
signatures of the balance of intrinsic and extrinsic
dynamics in brain states
Gustavo Deco 1,2,3,4✉, Yonatan Sanz Perl 1,5, Hernan Bocaccio5, Enzo Tagliazucchi5,6 &

Morten L. Kringelbach 7,8,9✉

Finding precise signatures of different brain states is a central, unsolved question in neu-

roscience. We reformulated the problem to quantify the ‘inside out’ balance of intrinsic and

extrinsic brain dynamics in brain states. The difference in brain state can be described as

differences in the detailed causal interactions found in the underlying intrinsic brain

dynamics. We used a thermodynamics framework to quantify the breaking of the detailed

balance captured by the level of asymmetry in temporal processing, i.e. the arrow of time.

Specifically, the temporal asymmetry was computed by the time-shifted correlation matrices

for the forward and reversed time series, reflecting the level of non-reversibility/non-equi-

librium. We found precise, distinguishing signatures in terms of the reversibility and hierarchy

of large-scale dynamics in three radically different brain states (awake, deep sleep and

anaesthesia) in electrocorticography data from non-human primates. Significantly lower

levels of reversibility were found in deep sleep and anaesthesia compared to wakefulness.

Non-wakeful states also showed a flatter hierarchy, reflecting the diversity of the reversibility

across the brain. Overall, this provides signatures of the breaking of detailed balance in

different brain states, perhaps reflecting levels of conscious awareness.
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A fundamental, unsolved problem in neuroscience is how
to answer the deceptively simple question of how to define
and quantify a brain state, since such a signature could

provide a Rosetta stone for decoding the fundamental laws of
brain function1–3. To paraphrase William James’ famous quote
about attention, although ‘everybody knows what a brain state is’,
we need a better theoretical framework to provide a distin-
guishing signature able to differentiate different brain states,
which is currently the focus of intensive investigation in the
field1,4–10.

This previous research has made it clear that the most essential
aspect of such a definition should aid in creating a framework for
describing brain states in terms of underlying causal mechanisms
and dynamical complexity. One of the most important steps in
this research was undertaken by Massimini and colleagues who
offered an elegant method for quantifying the dynamical com-
plexity of brain states using perturbation-elicited variations in
intrinsic global brain activity during very different brain states,
including wakefulness, sleep, anaesthesia, and post-coma
states11–13. They developed the perturbational complexity index
(PCI), which distinguishes between distinct brain states by cap-
turing significant changes in brain-wide spatiotemporal propa-
gation of external stimulus13. In turn, this inspired the
development of the Perturbative Integration Latency Index
(PILI), a neuroimaging modelling-based measure characterising
the recovery of perturbed brain dynamics to regain equilibrium
after suppression of the perturbation14,15.

Complementary to these dynamical complexity approaches
that measure the intrinsic responses, here we hypothesise that a
better signature could arise from measuring the differential effects
of the extrinsic environment on the intrinsic brain dynamics in
different brain states. This hypothesis stems from the well-
established observation that the environment is driving sensory
regions (lower in the brain hierarchy) much stronger than regions
in the top of hierarchy, which are, in contrast, much more
intrinsically driven. Indeed, the orchestration of a brain state
must depend on the ‘inside out’ balance of intrinsic and extrinsic
brain dynamics, which could therefore serve as a distinguishing
signature of a brain state. This ‘inside-out’ perspective is inspired
by the ideas put forward by Buzsaki, where the self-organized
dynamics of the brain constrains how it acts on the world rather
than being driven by sensations16. Here, however, we were only
specifically interested in capturing the change in balance of
intrinsic and extrinsic brain dynamics as measured in change in
the hierarchy of the causal interactions in the intrinsic brain
dynamics of different brain states. Capturing this ‘inside out’
balance has proven challenging, although recent results in ther-
modynamics suggest the temporal asymmetry of events, i.e. the
arrow of time, could provide exactly the right tools for capturing
the driving of the environment on a physical system like the
brain17,18. It is well-known that survival in any living system is
predicated on breaking the detailed balance of the transitions
between the underlying microscopic states19,20. The fluxes of
transitions between different states disappear in an equilibrium
system with detailed balance21–23. Thermodynamics provides a
convenient way of describing what happens when the fluxes of
transitions vanish and become reversible in time in an equili-
brium system17. In contrast, in a non-equilibrium system, where
the balance is broken, the net fluxes between the underlying states
become irreversible, establishing an arrow of time18,24–27. This
idea of how non-equilibrium is intrinsically linked to non-
reversibility18 and the production of entropy, leading to the arrow
of time, was originally proposed by Arthur Eddington28 and has
been widely studied in physics and biology17,18,24–27.

We used these fundamental, theoretical insights to create the
INSIDEOUT framework capable of capturing the ‘inside out’

balance of intrinsic (inside) and extrinsic (out) brain dynamics by
directly estimating the arrow of time in brain signals. The main
idea is to capture the asymmetry in temporal process by com-
paring time-shifted correlation matrices for the forward and
reversed time series. This provides a quantification level of non-
reversibility and consequently the degree of non-equilibrium in
the brain dynamics of different brain states. This is a simpler
alternative to estimating the arrow of time through computing the
entropy production rate, which can be difficult to directly com-
pute from brain signals, requiring several assumptions, although
see recent research21,22.

The INSIDEOUT framework allowed us to estimate the precise
signatures of three radically different brain states (awake, deep
sleep and anaesthesia) in ECOG brain data from non-human
primates29,30. Crucially, we found significant different signatures
for each brain state both in terms of the two measures of non-
reversibility and hierarchy computed from the large-scale
dynamics. Overall, this measure of the arrow of time in brain
signals provides a direct quantification of the ‘inside out’ balance
of intrinsic and extrinsic brain dynamics. As such this is a sig-
nature of conscious awareness, of how the environment is dif-
ferentially driving the brain dynamics out of equilibrium
depending on the underlying brain state.

Results
The INSIDEOUT framework was inspired by a key idea, intro-
duced in18, namely capturing the temporal asymmetry of a
dynamical system by extracting both the forward timeseries and
its time reversed version (Fig. 1). Comparing the distinguish-
ability between these two timeseries, we can extract the level of
non-reversibility and consequently the level of non-equilibrium,
i.e. how the external, extrinsic environment drives the internal,
intrinsic dynamics. In other words, when the forward and
reversed timeseries are not distinguishable, the system is rever-
sible and in equilibrium - whereas when the level of distin-
guishability increases, the system becomes more and more non-
reversible and closer to non-equilibrium. In this way, the change
in causal interactions in brain dynamics can be quantified for
different brain states.

Specifically, the important components of the INSIDEOUT
framework are shown in Fig. 1, from the fundamental physics to
the extraction of forward timeseries and construction of the time-
reversed timeseries from the brain data. The principle of the
arrow of time is then estimated from pairwise comparison of two
timeseries. This relies on constructing their time-reversed ver-
sions and characterising the asymmetry in time through the
shifted correlation. As can be seen, the shifted correlation decays
more rapidly for signals with weak compared to strong time
dependency (see details below). Finally, this fundamental prin-
ciple is generalised to multivariate large-scale brain signals.

More specifically, Fig. 1a shows an example from thermo-
dynamics of a physical system driven to non-equilibrium by
external forces18. On the left is shown a Brownian particle in a
moving potential, whose position is controlled by the extrinsic
environment, driving the potential from one position to another
in the forward process. The graph (on the top right) plots
examples of forward evolving trajectories (light grey lines) with
their average (solid grey line). Note how the average trajectory
lags behind the centre of the potential (grey dashed line), i.e., the
time evolution of the vertex of the parabola. In contrast, the graph
at the bottom right plots the same but now for the sample
reversed trajectories (light red lines) and their average (solid red
line). Here, the average reversed trajectory leads the potential’s
centre (red dashed line). Computing the differences between the
lines for average and the potential’s centre for both forward and
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Fig. 1 Capturing signatures of brain states estimating the inside out balance of intrinsic and extrinsic dynamics. The arrow of time in brain signals
contains a precise signature of the reversibility, reflecting how the brain is driven by the level of interaction with the environment. a In thermodynamics, the
arrow of time in physical systems can be precisely estimated to provide a measure of non-reversibility and non-equilibrium, i.e. how the system is driven by
external forces. The subpanel shows an example of a non-equilibrium system given by a Brownian particle in a moving potential, whose position is
controlled externally, moving from one position to another in the forward process. The top of the subpanel shows examples the forward evolving
trajectories (light grey lines) with the average (solid grey line). The average trajectory lags behind the centre of the potential (grey dashed line). In contrast
(bottom of right subpanel) shows sample backward trajectories (light red lines) and their average (solid red line). Here the average trajectory leads the
potential’s centre (red dashed line). This asymmetry in time of forward and backward trajectories (i.e. the differences between the lines for average and the
potential’s centre) provides the exact level of non-reversibility/non-equilibrium of the system [adapted from18]. b The present framework uses this key
idea from thermodynamics to extract the arrow of time in brain signals in order to capture the level of interaction between the brain and the environment.
c The framework estimates the asymmetry by using pairwise comparisons of forward signals across the whole brain. d This is accomplished by
constructing the backward brain signal from the forward signal by creating a reversal of the backward time series in each brain region. The panel shows the
notation used for describing this process for a pair of regions. e The panel shows the main principle of the framework for measuring the level of non-
reversibility/non-equilibrium through the pairwise level of asymmetry using a time-shifted measure of their correlation. The subpanels show how the
shifted correlation captures the causal interactions between two time series where the top example shows strong time dependency while the bottom
example shows weak time dependency. This is clearly seen by how the shifted correlation (as a function of the time shift, Δt) decays more rapidly for
signals with weak compared to strong time dependency. The middle subpanels show the same method but now used for comparing forward and reversed
regionals pairs of brain signals. The right subpanel shows examples of the time series for a given shift Δt= T and how the level of non-reversibility is
computed as the absolute quadratic difference between the time-shifted correlations between forward and the reversal time series averaged over all pairs.
f We applied this framework to the multidimensional time series covering the whole brain. g We created two time-shifted correlation matrices for the
forward and reversed time series (at a given shift time point Δt= T). h The level of non-reversibility/non-equilibrium is given exactly by the distance
between the two matrices (see Methods).
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reversed trajectories provide the exact level of non-reversibility/
non-equilibrium of the system. For a system in equilibrium with
non-existent external forces moving the potential, the differences
between the average and the potential’s centre are close to zero
for both forward and reversed cases. On the other hand, when an
external force is moving the potential, this difference grows in
opposite ways, where the difference in the forward case becomes
more positive and more negative for the difference in the reversed
case. This asymmetry in time reflects the arrow of time, indicating
that the system moves further and further away from equilibrium
into non-equilibrium.

This general principle can be directly applied to brain signals in
order to capture the level of how much the brain is being driven
by external forces from the environment. The construction of a
reversed timeseries is done by reversing in time the natural for-
ward evolution of the timeseries (Fig. 1b). The causal comparison
of these two versions of a timeseries provides the foundation of
the INSIDEOUT framework.

The general principle of how the estimation of the arrow of
time between two timeseries is sketched in Fig. 1c–e. The precise
notation used in the Methods for the construction the reversed
brain signal from the forward signal is shown in Fig. 1d. The
main principle of the INSIDEOUT framework for measuring the
level of non-reversibility/non-equilibrium through the pairwise
level of asymmetry using a time-shifted measure of their corre-
lation (shown in Fig. 1e). The fundamental principle is described
by providing two examples of where a timeseries (a) has a strong
(top row) dependency on one timeseries (b) but a weak depen-
dency on another timeseries (c, see insert). The framework
measures this dependency through the time-shifted correlation
between the timeseries. As can be seen, for the strong depen-
dency, the slope of the decay is much flatter than for the weak
dependency. Now, to determine the arrow of time, the framework
computes the time-shifted correlation between the forward and
the reversed timeseries (middle column). At a given shift (Δt= T,
see line and arrow in figure), the level of non-reversibility can be
computed as the absolute difference between the value of the
forward and the reversed time-shifted correlations at this point
in time.

Subsequently this is extended to multidimensional time series.
We compute the pairwise time-shifted correlations (at a given
shift time point Δt= T) which generates resulting time-shifted
correlation matrices for the forward and reversed time series
(shown in Fig. 1f–g). The comparison for extracting the level of
non-reversibility/non-equilibrium is performed for all pairwise
timeseries and therefore given exactly by the distance between the
two matrices (see Methods).

The INSIDEOUT framework was applied to a unique dataset
of four non-human primates in different brain states (wake,
sleep and four different forms of anaesthesia), where the envir-
onment across conditions was the same. This allowed to precisely
estimate a signature of a brain state characterised by the effect of
the external, extrinsic environment on the intrinsic brain
dynamics.

The experimental paradigm29,30 included two major brain state
manipulations: sleep and anaesthesia (Fig. 2a). The non-human
primate was woken from sleep for the sleep condition (top row),
leading to three periods of sleep, waking with eyes closed, and
awake with eyes open. The anaesthesia protocol consisted of
using one of four pharmacological agents (propofol, medetomi-
dine (MD), ketamine+MD, and ketamine). For each anaesthetic
condition, the row shows the conditions with (1) awake eyes
closed, (2) awake eyes open, (3) anaesthetic, (4) recovery eyes
closed, and (5) recovery eyes open. Across all sessions, the data
was recorded with ECOG from 128 electrodes covering one
hemisphere in each of the non-human primates. The combined

electrode locations across monkeys (Fig. 2b) as well as the loca-
tions in each individual shown in the other four figures. In order
to minimise any potential confounds, we only used data from
sessions with eyes closed. Similarly, to avoid potential volume
conduction artefacts, the analysis used a PCA reduction of the
dimensionality of the data (see Methods).

We hypothesised that the INSIDEOUT framework would be
able to provide significantly different signatures for each of the
five brain states. The results of analysing all the available (eyes
closed) data from the non-human primates in sleep and four
different states of anaesthesia are presented in Fig. 3. Importantly,
as shown in the figure, conventional measures of functional
connectivity fail to distinguish between these radically different
brain states. The column shows individual examples of the
functional connectivity matrices across the 128 electrodes for
each condition and the scatter plots of the correlation between the
conditions. As can clearly be seen from the scatter plots, this
conventional method is unable to distinguish between the brain
states, despite them being radically different. We performed the
group level comparisons across all sessions and subjects, yielding
a statistically non-significant result (Wilcoxon rank sum,
p > 0.05). Equally, Supplementary Fig. 1 shows the scatterplots of
the PC variances (diagonal elements of the functional con-
nectivity in PCA space with N= 10 components) as the INSI-
DEOUT framework, which is also not useful for distinguishing
brain states.

In contrast, as shown in Fig. 3b, c, the INSIDEOUT framework
can clearly distinguish the brain states, using in all cases, a
common optimal shift time point T= 4 for estimating the arrow
of time. The middle panels of the figure show the level of non-
reversibility for the same examples of individual sessions used in
the functional connectivity analysis for a single subject. Com-
puting this across all states, sessions and subjects, we found highly
significant group level results, as shown in the violin plots with
three stars indicating Wilcoxon rank sum (p < 0.001). As can be
seen, the level of non-reversibility/non-equilibrium for sleep and
all anaesthesia conditions (except for ketamine) is lower than in
the awake state. This indicates that extrinsic environment is less
important for driving intrinsic brain dynamics in states with less
conscious awareness. Importantly, note that the level of non-
reversibility/non-equilibrium increases again during the awake
recovery session after anaesthesia (except ketamine) to similar
levels as the initial awake session. The differential effects of
ketamine compared to other anaesthetic agents are well known31,
arising from ketamine’s dissociative effects32,33. Due to the fact
that ketamine acts primarily as an antagonist of glutaminergic
NMDA receptors, widespread and weak excitation appears in the
brain, leading to complex, conscious experiences, including out-
of-body experiences, and hallucinations34. As such it is a
remarkable and a clear strength of the INSIDEOUT framework
that it is able demonstrate how ketamine changes the non-
reversibility/non-equilibrium differently from other anaesthetic
agents.

In order to check whether it would make a difference to use a
common PCA reference for all sessions in a given monkey, we
compared this with our strategy of computing the PCA based on
each session for each monkey in each condition. To compare
these strategies, we concatenated all the sessions for one monkey
(Chibi) in awake and in sleep and compared the reversibility on
this common reference strategy compared to using PCAs of
independent sessions in Supplementary Fig. 2. As can be seen,
both strategies result in a similar level of significant differences in
reversibility. Given that we cannot use a common reference for
different monkeys and it is high-risk to concatenate sessions, we
therefore used the independent PCA strategy as the more con-
servative choice.
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Furthermore, we studied the influence of the number of PCA
components as shown in Supplementary Fig. 3, where Supple-
mentary Fig. 3a shows the variance of each PCA component
for one monkey (Chibi) for all conditions, where they are
clearly overlapping. For N= 10, we explain over 90% of the
variance and we therefore chose this as the number of PCAs.
Nevertheless, Supplementary Fig. 3b shows the level of non-
reversibility for awake and sleep in the same monkey for all even
numbered PCAs from [4..18]. Except for N= 4, all show a sig-
nificant difference in non-reversibility between the two condi-
tions. Finally, Supplementary Fig. 3c shows the p-values in
Supplementary Fig. 3b.

We further investigated the validity and interpretation of the
INSIDEOUT framework by computing the causal interactions
between different regions using transfer entropy, which is an

information-based measure of Granger causality. Using the
NDTE framework35, Supplementary Fig. 4 shows the results of
comparing the five conditions in terms of comparing the levels of
asymmetry, measured as the quadratic differences between the
transfer entropy matrices (flow between pair of regions) and their
transposed (see Methods). This level of asymmetry is a proxy for
the breaking of the detailed balance. As can be seen from the
figure, the NDTE results are consistent with those found with the
INSIDEOUT framework and thus validates this. They also
strengthen the interpretation of the link between non-reversi-
bility/non-equilibrium and breaking the detailed balance.

In addition to the level of non-reversibility/non-equilibrium,
we were interested in constructing a measure of hierarchy
which could be used to estimate the level of orchestration
changing according to the extrinsic driving of the environment.

Fig. 2 Experimental paradigm with different brain states in the same environment. a We leveraged the power of an existing dataset from four non-
human primates in different brain states (wake, sleep and four different forms of anaesthesia, see Methods for detailed description). The experimental
paradigm consisted of two main manipulations of brain state measuring sleep and anaesthesia. For the sleep condition in the upper row, the non-human
primate was awakened from sleep, leading to three sessions with sleep, awake with eyes closed and awake with eyes opened. For the anaesthesia
conditions, the lower rows show the protocol with the injection of one of four pharmacological agents (propofol, medetomidine (MD), ketamine+MD and
ketamine). The five sessions consisted of (1) awake eyes open, (2) awake eyes closed, (3) anaesthesia, (4) recovery eyes closed and (5) recovery eyes
open. For the results reported here, only sessions with eyes closed were used. b The data from the sessions were recorded with electrocorticography
(ECOG) from 128 electrodes covering one hemisphere in each of the non-human primates, with the combined locations shown in the subpanel and the
locations in each individual shown in the other four subpanels.
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This measure of hierarchy was computed as the variability of the
non-equilibrium/non-reversibility of different brain states across
space (see Methods). The five conditions are shown in Fig. 4a,
where each row showing example renderings of the electrode-
level non-equilibrium/non-reversibility for the two non-human
primates participating in all experimental conditions. It is of
considerable interest that the electrode-level renderings are not
uniform but heterogenous across space in the different brain
states. In general, there are more yellow electrode nodes (indi-
cating high levels of non-reversibility) in awake than in sleep and
anaesthesia. Furthermore, these regions are located near lower
levels of the hierarchy in, for example, somatosensory regions.
This strongly suggests that the hierarchy changes in each brain
state as a function of how environment interacts with the intrinsic
dynamics and thereby changing the important balance between
intrinsic and extrinsic dynamics. Confirming this finding, the
group-level results for the hierarchy of the ‘inside out’ balance of
intrinsic and extrinsic balance across all sessions and all subjects
shows highly significant signatures of the specific brain state
(Wilcoxon rank-sum, p < 0.001). Interestingly, again there is a
change in the opposite direction for ketamine.

This change in the hierarchy is driven by the breaking of the
detailed balance associated with each condition. This is shown in
the small inserts in Fig. 4, which render the detailed balance in
terms of the causal driving of the incoming FCin τð Þ (top) and
outgoing FCout τð Þ (bottom) information captured by the shifted
correlation (see Fig. 1 and Methods). In all renderings, in both
non-human primates in all conditions, a larger breaking of the
balance is associated with a larger level of non-reversibility. As
can be seen, in general anaesthesia the causal driving of the
regions measured by the electrodes is more homogeneous than in

awake and recovery. Interestingly, this is not the case for sleep,
which is almost as heterogeneous as the awake condition, perhaps
attesting to the fact that sleep is naturally occurring brain state
and not as disruptive as the pharmacological intervention used
for anaesthesia.

Finally, the results reflect an interesting feature of the experi-
mental setup, which is that the waking up from anaesthesia for
the MD and KT+MD conditions required the injection of ati-
pamezole (an antagonist to medetomidine). When comparing the
awake state with the anaesthesia and recovery states for these two
conditions (see Figs. 3 and 4), the group results show more
comparable levels of non-reversibility and hierarchy between the
recovery and the awake rather than the anaesthesia state. In
contrast, for the propofol and ketamine conditions, the recovery
condition is closer to the anaesthesia than the awake state (but
still significantly different). This could indicate that the recovery
was efficiently achieved when injecting atipamezole in the MD
and KT+MD conditions.

In order to further validate the INSIDEOUT framework, we
applied it to large-scale human HCP functional MRI neuroima-
ging data (see Methods). As shown in Supplementary Fig. 5, the
results show that the level in non-reversibility increases in seven
tasks (covering the full cognitive domain) compared to rest,
consistent with other findings21,23.

Further validating the INSIDEOUT framework with different
brain states, Supplementary Fig. 6 shows significant differences
between wakefulness and deep sleep brain states in human fMRI
(see Methods). As such, these findings open up for future
research, precisely characterising the arrow of time and non-
reversibility/non-equilibrium in human brain states in health and
disease.

Fig. 3 Estimating the arrow of time in brain signals provides significantly different signatures of brain state. The figure summarises the results of
analysing all the available (eyes closed) data from the non-human primates in sleep and four different states of anaesthesia (see Methods and Fig. 2).
a The column shows individual examples of the functional connectivity matrices across the 128 electrodes and a scatter plot of the correlation between
each condition. As can be seen, this conventional method is unable to distinguish between the very different brain states. b In contrast, the central panel
shows the application of the thermodynamic framework of estimating the arrow of time on the same individual time series, which is clearly distinguishing
brain states. c The column shows the significant group level results (across all non-human primates with all sessions belonging to the specific brain state)
which provides a clear signature able to distinguish between different brain states (Wilcoxon rank-sum, p < 0.001).
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Discussion
A current focus of intensive investigation in the field is how to
extract dynamical signatures of distinct brain states. We addres-
sed this challenging question by using the INSIDEOUT frame-
work, which allowed us to discover how different brain states
react to the same environment, giving rise to significantly dif-
ferent signatures in the balance of intrinsic and extrinsic brain
dynamics in sleep and anaesthesia.

The key idea of the INSIDEOUT framework comes from
thermodynamics, which uses the concept of arrow of time to
characterise the level of the non-reversibility/non-equilibrium in
brain signals. The asymmetry in temporal processing of the
environment, i.e. the level of reversibility, directly measures the
breaking of the detailed causal interactions found in the brain
dynamics. In other words, our method is an alternative way to
capture differences in effective connectivity and hierarchical
processing in different brain states. Compared with other related
methods for effective connectivity such as that of Gilson and
colleagues36, the INSIDEOUT framework does not need to
assume any underlying model. In addition, the present frame-
work is also much simpler compared to transfer entropy
methods35,37, given that it is based on time-shifted correlation.
The simplicity of the framework also provides a way of estimating
the arrow of time or reversibility which approximates the true
measure of production entropy. This is important since it is very
difficult to fully compute. To the best of our knowledge, there
currently only two papers in the literature that estimates the
production entropy21,22. The former uses the flow of the system
while the latter use spin models to establish a link between the

breaking of the detailed balance and reversibility. This establishes
the exact mathematical relationship between intrinsic and
extrinsic dynamics, but through an approximation in a low-
dimensional space reduction. The advantage of the simpler
INSIDEOUT framework is that it can capture the arrow of time
across all time signals, whether in ECOG or in fMRI, as
shown here.

Crucially, the INSIDEOUT framework was able to reveal sig-
nificantly different signatures of non-reversibility/non-equili-
brium and hierarchy in ECOG brain data from non-human
primates in three radically different brain states (awake, deep
sleep and anaesthesia), which are difficult to capture with con-
ventional methods. This provided a quantification of the differ-
ential breaking of the detailed balance in different brain states,
where a change in the detailed balance of the brain dynamics was
defined as the change in the hierarchy of the causal interactions in
the intrinsic brain dynamics, i.e. the breaking of the balance
reflects the level of asymmetry of causal interactions, which is
captured through the arrow of time. Specifically, we found that
the level of non-reversibility/non-equilibrium was higher in
wakefulness than both sleep and anaesthesia. This significant
feature of non-wakeful states was also shown by a flatter hier-
archy reflecting the diversity of the reversibility across the brain.
In summary, this thermodynamics-inspired framework offers a
quantification of signatures of the ‘inside out’ balance of intrinsic
and extrinsic brain dynamics, which is closely linked to subjective
conscious awareness.

One of the paradoxes of the brain is how fundamentally dif-
ferent brain states such as wakefulness, sleep or anaesthesia can

Fig. 4 Hierarchical signature of different brain states. We constructed a measure of hierarchy by estimating the variability of the non-equilibrium/non-
reversibility of different brain states across space. For each condition, the row shows example renderings of the electrode-level non-equilibrium/non-
reversibility for the two non-human primates (George and Chibi) who participated in all experimental conditions. The smaller inserts show how the level of
reversibility is associated with the causal driving of the incoming FCin τð Þ and outgoing FCout τð Þ information captured by the shifted correlation (see Fig. 1
and Methods). The column shows the significant group-level results for the hierarchy of the inside out balance of intrinsic and extrinsic balance for all non-
human primates with all sessions belonging to the specific brain state (Wilcoxon rank-sum, p < 0.001).
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emerge from the same underlying fixed anatomy. Over longer
periods of time, the brain can exhibit neuroplasticity as part of
learning, but it has remained a challenging question that even
without neuroplasticity different brain states can coexist in the
same static anatomy of the so-called connectome.

Exciting research has proposed that different brain states are
characterised by different dynamical regimes2,4,38. Indeed, it was
shown that both at macroscopic and microscopic scales, uncon-
scious brain states are dominated by synchronous activity2,38–41,
while conscious states are characterised by asynchronous
dynamics38,42,43. Equally, in non-human primates, research has
investigated changes in anaesthesia, where for example maximum
entropy models were used to derive collective, macroscopic
properties that quantify the dynamics in a brain state that pro-
duce work, contain and transmit information44. Another way to
quantify different brain state dynamics is to measure the hier-
archy using a method called intrinsic ignition, which determines
the internal propagation of signals across the brain45,46. This was
used to analyse resting-state fMRI data in awake and anesthetized
non-human primates to reveal spatial and temporal hierarchical
differences between the brain states47. Using whole-brain mod-
elling of such profound dynamical changes between brain states
revealed changes in global synchronisation and other metrics
such as functional connectivity, structure-function relationship,
integration and segregation across vigilance states48.

In humans, neuroimaging studies have also investigated
changes in many brain states including wakefulness, meditation,
anaesthesia, sleep and even coma3,49,50. A comprehensive study of
brain states showed significant different levels of turbulent
dynamics3. Whole-brain modelling of wakefulness, anaesthesia,
and coma found reduced network interactions, together with
more homogeneous and more structurally constrained local
dynamics for brain states with reduced levels of conscious
access49. Furthermore, the non-stationary landscapes of different
brain states were described by a mathematical framework that
characterised differences in the attractor structure, i.e. the sta-
tionary points and their connections over time51.

Ultimately, however, the paradox of how brain states can
coexist in the same static connectome can perhaps best be solved
by considering the changes in intrinsic properties of the con-
nectome (such as neuromodulators4,52,53) and extrinsic, driving
forces from the environment. Therefore, a likely signature of the
complex dynamics of self-organised activity in a given brain state
must arise from a description of the balance between intrinsic and
extrinsic dynamics. This is exactly the hypothesis driving the
INSIDEOUT framework described here. Previous research has
elegantly described that the brain activity following extrinsic
perturbation depends on the intrinsic dynamics and that this is
different in different brain states, including wakefulness, sleep,
anaesthesia, and post-coma states11–15. In contrast, the INSIDE-
OUT framework proposed here is able to quantify how the same
natural extrinsic environment can lead to a radical different
balance between intrinsic and extrinsic dynamics for a given
brain state.

Furthermore, the results quantify the concepts of prominent
theories of consciousness such as the Global Workspace35,54,55,
Integrated Information Theory6 and the Temporo-spatial Theory
of Consciousness7 in terms of the arrow of time. Here we show
that compared to non-conscious brain states, conscious aware-
ness is associated with greater non-reversibility/non-equilibrium
reflecting a richer hierarchy associated with more breaking of the
detailed balance of the causal interactions in brain dynamics.

A fundamental question in general biology is how life depends
on survival and how this requires the ability to find order in a
complex, largely disordered environment. Survival can be
described as the avoidance of decay and of equilibrium, as

proposed by the Erwin Schrödinger20. The brain controls these
non-equilibrium interactions between internal brain dynamics
and the complex environment through the regulation of the
‘inside out’ balance of intrinsic and extrinsic dynamics.

Previous research in thermodynamics provides a convenient
framework for describing how a non-equilibrium system––where
detailed balance is broken––shows net fluxes between the
underlying states, and thus becomes irreversible, establishing an
arrow of time18,24–27. These non-equilibrium dynamics can be
described by turbulence, which is highly useful for optimally
transferring energy/information over spacetime due to its mixing
properties56.

The key idea behind the INSIDEOUT framework is to quantify
how the environment drives the internal brain dynamics by
measuring the non-reversibility/non-equilibrium in brain signals
through the arrow of time. Previous research has measured the
entropy production to characterise non-equilibrium21,22. Yet,
other methods have directly estimated the arrow of time by using
deep learning algorithms to capture the non-equilibrium of brain
states23,57. In contrast, here we use a much faster and more
sensitive method of estimating the asymmetry in time through
using the multivariate pairwise shifted correlation of the forward
and reversed timeseries. The results show that this approach
provides clear signatures of the different brain states. It is of
interest to note that the optimal time shifting parameter (T= 4)
establishes a timescale for these signatures. Other important
research on timescales has shown a shift towards slower fre-
quencies in brain states with sensory deficits (such as sleep,
unresponsive wakefulness syndrome and anaesthesia) rather than
motor deficits (such as locked-in syndrome)58.

Interestingly, the link between non-equilibrium dynamics and
turbulence, which are found in many physical systems is also
found in the human brain, where turbulence and the resulting
information cascade play a key role extracting order from dis-
order in the environment59–62. Turbulence in the human brain is
poised on the edge of criticality, between fluctuations to
oscillations63, which creates a straightforward signature for
describing the different degrees of dynamical flexibility in brain
states3.

The INSIDEOUT framework provided precise signatures for
the brain states of wakefulness, deep sleep and anaesthesia in an
ECOG dataset acquired in non-human primates. The signatures
for each brain state were different in terms of the reversibility and
hierarchy of their underlying large-scale dynamics. The arrow of
time capturing the level of reversibility measures the influence of
the asymmetry in temporal processing of the environment on the
intrinsic brain dynamics. The breaking of the detailed causal
interactions found in brain dynamics is lower in both deep sleep
and anaesthesia than in wakefulness. This is also reflected in a
flatter hierarchy, measured as the variability of the level of non-
reversibility/non-equilibrium across the brain. This means that
when the level of subjective vigilance under anaesthesia and sleep
is reduced, the same extrinsic environment is driving the intrinsic
dynamics to a significant lower degree. This ‘inside out’ balance is
reflected in the level of reversibility and therefore sufficient to
fully distinguish between different brain states and wakefulness.

Furthermore, the INSIDEOUT framework is sufficiently sen-
sitive to detect the differential effects of ketamine compared to
other anaesthetic agents31, perhaps reflecting what is known as
“dissociative anaesthesia”32,33. Ketamine is known to cause
widespread, weak excitation in the brain, given that it acts pri-
marily as an antagonist of glutaminergic NMDA receptors34.

Another remarkable differentiation is how the group results
show more comparable levels of non-reversibility and hierarchy
between the recovery and the awake condition rather than the
anaesthesia state for the medetomidine, possibly due to the fact

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03505-7

8 COMMUNICATIONS BIOLOGY |           (2022) 5:572 | https://doi.org/10.1038/s42003-022-03505-7 | www.nature.com/commsbio

www.nature.com/commsbio


that the waking up from anaesthesia for the MD and KT+MD
conditions required the injection of atipamezole (the antagonist
to medetomidine). This was not the case for the propofol and
ketamine conditions, where the recovery condition was closer to
anaesthesia than the awake state. In the case of propofol, one of
the most commonly used anaesthetics in medicine, the
mechanism of action is not fully understood but clearly linked to
widespread modulation of GABAA receptors64. Through the
binding to GABAA receptors, the effects of endogenous GABA
allow propofol to cause widespread inhibition of neuronal
activity, which at higher doses lead to full anaesthesia and, at
lower doses, states of sedation, amnesia and atonia. On the other
hand, as mentioned above, ketamine is an antagonist of gluta-
materigic NMDA receptors with local excitatory response leading
to widespread, weak stimulation of brain activity.

Overall, we have demonstrated the ability of the INSIDEOUT
framework to extract differential signatures of fundamentally
different brain states in the fixed anatomical connectome through
measuring the ‘inside out’ balance of intrinsic and extrinsic
dynamical interactions. This framework carries within the echoes
of the writings of the medieval scholar Thomas Aquinas who
presciently wrote ‘cognoscentia a non cognoscentibus in hoc
distinguuntur, quia non cognoscentia nihil habent nisi formam
suam tantum; sed cognoscens natum est habere formam etiam rei
alterius, nam species cogniti est in cognoscente’65. This roughly
translates into ‘… the cognizant are distinguished from the non-
cognizant in this respect, that the non-cognizant have nothing but
their own form alone, whereas a cognizant entity is disposed to
have the form of another thing as well. For the species of the thing
known is in the knower’. This stresses precisely the difference
between the content and the container, in cognitive terms
between the mind and the environment and in physical terms
between the intrinsic and the extrinsic dynamics. Perhaps in
future, taking inspiration from recent work on the frontiers of
science66, the INSIDEOUT framework could potentially serve as
an individual ‘fingerprint’ unique to each individual brain, and
thus test the implicit idea in Aquinas that individual cognizants
might differ between them.

To sum up, here we provide precise signatures of distinct,
different brain states by reformulating a central question in
neuroscience, namely how intrinsic dynamics in a brain state are
differentially shaped by the same extrinsic environment. This
allows us to determine the balance between intrinsic and extrinsic
dynamics by establishing the temporal asymmetry of large-scale
brain signals through an estimation of the arrow of time. As such
this reveals the hierarchical orchestration of ongoing dynamics
which is important for promoting survival, with sensory regions
lower in the hierarchy more extrinsically driven by the environ-
ment, while regions in the top of hierarchy are more intrinsically
and less extrinsically driven.

Methods
ECOG data
Neuroimaging Ethics. The RIKEN ethical committee (No. H24-2-203(4)) approved
all experimental and surgical procedures and the research carefully followed the
recommendations of the Weatherall report “The use of non-human primates in
research”.

Experimental setup. As described in details in the original paper30, overall care was
managed by the Division of Research Resource Center at RIKEN Brain Science
Institute, where the non-human primates were housed in a large individual
enclosure with other animals visible in the room, and maintained on a 12:12-h
light:dark cycle. The multidimensional recording technique used chronically
implanted, customized multichannel ECoG electrode arrays (Unique Medical,
Japan). The 128 electrodes array (made of 3-mm diameter platinum discs), was
implanted in the subdural space in 4 adult macaque monkeys (George, Chibi, Su
and Kin2). The array had an interelectrode distance of 5 mm and were implanted

in the left hemisphere, continuously covering over the frontal, parietal, temporal,
and occipital lobes (Fig. 2b, the detailed methods are described in29).

Data. Electrocorticography (ECoG) recordings were obtained in non-human pri-
mates in different brain states (awake and deep sleep as well as anaesthetic doses of
propofol, MD, KT+MD and KT. See further details in29,30. Recordings were
obtained from 128 channels, with an example layout shown in Fig. 2b. All the
sessions used here were conducted with eyes closed. For more information on the
dataset visit http://neurotycho.org/.

ECoG data pre-processing. The pre-processing consisted of applying a notch filter
to eliminate line noise and its harmonics (50 Hz, 100 Hz, 150 Hz); the timeseries
were bandpass filtered between 5 and 500 Hz, and resampled from 1 KHz to
256 Hz and finally z-scored, similar to the procedure described in22,57. Across all
subjects and sessions (eyes closed) this yielded a total of 3522 s of data for wake-
fulness and 26660 s for sleep. For the three sessions of ketamine (wakefulness,
anaesthesia and recovery) there were 3353, 2210 and 3063 s of data, respectively.
For KT+MD, there were 11603, 18244 and 22371 s of data; for propofol: 3687,
2324 and 3603 s of data; for MD: 3438, 3160 and 2791 s of data. For subject, the
timeseries for each session was then inverted in time, giving a forward and a
reversed sample timeseries which was used for the analysis.

Human Connectome project: Acquisition and pre-processing
Ethics. The Washington University–University of Minnesota (WU-Minn HCP)
Consortium obtained full informed consent from all participants, and research
procedures and ethical guidelines were followed in accordance with Washington
University institutional review board approval (Mapping the Human Connectome:
Structure, Function, and Heritability; IRB # 201204036).

Participants. The data set used for this investigation was selected from the March
2017 public data release from the Human Connectome Project (HCP) where we
chose a sample of 1003 participants, all of whom have resting state data. For the
seven tasks, HCP provides the following numbers of participants: WM= 999;
SOCIAL= 996; MOTOR= 996; LANGUAGE= 997; GAMBLING= 1000;
EMOTION= 992; RELATIONAL= 989. No statistical methods were used to pre-
determine sample sizes but our sample sizes are similar to those reported in pre-
vious publications using the full HCP dataset.

The HCP task battery of seven tasks. The HCP task battery consists of seven tasks:
working memory, motor, gambling, language, social, emotional, relational, which
are described in details on the HCP website67. HCP states that the tasks were
designed to cover a broad range of human cognitive abilities in seven major
domains that sample the diversity of neural systems (1) visual, motion, somato-
sensory, and motor systems, (2) working memory, decision-making and cognitive
control systems; (3) category-specific representations; (4) language processing; (5)
relational processing; (6) social cognition; and (7) emotion processing. In addition
to resting state scans, all 1003 HCP participants performed all tasks in two separate
sessions (first session: working memory, gambling and motor; second session:
language, social cognition, relational processing and emotion processing).

Neuroimaging acquisition for fMRI HCP. The 1003 HCP participants were scanned
on a 3-T connectome-Skyra scanner (Siemens). We used one resting state fMRI
acquisition of approximately 15 min acquired on the same day, with eyes open with
relaxed fixation on a projected bright cross-hair on a dark background as well as
data from the seven tasks. The HCP website (http://www.humanconnectome.org/)
provides the full details of participants, the acquisition protocol and pre-processing
of the data for both resting state and the seven tasks. Below we have briefly
summarised these.

The pre-processing of the HCP resting state and task datasets is described in
details on the HCP website. Briefly, the data is pre-processed using the HCP
pipeline which is using standardized methods using FSL (FMRIB Software Library),
FreeSurfer, and the Connectome Workbench software68,69. This standard pre-
processing included correction for spatial and gradient distortions and head
motion, intensity normalization and bias field removal, registration to the T1
weighted structural image, transformation to the 2 mm Montreal Neurological
Institute (MNI) space, and using the FIX artefact removal procedure69,70. The head
motion parameters were regressed out and structured artefacts were removed by
ICA+ FIX processing (Independent Component Analysis followed by FMRIB’s
ICA-based X-noiseifier71,72). Pre-processed timeseries of all grayordinates are in
HCP CIFTI grayordinates standard space and available in the surface-based CIFTI
file for each participants for resting state and each of the seven tasks.

We used a custom-made Matlab script using the ft_read_cifti function
(Fieldtrip toolbox73) to extract the average timeseries of all the grayordinates in
each region of the Mindboggle-modified Desikan-Killiany parcellation74 with a
total of 62 cortical regions (31 regions per hemisphere)75, which are defined in the
HCP CIFTI grayordinates standard space. The BOLD timeseries were filtered using
a second-order Butterworth filter in the range of 0.008–0.08 Hz.
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Human sleep data: Acquisition and pre-processing
Ethics. Written informed consent was obtained, and the study was approved by the
ethics committee of the Faculty of Medicine at the Goethe University of Frankfurt,
Germany.

Participants. We used fMRI- and PSG data from 18 participants taken from a
larger database that reached all four stages of PSG76,77. Exclusion criteria focussed
on the quality of the concomitant acquisition of EEG, EMG, fMRI, and physio-
logical recordings.

Acquisition and pre-processing of fMRI and polysomnography data. Neuroimaging
fMRI was acquired on a 3 T system (Siemens Trio, Erlangen, Germany) with the
following settings: 1505 volumes of T2*-weighted echo planar images with a
repetition time (TR) of 2.08 s, and an echo time of 30 ms; matrix 64 × 64, voxel size
3 × 3 × 2mm3, distance factor 50%, FOV 192 mm2.

The EPI data were realigned, normalised to MNI space, and spatially smoothed
using a Gaussian kernel of 8 mm3 FWHM in SPM8 (http://www.fil.ion.ucl.ac.uk/
spm/). Spatial downsampling was then performed to a 4 × 4 × 4mm resolution.
From the simultaneously recorded ECG and respiration, cardiac- and respiratory-
induced noise components were estimated using the RETROICOR method78, and
together with motion parameters these were regressed out of the signals. The data
were temporally bandpass filtered in the range 0.01–0.1 Hz using a sixth-order
Butterworth filter. We extracted the timeseries in the AAL parcellation79.

Simultaneous PSG was performed through the recording of EEG, EMG, ECG,
EOG, pulse oximetry, and respiration. EEG was recorded using a cap (modified
BrainCapMR, Easycap, Herrsching, Germany) with 30 channels, of which the FCz
electrode was used as reference. The sampling rate of the EEG was 5 kHz, and a
low-pass filter was applied at 250 Hz. MRI and pulse artefact correction were
applied based on the average artefact subtraction method80 in Vision Analyzer2
(Brain Products, Germany). EMG was collected with chin and tibial derivations,
and as the ECG and EOG recorded bipolarly at a sampling rate of 5 kHz with a
low-pass filter at 1 kHz. Pulse oximetry was collected using the Trio scanner, and
respiration with MR-compatible devices (BrainAmp MR+, BrainAmp ExG; Brain
Products, Gilching, Germany).

Participants were instructed to lie still in the scanner with their eyes closed and
relax. Sleep classification was performed by a sleep expert based on the EEG
recordings in accordance with the AASM criteria (2007). Results using the same
data and the same pre-processing has previously been reported76,77.

INSIDEOUT framework and associated methods. The INSIDEOUT framework
is a general method which can use many types of data as specified in the following,
where we use it on ECOG and neuroimaging fMRI data.

Functional connectivity. The functional connectivity in Fig. 3a are matrices of
correlations across of time series activity of the 128 ECOG electrodes in the dif-
ferent brain states.

Method for determining levels of non-reversibility/non-equilibrium. Capturing the
level of non-reversibility, and consequently the level of non-equilibrium forced by
the driving of the external environment in the intrinsic dynamics, relies on the key
idea of detecting the arrow of time through the degree of asymmetry obtained by
comparing the causal relationship between pairwise time series of the forward and
the artificially generated reversed backward version. More specifically, let’s consider
first the detection of the level of non-reversibility (i.e. the arrow of time) between
two time series xðtÞ and yðtÞ. As shown in Fig. 1d, let’s assume that xðtÞ is evolving
from an initial state A1 to a final state A2, and yðtÞ is evolving from an initial state
B1 to a final state B2, respectively. The reversed backward version of xðtÞ ðor yðtÞÞ,
that we call xðrÞðtÞ (or yðrÞðtÞ), is obtained by flipping the time ordering, i.e. by
ordering the time evolution of xðrÞðtÞ ðor yðrÞðtÞÞ as the inverted sequence deter-
mined by initial state A2 to a final state A1 (or initial state B2 to a final state B1).
The causal dependency between the time series xðtÞ and yðtÞ are measured through
the time-shifted correlation. For the forward evolution the time-shifted correlation
is given by

cforwardðΔtÞ ¼ <x tð Þ; y t þ Δtð Þ> ð1Þ

and for the reversed backward evolution the time-shifted correlation is given by

creversalðΔtÞ ¼ <xðrÞ tð Þ; yðrÞ t þ Δtð Þ> ð2Þ
The pairwise level of non-reversibility, i.e. the degree of temporal asymmetry

capturing the arrow of time, is given consequently by the absolute difference
between the causal relationship between these two timeseries in the forward and
reversed backward evolution, at a given shift Δt ¼ T , i.e.,

Ix;yðTÞ ¼
��cforward Tð Þ � creversalðTÞ

�� ð3Þ
We selected the optimal T= 4 in a two-step procedure, where we first compute

the averaged autocorrelation over all signals and identified the approximate value
of T, where the autocorrelation has sufficiently decayed. We then optimise around
this value to find the most significant results.

The level of non-reversibility/non-equilibrium for the multidimensional case
can be easily generalized by defining the forward and reversal matrices of time-
shifted correlations. Let’s denote with xi tð Þ the forward version of a
multidimensional time series reflecting the dynamical evolution of the variable
describing the system. In this case the sub-index i denotes the different dimensions
of the dynamical system. Let’s denote with xðrÞi tð Þ the corresponding reversed
backward version. The forward and reversal matrices expressing the functional
causal dependencies between the different variables for the forward and artificially
generated reversed backward version of a multidimensional system are given by

FSforward;ij 4tð Þ ¼ � 1
2
log 1� <xi tð Þ; xj t þ4tð Þ>2

� �
ð4Þ

FSreversal;ij 4tð Þ ¼ � 1
2
log 1� <x rð Þ

i tð Þ; x rð Þ
j t þ4tð Þ>2

� �
ð5Þ

respectively. The FS functional causal dependencies matrices are expressed as the
mutual information based on the respective time-shifted correlations. The level of
non-reversibility is given by the quadratic distance between the forward and
reversal time-shifted matrices, at a given shift Δt ¼ T . In other words, the level of
non-reversibility/non-equilibrium in the multidimensional case is given by

I ¼ jjFSforward Tð Þ � FSreversal Tð Þjj2 ð6Þ
where the notation jjQjj2 is defined as the mean value of the absolute squares of the
elements of the matrix Q. In other words, if we define a difference matrix FSdiff in
the following way

FSdiff ; ij ¼ ðFSforward ; ij Tð Þ � FSreversal ; ij Tð ÞÞ2 ð7Þ
The matrix FSdiff is thus a matrix whose elements are the squared of the

elements of the matrix ðFSforward Tð Þ � FSreversal Tð ÞÞ, where for each pair, the level of
non-reversibility as measured by the squared difference. Thus, I is simply the mean
value of the elements of FSdiff .

The hierarchy measure used in Fig. 4 is computed as the standard deviation of
the elements of the matrix FSdiff ; which is the matrix of the squared difference
between forward and reversed time-shifted correlations. In other words, this
measure of spatiotemporal hierarchy reflects the degree of asymmetries in the
causal interactions between elements.

Further, to avoid volume conduction artifacts, we reduce the original system
expressed by the N ¼ 128 electrodes, denoted here by �X ¼ ðX1; ¼ ;XN Þ, to an n
dimensional system xi tð Þ, given by the first n ¼ 10 principal components which
were able to capture over 95% of the variance of the empirical data in all subjects
and sessions.

Mathematically, if we define aM ´N matrix of the electrode data D0 where each
of the M rows represents a time point t of the electrodes measurements, i.e. an
instantiation of the vector �X ¼ ðX1; ¼ ;XN Þ. Let’s be D the matrix with column-
wise zero empirical mean, i.e. where the sample mean of each column has been
shifted to zero. Thus, in matrix form, the empirical covariance matrix for the
original variables can be written as

Q ¼ DTD ¼ W ΛWT ð8Þ
Where Λ is a diagonal matrix with ordered eigenvalues of the covariance matrix Q
and W is a matrix with columns given by the corresponding eigenvectors. The
reduced PCA system where the analysis is performed, i.e. xi tð Þ are the rows of the
reduced matrix T

T ¼ DWn ð9Þ
Being Wn the matrix built up by keeping the first n columns, i.e. the first n

eigenvectors of the matrix W.

Method for back projecting PCA space to electrode space. In order to project back in
the original N-electrodes space, the level of non-reversibility computed in the
reduced n-dimensional PCA space, we computed a vector J in PCA space reflecting
in each component the averaged level of non-reversibility as following

Ji ¼
1
n
∑
n

j¼1
FSdiff ;ji þ

1
n
∑
n

j¼1
FSdiff ;ij

� �
=2 ð10Þ

We averaged the components of J for each non-human primate and each
condition over all the corresponding measured sessions. We render the vector J
projected back in a vector R in the N-electrode space by computing

R ¼ JWT
n ð11Þ

The breaking of the detailed balance. The breaking of the detailed balance can be
captured by using the FSforward matrix. The incoming flow is defined as
FCinðiÞ ¼ ∑jFSforward;ij Tð Þ, while the outcoming flow is defined as
FCoutðiÞ ¼ ∑jFSforward;ji Tð Þ.

Normalised directed transfer entropy (NDTE). We used our established NDTE
framework35 to compute the directed flow between brain regions. Briefly, this
allows us to characterise the causal interaction between two brain regions by an
information theoretical statistical criterion that allows us to infer the underlying
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bidirectional reciprocal communication. The NDTE framework was inspired by the
work of Brovelli and colleagues who used and validated a similar transfer entropy
framework in neuroimaging data37. This framework uses a Gaussian approxima-
tion, i.e. only second-order statistics of the involved entropies, which means, as
shown below, that instead of estimating the probabilities, the method estimates the
covariance which massively facilitates computation.

Let us assume that we want to describe the statistical causal interaction exerted
from a source brain area X to another target brain area Y. We aim to measure the
extra knowledge that the dynamical functional activity of the past of X contribute
to the prediction of the future of Y, by the following mutual information:

I Yiþ1;X
ijYi

� � ¼ H Yiþ1jYi
� �� HðYiþ1jXi;YiÞ ð12Þ

where Yi+1 is the activity level of brain area Y at the time point i+1, and Xi indicates
the whole activity level of the past of X (filtered ECOG signal) in a time window of
length T up to and including the time point i (i.e. Xi = [Xi Xi-1 … Xi-(T-1)]). The time
lag between i and i+1 is tlag. Note that this causality measure is not symmetric, i.e.
allows bidirectional analysis. The conditional entropies are defined as follows:

H Yiþ1jYi
� � ¼ H Yiþ1;Y

i
� �� H Yi

� � ¼ �∑yiþ1 ;y
i p yiþ1; y

i
� �

log p yiþ1jyi
� �� �

ð13Þ

H Yiþ1jXi;Yi
� � ¼ H Yiþ1;Y

i;Xi
� ��H Xi;Yi

� �

¼ �∑yiþ1 ;y
i ;xi p yiþ1; y

i; xi
� �

log p yiþ1jxi; yi
� �� � ð14Þ

The mutual information I(Yi+1; Xi|Yi) expresses the degree of statistical
dependency between the past of X and the future of Y. In other words, if that

mutual information is equal to zero, then the probability pðYiþ1;X
ijYiÞ ¼

pðYiþ1jYiÞ : pðXijYiÞ and thus we can say that there is no causal interaction from X
to Y.

Consequently I(Yi+1; Xi|Yi) expresses a strong form of Granger causality81, by
comparing the uncertainty in Yiþ1 when using knowledge of only its own past Yi

or the past of both brain regions, i.e. Xi;Yi . This information-theoretical concept of
causality was introduced in neuroscience by Schreiber82 and is usually called
Transfer Entropy37,83–85. In order to facilitate computation, Brovelli et al.37

proposed a weaker form of causality allowing calculation of the involved entropies
by just considering a Gaussian approximation, i.e by considering only second-order
statistics. Indeed, under this approximation, the entropies can be computed as
follows:

H Yi
� � ¼ T

2
log 2πeð Þ þ 1

2
log det Σ Yi

� �� �� � ð15Þ

H Yiþ1;Y
i

� � ¼ T þ 1
2

log 2πeð Þ þ 1
2
log det Σ Yiþ1;Y

i
� �� �� � ð16Þ

H Xi;Y
i

� �
¼ Tlog 2πeð Þ þ 1

2
log det Σ Xi;Y

i
� �� �� �

ð17Þ

H Yiþ1;Y
i;Xi

� � ¼ 2T þ 1
2

log 2πeð Þ þ 1
2
log det Σ Yiþ1;Y

i;Xi
� �� �� � ð18Þ

In other words, causality is based only on the corresponding covariance
matrices.

In order to be able to sum and compare the directed mutual information flow
between different pairs of brain regions, this has to be appropriately normalised. In
fact, if the mutual information directed flow is correctly normalized then the
different values could be combined for example to know the total directed flow
exerted by the whole brain on a single region or vice versa, the directed flow exerted
by a single brain region on the whole brain. More specifically, we define this
information theoretical measure as normalised directed transfer entropy (NDTE)
flow, FXY , from timeseries X to Y :

FXY ¼ I Yiþ1;X
ijYi

� �
=I Yiþ1;X

i;Yi
� � ð19Þ

where I Yiþ1;X
i;Yi

� �
is the mutual information that the past of both signals

together, Xi;Yi , has about the future of the target brain region Yiþ1. Given that,

I Yiþ1;X
i;Yi

� � ¼ I Yiþ1;Y
i

� �þ I Yiþ1;X
ijYi

� � ð20Þ
this normalisation compares the original mutual information directed flow, i.e. the
predictability of Yiþ1 by the past of XijYi with the internal predictability of Yiþ1,
i.e. I Yiþ1;Y

i
� �

. We define the matrix of NDTE flow in the brain for a given
number of N electrodes, C with elements: Cij ¼ FX ið ÞXðjÞ , where X kð Þ corresponds to
the filtered ECOG time series from electrode k. Here we used a time lag tlag= 4 and
embedding of the past of T= 8.

Statistics and reproducibility. All statistical analyses of the data conducted here
used the standard statistical Wilcoxon rank-sum method (as specified in the text).
Equally, all data is in the public domain (as stated in the Data availability) and the
reproducibility is specified for each dataset in the original empirical papers.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The ECOG data is freely available from neurotycho.org30. The multimodal neuroimaging
data are freely available from HCP86. The sleep data was provided by Dr Helmut Laufs76.
In line with the journal policies, the datapoints for the violinplots in Figs. 3C and 4 are
available in the supplementary data file SuppData1.xls.

Code availability
The code used to run the analysis is available on GitHub (https://github.com/decolab/
insideout), DOI: 10.5281/zenodo.6561284.
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Supplementary Figure 1. Scatterplots of the PC variances which does not distinguish 

between conditions. For each condition, the figure is showing the diagonal elements of the 

functional connectivity in PCA space with N=10 components as the INSIDEOUT framework, 

which, as can be seen, is not useful for distinguishing brain states. 



 
Supplementary Figure 2. Comparing strategies of using individual vs common reference 

PCAs. The left panel of the figure shows the results of concatenating all the sessions for one 

monkey (Chibi) in awake and in sleep. The right panel shows the same using a common 

reference strategy. As can be seen, both strategies result in a similar level of significant 

differences in reversibility.  

 

 



 
Supplementary Figure 3. The influence of the number of PCA components. A) The panel is 

showing the variance of each PCA component for one monkey (Chibi) for all conditions, which 

are clearly overlapping. For N=10, this explains over 90% of the variance. B) The violinplots 

show the level of non-reversibility for awake and sleep in the same monkey for all even 

numbered PCAs from [4..18]. Except for N=4, all show a significant difference in non-

reversibility between the two conditions. C) The panel shows the p-values in B). 

 



 

 
Supplementary Figure 4. Causal interactions between brain states. We used the normalised 

directed transfer entropy (NDTE), an information-based measure of Granger causality, to 

compute the causal interactions between different regions using transfer entropy. The figure 

shows the results of comparing the five conditions in terms of comparing the levels of 

asymmetry, measured as the quadratic differences between the transfer entropy matrices (flow 

between pair of regions) and their transposed (see Methods). This level of asymmetry is a proxy 

for the breaking of the detailed balance. As can be seen from the figure, the NDTE results are 

consistent with those found with the INSIDEOUT framework and thus validates this. They also 

strengthen the interpretation of the link between non-reversibility/non-equilibrium and 

breaking the detailed balance.  

 



 
 

Supplementary Figure 5. Validating the INSIDEOUT framework with large-scale human 

HCP functional MRI neuroimaging data. As can be seen from the violinplots for rest and 

seven cognitive tasks in over 1000 human participants, the results show that the level in non-

reversibility increases in the seven tasks (covering the full cognitive domain) compared to rest. 

 

  

 

 



 
Supplementary Figure 6. Validating the INSIDEOUT framework in human fMRI data from 

different brain states. The figure shows significant differences between wakefulness and deep 

sleep brain states in human fMRI.  
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